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ABSTRACT

Chimeric RNAs and their encoded proteins have
been traditionally viewed as unique features of neo-
plasia, and have been used as biomarkers and thera-
peutic targets for multiple cancers. Recent studies
have demonstrated that chimeric RNAs also exist
in non-cancerous cells and tissues, although large-
scale, genome-wide studies of chimeric RNAs in
non-diseased tissues have been scarce. Here, we
explored the landscape of chimeric RNAs in 9495
non-diseased human tissue samples of 53 different
tissues from the GTEx project. Further, we estab-
lished means for classifying chimeric RNAs, and ob-
served enrichment for particular classifications as
more stringent filters are applied. We experimentally
validated a subset of chimeric RNAs from each clas-
sification and demonstrated functional relevance of
two chimeric RNAs in non-cancerous cells. Impor-
tantly, our list of chimeric RNAs in non-diseased tis-
sues overlaps with some entries in several cancer
fusion databases, raising concerns for some anno-
tations. The data from this study provides a large
repository of chimeric RNAs present in non-diseased
tissues, which can be used as a control dataset
to facilitate the identification of true cancer-specific
chimeras.

INTRODUCTION

Over the past decade, there has been tremendous devel-
opment in the field of chimeric RNA discovery, pursuing
identification of novel biomarkers and therapeutic targets
in cancer (1–4). Specifically, RNA-seq data availability from
large projects such as TCGA (5) allows for high through-
put discovery of chimeric RNAs in cancer (6–10). Although
chimeric RNAs were traditionally thought to be unique fea-

tures of cancer cells (11), there is also an emergent role for
chimeric RNAs in inherited disorders (12,13). Moreover, re-
cent research has validated the existence of chimeric RNAs
in non-cancerous cells and tissues (14–20). These findings
highlight the need to establish a true baseline of chimeric
RNAs in normal physiology before cancer-specific fusion
events can be identified.

In our previous work, we integrated data from 300 RNA-
seq libraries across 30 non-neoplastic tissues to project a
landscape of chimeric RNAs in non-cancer tissues and cells
(14). We obtained samples from non-cancer donors (14,21)
and found examples of tissue-specific and housekeeping
chimeric RNAs (14). However, there are limitations of that
study, including: sample selection and curation to ensure
proper histology of tissues; sample size; and the stringency
of filters for recurrent events.

The Genotype-Tissue Expression (GTEx) dataset repre-
sents an ideal resource for non-cancerous chimeric RNA
study in that the samples are carefully curated to ensure nor-
mal histology (22,23), and the paired-end RNA-seq plat-
form is favored for chimeric RNA data-mining (24–26). In
this study, we explore the landscape of chimeric RNAs in
9495 GTEx samples. We examine the potential for chimeric
RNA profiling in the characterization of different tissues
and present evidence to support the functional relevance of
two chimeric RNAs resulting from different splicing mech-
anisms. We also consider implications of detecting of sup-
posed cancer-specific chimeras in GTEx samples, utilizing
the TCGA bladder cancer dataset as a case study to demon-
strate the value of GTEx chimeric RNAs as a filter to enrich
for true cancer-specific chimeric RNAs.

MATERIALS AND METHODS

Data acquisition

RNA-seq data were downloaded from the GTEx project
(V6 dbGaP Accession phs000424.v6.p1)(22,23). To check
the overlap between GTEx chimeras and cancer-specific
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chimeras, gene fusion lists from COSMIC (27), Mitelman
(28) and TICdb (29) were downloaded. To perform the
chimeric peptide identification, mass spectrometry data files
in *.mzML format corresponding to 30 colon samples were
downloaded from The Clinical Proteomic Tumor Analysis
Consortium (CPTAC) resource (30).

Bioinformatic prediction of chimeric RNAs

Default parameters were used to run EricScript (31,32) with
GRCh38 as the reference genome and paired-end RNA-seq
fastq files as input. Chimeric RNAs with an EricScore (Er-
icScript prediction score) <0.6 or without predicted break-
point positions were discarded. Blat (33) was used to ap-
ply sequence identity-based filter (identity cutoff 90%) to
remove potential false positive chimeras whose junction se-
quence matched human reference transcriptome from En-
sembl (34), RefSeq (35,36) or Gencode (37) annotations.
Based on the junction coordinates, chimeric RNAs were
classified into E/E (both coordinates of parental genes map
to the ends of exons), E/M (coordinate of 5′ and 3′ gene
map to the end and the middle of exon respectively), M/E
(coordinate of 5′ and 3′ gene map to the middle and the
end of exon respectively) and M/M (both coordinates of
parental genes map to the middle of exons) (14). Relative
expression of chimeric RNA to parental genes was calcu-
lated using read count-based expression values provided in
the EricScript output. We filtered out the cases where this
ratio exceeded 1. To determine whether the chimeric RNA
encodes for an in-frame or frame-shifted peptide, we used
‘predict frame.py’ python script from FusionCatcher soft-
ware (38).

Tissue-specific recurrent chimeric RNAs were parsed
from GTEx (22,23) predictions after removal of M/M des-
ignated chimeric RNAs. Tissue-specific recurrent chimeric
RNAs were defined as those with a frequency of at least 2 in
tissues with a total of 100 or fewer samples, at least 3 in tis-
sues with 300 or fewer samples or at least 5 in tissues with
>300 samples.

For examination of GTEx chimeras in COSMIC (27), we
searched both the parental genes, and junction sequence
locations; For Mitelman (28) and TICdb (29) databases,
we searched only the parental gene names, as these two
databases do not provide exact breakpoint positions. Gene
ontology terms were predicted for the 5′ and 3′ parental
genes of chimeras using Gorilla (39) with all annotated
genes in hg38 as background and a P-value cutoff of
<0.001.

Chimeric RNA profiling

A matrix of samples and unique recurrent chimeras were
created, with each cell having a value of either 1 or 0 rep-
resenting the presence or absence (binary profile) of the
chimera in the corresponding sample. We also created bi-
nary profile of parental genes and compared with chimeric
RNA profile to measure the similarities/dissimilarities
among these matrices. To create the binary matrix of
parental genes, we first downloaded the gene expression val-
ues from GTEx and made separate expression matrix for
5′ genes and 3′ genes of the chimera from GTEx-noMM-
recurrent set. Next, we identified the lowest expression value

of all the chimeras being FPKM of 0.04. Using 0.04 as cut-
off, we then converted the expression values of parental gene
matrix to 1 if the value was ≥0.04 else 0. This assures that
for all the chimeras, we are treating their parental genes
as expressed in a particular sample the same as chimeras.
Next, we used Simple Matching Coefficient (SMC) which
compares two binary inputs and gives a score from 0 to 1,
wherein 0 means no similarity and 1 means identical. For
each chimeric RNA binary profile, we calculated SMC score
with 5′ as well as 3′ binary profile.

Motif prediction

To identify motifs present in the 5′ and 3′ parental genes,
we used the Gapped Local Alignment of Motifs (GLAM2)
tool (40) from the MEME SUITE (41) with default param-
eters to find enriched motifs in the 200 bp upstream and
downstream sequences from the breakpoint position. Fur-
ther, we used the Tomtom tool (42) from MEME SUITE
(41) with default parameters on the list of identified mo-
tifs and scanned a database of RNA binding protein motifs
(43).

Chimeric peptide prediction

To identify chimeric peptides using the database search
method, we first constructed a database of chimeric pep-
tides from the recurrent chimeras from colon sigmoid and
colon transverse tissues in GTEx. The 200 bp upstream
and downstream sequences from the breakpoint position
were combined together to form the chimeric nucleotide se-
quence. Three-frame translation of the chimeric sequence
was performed using the ‘transeq’ script of the EMBOSS
software package (release 6.6.0) (44). In silico digestion of
the peptides from each frame was performed using the EM-
BOSS ‘pepdigest’ script using trypsin as the designated en-
zyme. For each frame, the fragment which spanned the
chimeric junction was retained as the chimeric peptide for
that frame, provided at least two amino acids were present
on either side of the junction. These predicted peptides were
stored as a database of chimeric peptides from colon tis-
sue. We expanded this database via inclusion of protein se-
quences from the neXtProt (45) database to the database of
chimeric peptides. We obtained mass spectrometry data files
corresponding to 30 colon samples from the CPTAC (30) as
a comparative reference for the chimeric predictions.

MGSF+ (46) was run in high-precision mode to obtain
peptide spectrum matches (PSMs). FDR values were com-
puted by comparison to a decoy database generated by the
MSGF+ package. Chimeric peptides identified from PSMs
were considered positive hits if q < 0.05 and at least two
amino acids were present on each side of the chimeric junc-
tion.

qRT-PCR and sanger sequencing

Chimeric RNA candidates predicted by EricScript (31)
were confirmed by qRT-PCR. All RNA samples in this
study were treated with DNase I (NEB, M0303), and fol-
lowed by reverse transcription using the SensiFAST kit (Bi-
oline, BIO-65054). qPCR was performed using the Applied
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Biosciences StepOne Plus system (Life Technologies) with
the SensiFAST SYBR with HiRox reagent (Bioline, BIO-
92005). Following qRT-PCR and gel electrophoresis, puri-
fied DNA bands were sent to Genewiz for Sanger sequenc-
ing. In knockdown experiments, the 2−�Ct method was used
to compare relative RNA expression between samples. All
qRT-PCR primers are listed in Supplementary Table S1.

Cell culture, siRNA knockdown and transfection

Prostate cell line RWPE-1 was maintained in RPMI
1640 medium containing 10% FBS (Fetal Bovine
Serum(HyClone)). Immortalized astrocytes were grown
in DMEM/F12 with 10% FBS, and supplemented with
sodium bicarbonate and glucose. Each media was sup-
plemented with 1% pen/strep and 1% L-Glutamine.
All siRNAs were synthesized by Life Technologies and
transfected into RWPE-1 and astrocytes with Lipo-
fectamine RNAiMax (Life Technologies) following
the manufacturer’s instructions. siRNA targeting se-
quences are: si-negative (−), CGTACGCGGAATAC
TTCGA; siAN-1, TCCGCCCTTGGTTTCAAAG;
siAN-2, GGGTCCGCCCTTGGTTTCA; siCCB-
1, TCCGAAGTCAGGAAATATT; siCCB-2,
ACATCCGAAGTCAGGAAAT.

Wound healing and cell counting

RWPE-1 cells and astrocytes were transfected with
si-negative, or siRNAs against ADCK4-NUMBL or
C15orf57-CBX3, and were cultured for about 3 days to
obtain 80–90% monolayer confluency. A wound was made
by scratching the cells using a 10 �l plastic pipette tip,
and the medium was immediately replaced. Images were
captured immediately after wounding and 10 h later. Cell
migration quantified by the size of the wounds in �m. In
parallel, cell proliferation was quantified via cell counting
in each experimental condition.

RESULTS

GTEx chimeric transcriptome

We used the EricScript software package (31) to predict
the chimeric RNA profile for each RNA-seq sample from
GTEx (23). A total of 2 515 721 chimeric RNAs were pre-
dicted from 9495 samples comprising 549 individuals (Fig-
ure 1A), which represent 617 880 unique chimeric RNAs.
Using blat, we applied sequence identity-based filter to re-
move 58 517 potential false positive chimeras. This filter-
ing step eliminated the chimeras whose junction sequence is
highly similar to reference transcript in Ensembl (34), Ref-
Seq (35,36) or Gencode (37), resulting in a total of 559 363
unique chimeric RNAs (Supplementary Table S2). Out of
all unique chimeras, 180 924 were predicted to possess junc-
tion sequences at the ends of annotated exons (E/E) or at
the end of one annotated exon and in the middle of another
annotated exon (M/E, E/M), and 14 114 chimeras were de-
tected five or more times within our dataset. These desig-
nations have shown to be important distinguishing criteria
for elimination of false-positive predictions; chimeric RNAs
belonging to the M/M category exhibit low experimental

validation rates (47) and may represent artifacts such as
template switching during library construction (14). The
last dataset contains a total of 7193 unique gene-pairs, with
4579 unique 5′ parental genes and 4920 unique 3′ parental
genes (Supplementary Table S3). The representation of dif-
ferent tissues and the landscape of these recurrent chimeras
in GTEx are shown in Figure 1.

Chimeric RNA profiling

The fact that chimeric RNAs have been used as differen-
tial diagnostic markers in cancer suggests that they may be
tightly associated with specific cell types or tissue differen-
tiation lineages. Recently, we demonstrated that chimeric
RNA profiling can be used to group biological samples
and reveal similar expression patterns between seemingly
unrelated samples (48). We created chimeric RNA profiles
by designating their presence or absence (binary profile)
in each GTEx sample and used t-Distributed Stochastic
Neighbor Embedding (t-SNE) to visualize unbiased clus-
tering of samples. Samples with similar cell or tissue of ori-
gin together were grouped together on t-SNE plot (Fig-
ure 2A). A total of 20 clusters can be identified, includ-
ing testis, whole blood, lymphocyte, skin, esophagus mu-
cosa, pancreas, liver, heart, adrenal gland, lung, colon,
spleen, pituitary, thyroid, nerve tibial, artery, adipose, and
breast, muscle skeletal, brain and fibroblast (Figure 2A).
We also created binary matrix for parental genes, but failed
to run t-SNE analysis due to too many identical rows
and columns. To quantify the similarity/difference between
chimeric RNA profile and those of the parental genes, we
calculated SMC score of the profiles of chimeric RNAs and
parental genes. SMC score ranges from 0 to 1 with 0 mean-
ing no similarity and 1 meaning identical. We observed that
∼90% of the chimeric RNAs are dissimilar as compared to
the 5′ and 3′ parental genes (SMC 0–0.25). Only ∼4% fu-
sions had high similarity with their parental genes (SMC
≥ 0.6) (Figure 2B). Therefore, chimeric RNA expression
profile is mostly different from the profiles of their parental
genes. In contrast to the canonical transcriptome, where ex-
pression is used as a quantitative trait, chimeric RNAs may
potentially be viewed as qualitative traits.

Characterization and distribution of chimeric RNAs

Chimeric RNAs were characterized based on fusion junc-
tion site, parental gene location and fusion protein cod-
ing potential as previously described (14,47). Each candi-
date chimeric RNA was designated a parental gene classifier
(inter-chromosomal, read-through, intra-others) based on
parental gene chromosomal location, proximity and orien-
tation, as well as a chimeric junction classifier of E/E, E/M
or M/E as previously described (14). In addition, based on
the reading frame of the two parental genes when the fu-
sion is formed, we categorized the chimeras into ‘in-frame’,
‘frame-shift’ and ‘NA’. We then examined the distribution
of these chimeric RNAs through three filtering stages: in-
clusion of all predicted chimeric RNAs (All-GTEx); after
elimination of M/M chimeric RNAs (Non-M/M); and af-
ter further retaining chimeric RNAs with frequency > 4
(Non-M/M-Recurrent). The distribution of each classifier
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Figure 1. The landscape of chimeric transcriptome. (A) Illustration of 53 different adult tissues of human body in the GTEx project. (B) The landscape
of recurrent chimeric RNAs and their classifications based on parental gene location (red = read-through, blue = inter-chromosomal and green = intra-
others) in each tissue. Chimeric transcripts are visualized as a line that connects its two parental genes. Several tissues including bladder, ectocervix and
endocervix are represented by fewer samples, and thus exhibit fewer chimeras.
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Figure 2. (A) t-SNE plot of GTEx samples using a binary profile of chimeras. The presence or absence of chimeric RNAs was translated into a matrix of 0
or 1 for each chimeric RNA. Rtsne package was used to generate a t-SNE plot. Twenty-one unique clusters were identified. (B) Distribution of SMC scores
after comparison between chimeric RNAs and their parental genes using their binary profiles. The presence or absence of chimeric RNAs was translated
into a matrix of 0 and 1 for each chimeric RNA. For parental genes of the chimeric RNA, a matrix of 0 and 1 was also created using their expression profile
based on a cut-off score of 0.04 (lowest expression value of any chimeric RNA in Non-M/M-Recurrent set). SMC score was calculated for the binary
profiles of chimeric RNAs and their parental genes.
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Figure 3. Distribution of chimeric RNAs in different EM categories, types of chimeras based on parental gene location, and fusion protein coding potential.
The distribution of chimeric RNAs was examined at three stages along our filtering pipeline: All GTEx predictions (All-GTEx) (A), after removal of M/M
(Non-M/M) (B), and with an additional frequency requirement (Non-M/M-Recurrent) (C). The number of chimeric RNAs is also plotted based on their
frequency (D). (E) Percentage of chimeric RNAs harboring the canonical splicing donor sequence (AG/GT) at the 5′ junction (left) or canonical splicing
acceptor sequence (AG/G) at the 3′ junction (right) is plotted. All four categories of chimeric RNAs (E/E, E/M, M/E and M/M) in the whole GTEx or
recurrent groups were examined.
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changes after application of each filter (Figure 3). Most pre-
dicted chimeric RNAs in All-GTEx fall within the M/M
(68%) and inter-chromosomal (80%) classifications, while
the E/E (4%) and read-through (4%) chimeric RNAs ex-
hibit considerably lower representation (Figure 3A). Con-
sistently, we found that the majority of predicted chimeras
(∼57.51%) were both inter-chromosomal and M/M (Sup-
plementary Figure S1). As we move from All-GTEx to
Non-M/Ms and further to Non-M/M-Recurrent datasets,
the percentage of E/E chimeras increased from 4% to 14%,
then to 21%. Similarly, read-through chimeras changed
from 4% to 7%, then to 22%, indicating that E/E and read-
through events are enriched as more stringent filters were
applied (Figure 3A–C). The distribution of fusion protein
coding categories does not change significantly when differ-
ent filters were applied (Figure 3). The number of chimeric
RNAs is also plotted based on their frequency (Figure 3D).

We then examined the canonical splicing sequences at
the 5′ and 3′ junctions. Specifically, we searched for canon-
ical AG/GT sequence at the 5′ junction (AG before the
junction, and GT after the junction); as well as canonical
AG/G sequence at the 3′ junction (AG before the junc-
tion, and G after the junction). Not surprisingly, for the 5′
junction, a higher percent E/E and E/M chimeric RNAs
have the canonical splicing donor sequence AG/GT (42 and
15.5%, respectively); Whereas the M/E and M/M chimeric
RNAs have a lower percent (6 and 1.7%, respectively).
For the 3′ junction, E/E and M/E categories have more
AG/G sequence (42.5 and 34.8%, respectively), and E/M
and M/M have less (10 and 9.4%, respectively) (Figure 3E).
When we examined the recurrent chimeric RNAs, the per-
centage of chimeric RNAs harboring the canonical splicing
sequences increased, especially for the M/E category, but
not much for the others. In any situation, chimeric RNAs in
the M/M category has the least number of canonical splic-
ing sequences.

Next, we aimed to assess the distribution of chimeric
RNA-forming parental genes throughout the genome. We
plotted the relation between the total number of annotated
genes in hg38 and the number of chimera-forming genes
on each chromosome. We observed a strong correlation,
suggesting that the parental genes are distributed consis-
tently throughout the genome (Supplementary Figure S2).
We then examined the expression of chimeric RNAs rela-
tive to their parental genes, and found that almost half of
the total chimeras (All-GTEx set) are expressed at ≥50%
level relative to their 5′ parental genes. With respect to the 3′
parental genes, 45% of the chimeras are expressed at ≥50%
level (Figure 4A). Relative expression of chimeras from later
filtering stages (Non-MM and Non-MM-Recurrent) also
followed a similar pattern (Supplementary Figure S3).

As the 3′ UTR is the primary site for microRNA
(miRNA) regulation, and the structure of a typical chimeric
RNA joins the 3′ UTR from the 3′ gene to the 5′ tran-
script, we are interested in investigating whether forming
chimeric RNAs may result in differential regulation by mi-
croRNAs. Indeed, it has been reported that forming the
PAX3-FOXO1 chimera allows human cells to escape the
regulation of miR-495 on its parental PAX3 gene (49). To
study genome-level changes of miRNA regulation, we eval-
uated the length of the 3′ UTR as a proxy. Interestingly, the

average length of the parental gene 3′ UTR was longer than
the average length of the 3′ UTR of all the genes in the hg38
genome (P-value 2.2e-37, Mann–Whitney U test) (Figure
4B and Supplementary Figure S4). However, we did not ob-
serve any statistical difference between the average length of
the 3′ UTR of 5′ and 3′ parental genes of chimeric RNAs
(P-value 0.75, Mann–Whitney U test) (Figure 4B and Sup-
plementary Figure S4).

We then searched for DNA motifs surrounding the
chimeric junction sites. We obtained 200 bp sequences up-
stream and downstream of fusion junction sites of both 5′
and 3′ parental genes. We used the MEME motif discovery
tool (41) and GLAM2 (40) to look for sequence motifs en-
riched in these fragments. The motifs presented in Figure
4C are the highest scoring for upstream and downstream
sequences of 5′ and 3′ genes.

Further, we used the Tomtom tool (42) aligning with the
motif from GLAM2 (40) to assess the potential for these en-
riched motifs as sites for RNA binding proteins. Several mo-
tifs were identified in the upstream and downstream regions
of the 5′ and 3′ parental genes of the chimeric RNAs (Figure
4D). For example, in the 5′ upstream region, motifs such as
SRSF9, SRSF10, ENOX1, PTBP1, PCBP2 were identified.
In the 5′ downstream region, motifs such as FXR2, PCBP1,
Tb 0217, PTBP1 and SRSF10 were identified. In the 3′ up-
stream region, motifs such as Tb 0253, SART3, PABPC1,
PABPC4 and IGF2BP3 were identified. In the 3′ down-
stream region, motifs such as CG7804, SRSF9, SRSF2,
PCBP1 and PCBP3 were identified. (Figure 4D and Sup-
plementary Figure S5). Among them, many motifs includ-
ing SRSF9, PTBP1, SART3, Tb 0253 and PABPC1 were
also found in our previous study (14).

GTEx chimeric peptides

Chimeric RNAs in normal physiology have the potential to
produce chimeric proteins (50,51). Due to the lack of pro-
teomic data from GTEx, we downloaded raw mass spec-
trometry data for colonic tissue from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) (30). We probed this
dataset for chimeric peptides predicted within the Non-
M/M-Recurrent grouping in colon tissues. We identified a
total of 25 PSMs after applying a cutoff of q < 0.05, which
map back to a total of 15 unique peptides (Supplementary
Table S4). These 15 chimeric peptides map back to a list of
chimeric RNAs. We also performed tblastn with identified
chimeric peptide sequence queries against human translated
RefSeq RNA database (35,36) as an additional step to rule
out regular transcripts that may produce same peptides as
chimeric RNAs. Four chimeric peptides did not have any
hits in RefSeq, while eight peptides had match with only
one side of the junction sequences. In summary, 12 peptides
were identified that are likely products of chimeric RNAs
(Supplementary Table S4).

One of these chimeric peptides, SLC39A1-CRTC2, was
previously identified by our group in MCF10A (breast) cell
lines (14). In this study, we found this chimeric RNA in
multiple tissues including breast and colon (sigmoid and
transverse), and confirmed by the above normal colon Mass
spectrometry data. Interestingly, several are not predicted to
produce in-frame chimeric proteins by FusionCatcher soft-
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Figure 4. Characterization of chimeric RNAs and their parental genes. (A) Cumulative frequency distribution of relative chimeric transcript to parental
gene expression. (B) Boxplots for 3′ UTR length of 5′ parental genes, 3′ parental genes and all annotated genes in the hg38 genome. (C) Sequence logo of
the most enriched motifs identified in upstream and downstream sequences from the chimeric junction. (D) Example of one of the most enriched RNA
binding motifs scanned by Tomtom. (E) Gene Ontology molecular process terms for parental genes of testis-specific chimeras and common chimeras
present in all 53 tissues. No significant GO terms were found for the 3′ genes of chimeras common to all tissues.
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ware (38), suggesting that these may encode truncated pep-
tides or make use of alternative reading frames.

Gene ontology prediction

We identified 40 chimeric RNAs common to all 53 tis-
sues (Supplementary Table S5). Gene ontology enrichment
analysis (GO) (39) revealed significant enrichment in pro-
cesses such as ‘cellular metabolic process’ (69%), ‘metabolic
process’ (72%) and ‘telomere maintenance’ (8%) for the
5′ genes. These processes are fundamental to all cells and
explains why these chimeras are commonly present in all
tissues. No significant enriched GO terms were found in
the 3′ genes (Figure 4E). We also extended our analysis
of GO analysis for molecular function and cellular com-
ponent terms for the common chimeras and found terms
‘small ribosomal subunit rRNA binding’ and ‘intracellular
organelle part’, respectively.

We then compiled a list of tissue-specific recurrent
chimeras and observed that these are most common in
testis (566) followed by whole blood (117) and skeletal mus-
cle (52) (Supplementary Table S6). GO analysis for the 5′
parental genes of the tissue-specific chimeras in testis, whole
blood and skeletal muscle revealed normal processes spe-
cific to each respective tissue. For example, processes such as
‘spermatogenesis’ (7%), ‘gamete generation’ (7%) and ‘male
meiosis I’ (7%), were enriched in the 5′ parental gene of the
testis-specific chimeras (Figure 4E and Supplementary Fig-
ure S6).

Validation and functional assessment for a subset of chimeras

We selected candidate chimeric RNAs from each parental
gene combination class, designed primers flanking the fu-
sion junction. Based on the chimeric RNA junction classes
(E/E, E/M and M/E), fusion types (read-through, intra-
other and inter-chr) and their frequencies in GTEx sam-
ples, we chose 38, 30 and 39 candidates from read-through,
intra-other and inter-chr groups respectively for validation.
Sanger sequencing was used after RT-PCR to confirm the
chimeras with >20 bp of DNA sequence on both sides of
the junction (Figure 5A–C). Twenty-one and eight were
validated from read-through and intra-other, respectively.
However, only one chimeric RNA, C15orf57-CBX3 was
confirmed from the inter-chr group (Supplementary Figure
S7). The relatively lower validation rate than our previous
study (47) is partly due to the fact that not the same samples
used for discovery were available for validation. We then ex-
amined the expression of the chimeras across a panel of nor-
mal tissues. Consistent with GTEx prediction, C21orf59-
TCP10L, ARL10-HIGD2A and C15orf57-CBX3 were de-
tected in multiple tissues (Figure 5D). In contrast, TMED6-
COG8 was only detected in a few tissues (Figure 5E and F).
Interestingly, the chimera’s expression does not follow the
pattern of the wild-type parental gene, TMED6 (Figure 5F),
while wild-type COG8 was undetected in these samples.

We then focused on studying the functional relevance
of two chimeric RNAs, ADCK4-NUMBL and C15orf57-
CBX3. ADCK4-NUMBL is a read-through chimera, a
likely product from cis-splicing between adjacent genes
(cis-SAGe). On the other hand, C15orf57-CBX3 is an

inter-chromosomal chimeric RNA, likely formed via trans-
splicing. We selected these two chimeras, because both were
detected in multiple tissues suggesting that they play some
basic function that may be important across cell types. Two
siRNAs were used to specifically target ADCK4-NUMBL
in RWPE-1 cells (Figure 6A). Each siRNA dramatically
knocked down the fusion RNA without significant effect on
the wild-type parental transcript of ADCK4. The RNA level
of wild-type NUMBL was too low to be detected in RWPE-
1 cells. We observed reduced cell proliferation rate and sig-
nificant cell motility reduction, when ADCK4-NUMBL was
knocked down with the two siRNAs (Figure 6B). Similarly,
the two siRNAs dramatically knocked down the expression
of the chimera in astrocyte cells, with little effect on the
wild-type ADCK4 (Figure 6C). Different from the result
from RWPE-1, we observed some reduction of cell migra-
tion when the chimera was silenced in astrocytes, while no
significant change in cell proliferation was seen (Figure 6D).
These results support a basic maintenance role of ADCK4-
NUMBL, and suggest that some effects may be more cell
type specific.

For the inter-chromosomal chimeric RNA,
C15orfCBX3, the second exon of C15orf57 (CCDC32)
on chromosome 15 is fused with the first exon of CBX3
on chromosome 7. We designed two siRNAs (siCCB-1
and siCCB-2) to specifically knock down the chimera
in RWPE-1 and astrocytes. In both cell lines, siCCB-1
and siCCB-2 reduced the fusion RNA level with high
specificity, with no significant changes to either wild-type
parental gene (Figure 6E and F). Importantly, silencing
C15orf57-CBX3 resulted in significantly decreased cell
proliferation and cell motility in RWPE-1 and astrocytes
(Figure 6G and H).

Overlap between GTEx chimeras and the database of cancer
chimeras

Several chimeric RNAs thought to be specific to cancer
were reported to be present in normal cells (14,18–19,53).
Therefore, we suspected that some chimeras compiled in
cancer databases may also be present in the GTEx non-
diseased samples. Indeed, we found that several cancer
chimeras listed within COSMIC (27), TICdb (29) and the
Mitelman Database of Chromosome Aberrations and Gene
Fusions in Cancer in the Cancer Genome Anatomy Project
(54) were also present in our predictions (Figure 7A, and
Supplementary Tables S7–10). Apart from gene-pairs, we
also examined chimeric breakpoints in COSMIC database
(27), which stores the breakpoint positions of the chimera
with respect to mRNA sequence of the parental gene. We
first converted the breakpoint position to genomic coordi-
nates and compared with chimeric RNA junction coordi-
nates in GTEx. Out of seven common chimeras between
COSMIC and GTEx, we identified three chimeras (BCR-
ABL1, SLC45A3-ELK4 and DHH-RHEBL1) with the ex-
actly same coordinates (i.e. same isoform).

Interestingly, the classic BCR-ABL1 chimera found in
most patients with chronic myelogenous leukemia (CML)
(52,55–56), was detected in one skeletal muscle sample
(Supplementary Tables S7–9). The detected chimera joins
exon 14 of BCR to exon 2 of ABL (e14e2). This is surpris-



Nucleic Acids Research, 2020, Vol. 48, No. 4 1773

Figure 5. Identification and profiling of chimeric RNA candidates. Sanger sequencing of chimeric RNA candidates from read-through (A), intra-others
(B) and inter-chromosomal (C). The chimeric RNA expression in human normal tissues was examined by qRT-PCR and followed by gel electrophoresis
(D). Tissue specific fusion RNA, TMED6-COG6, was found only in liver, colon and stomach by qRT-PCR, whereas the wild-type parental gene TMED6
was found in a different list of tissues (E and F). GAPDH was used as internal control.
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Figure 6. Knockdown of ADCK4-NUMBL and C15orf57-CBX decreased cell proliferation and/or cell motility in non-cancerous cells. (A) Two siRNAs
specifically knocked down the fusion RNA ADCK4-NUMBL in RWPE-1, with no significant effect on the wild-type parental ADCK4. Wild-type NUMBL
was too low to be detected. (B) In RWPE-1 cell line, cell proliferation was measured by cell counting (left), and cell motility was measured by wound healing
assay (right). (C) Two siRNAs specifically knocked down the fusion RNA ADCK4-NUMBL in astrocytes, with no significant effect on the wild-type
parental ADCK4. (D) In astrocytes, cell proliferation was measured by cell counting (left), and cell motility was measured by wound healing assay (right).
(E and F) Two siRNAs specifically knocked down the chimeric RNA C15orf57-CBX3 in RWPE-1 and astrocyte, with no significant effect on the wild-type
parental C15orf57 and CBX3. (G and H) Cell proliferation was measured by cell counting (left), and cell motility was measured by wound healing assay
(right) in RWPE-1 and astrocyte respectively.
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Figure 7. Overlaps between GTEx and cancer fusions. (A) Venn diagram showing common chimeras (gene pairs) among the All-GTEx set and three
different databases (COSMIC, TICdb, Mitelman) of cancer fusions. (B) All-GTEx set and chimeras detected from TCGA bladder cancer and normal
matched bladder tissues (matched normal).

ing, as this form of BCR-ABL is a well-characterized can-
cer fusion in leukemia. It is possible that some contamina-
tion occurs during library preparation, and RNAs from one
of the leukemia cell line, K562 or KU812 used as positive
controls for GTEx were mixed in the skeletal muscle sam-
ple. However, the identification of BCR-ABL in the mus-
cle sample is supported by four spanning reads, and three
split reads, arguing against the possibility of a low-level
contamination. Additionally, SLC45A3-ELK4, a transcrip-
tional read-through chimeric RNA, which is commonly re-
ported in prostate cancer, was also found in GTEx prostate,
brain, and artery samples (Supplementary Tables S7–9). In
prostate cancer, two isoforms of SLC45A3-ELK4 (e1e2 and
e4e2) have been reported (25,57–61), and the expression of

the former has been shown to correlate with Gleason score
(57,60). Interestingly, the predicted isoforms found in our
study vary by tissues. We found e5e2 SLC45A3-ELK4 in
prostate, e4e2 and e1e3 in brain and e1e2 in artery (Sup-
plementary Table S7–9), indicating that some isoforms of
physiological chimeric RNAs may be aberrantly expressed
in cancer.

To demonstrate the value of GTEx dataset as a resource
for chimeric RNAs in normal physiology, we used it to fil-
ter predictions from the TCGA bladder cancer study (62).
In total, the TCGA bladder cancer study contains 414 tu-
mor samples and 19 matched normal samples. EricScript
software was used to predict 19 547 unique chimeric RNAs
from all 433 samples (63). A total of 12 603 gene pairs were
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found in cancer samples, and 1232 gene pairs in the matched
normal samples (Supplementary Tables S10 and 11). Using
chimeric RNAs from matched normal samples as a control
dataset to filter out chimeras identified in cancer samples,
we were able to eliminate 668 gene pairs, which represent
∼5% of total gene pairs from the list of cancer chimeras.
On the other hand, using chimeras from GTEx as a control
dataset, we eliminated 3900 (∼31%) gene pairs from the list
of cancer chimeras (Figure 7B). Out of 668 chimeras filtered
out by the matched control dataset, 473 were already repre-
sented in the GTEx dataset. Thus, the matched normal con-
trol set filtered only a small fraction of chimeras that were
not encompassed by the GTEx predictions (1.5%). On the
other hand, the 1.5% (195) of chimeras that are in both blad-
der cancer and matched normal samples, but not in GTEx,
may represent some early molecular events during tumori-
genesis, and warrant further investigation rather than elim-
ination.

DISCUSSION

Chimeric RNAs produced by chromosomal rearrangement
are common features of neoplasia. On the other hand,
chimeric RNAs detected in normal tissues and cells such
as the ones we detected in GTEx are presumably produced
in the absence of chromosomal rearrangement. Indeed, we
examined 20 candidate chimeric RNAs, downloaded whole-
genome sequencing data for the corresponding samples and
detected no evidence of chromosomal rearrangement (ex-
amples shown in Supplementary Figure S8). Such chimeric
RNAs provide an additional means for expansion of the
functional genome without a concordant increase in the
number of genes. Chimeras commonly present in many dif-
ferent tissues may represent a set of functional entities in-
volved in fundamental cellular mechanisms common to all
cells. We have shown that cell mobility and proliferative vi-
ability suffer in the absence of C15orf57-CBX3 or ADCK-
NUMBL and provided a listing of 38 additional predicted
candidates which may possess similarly important function-
ality. We have shown that chimeric RNAs also have the abil-
ity to form chimeric proteins, and candidate chimeric pep-
tides across junction can be identified using proteomics data
12. More studies on the functionality of chimeric proteins,
including the efforts to map the chimeric protein–protein
interactions (64,65), are warranted.

When we examined the canonical splicing junction se-
quence, we found that chimeric RNAs belonging to the
M/M category have the lowest percent harboring such se-
quences. This and their lower experimental validation rates
based on our previous study (47) support the notion that
at least a large percent of them may represent artifacts dur-
ing library construction (14). Therefore, we decided to filter
them out for downstream studies.

We randomly selected over 100 chimeric candidates from
different categories of junction classes (E/E, E/M and
M/E), fusion types (read-through, intra-other and inter-
chr) and their frequencies in GTEx samples for experimen-
tal validation. We had higher validation for read-through,
and frequent chimeras. Overall the validation rate is low
compared to another study we conducted previously (47).
This could be due to the following reasons. (i) In our previ-

ous study, exact same RNA samples were used for RNA-seq
and downstream validation, whereas here the same GTEx
samples that have the RNA-seq data are not available for ex-
perimental validation. This is a more serious issue for less
frequent chimeric RNAs than the frequent ones. (ii) Related
to the first reason, we only used a small number of normal
tissues in validation, and the heterogeneity of tissues com-
plicates the validation. (iii) Different software tools were
used between the two studies.

Several other databases have accumulated number of
chimeric RNAs, including ChiTaRS (66), ChimerDB
(67,68), TICdb (29), although most concentrated on can-
cer samples. We downloaded the ChiTaRS 3.1 dataset, and
found 167 common chimeric RNAs between GTEx and
ChiTaRS (Supplementary Table S12).

We also found 908 common gene pairs between the
current study and our previous one (14). Compared with
the previous study of chimeric RNAs in non-diseased tis-
sues (14), we now present a far more comprehensive rep-
resentation of normal chimeric RNA expression. Further,
GTEx provides a robust panel of tissues, which fills gaps
from our previous study in tissues such as adipose, ovary,
prostate, which were under-represented due to a limited
number of samples. Out of 30 chimeric RNAs experimen-
tally validated previously, a total of 21, including C15orf57-
CBX3, were also identified in this study. In both studies,
we observed similar enrichment of read-through and E/E
chimeric RNAs as we subjected the datasets to more strin-
gent filters. Further, in capturing a more complete landscape
of chimeric RNA expression in non-diseased tissues, we de-
tected a number of transcripts also listed within the COS-
MIC (27), Mitelman (28), and TICdb (29) databases. These
findings indicate that greater emphasis must be placed on
validation of chimeric transcripts as biomarkers, as detec-
tion in cancer tissues/cells is insufficient to the claim that
they are unique to cancer.

It is a common practice to use cancer-matched normal
tissues as controls. However, these controls have significant
limitations in sample size and RNA-seq data availability.
Additionally, normal margins may be under the influence
of a ‘field effect’ (41) and may harbor early tumorigenic
events. Thus, using normal margins may not properly elim-
inate false positive nor false negative discoveries. In con-
trast, GTEx provides a large collection of samples, which
more closely reflect the normal physiology of these tissues.
We envision that this study will serve as a platform for fur-
ther studies of chimeric RNAs in normal physiology and
will be instrumental as a true normal baseline for assess-
ment of chimeric transcripts in cancer.
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Kallioniemi,O., Virtanen,S. and Kilkku,O. (2014) FusionCatcher––a
tool for finding somatic fusion genes in paired-end RNA-sequencing
data. bioRxiv doi: https://doi.org/10.1101/011650, 19 November
2014, preprint: not peer reviewed.

39. Eden,E., Navon,R., Steinfeld,I., Lipson,D. and Yakhini,Z. (2009)
GOrilla: a tool for discovery and visualization of enriched GO terms
in ranked gene lists. BMC Bioinformatics, 10, 48.

40. Frith,M.C., Saunders,N.F., Kobe,B. and Bailey,T.L. (2008)
Discovering sequence motifs with arbitrary insertions and deletions.
PLoS Comput. Biol., 4, e1000071.

41. Bailey,T.L., Boden,M., Buske,F.A., Frith,M., Grant,C.E.,
Clementi,L., Ren,J., Li,W.W. and Noble,W.S. (2009) MEME SUITE:
tools for motif discovery and searching. Nucleic Acids Res., 37,
W202–W208.

42. Gupta,S., Stamatoyannopoulos,J.A., Bailey,T.L. and Noble,W.S.
(2007) Quantifying similarity between motifs. Genome Biol., 8, R24.

43. Ray,D., Kazan,H., Cook,K.B., Weirauch,M.T., Najafabadi,H.S.,
Li,X., Gueroussov,S., Albu,M., Zheng,H., Yang,A. et al. (2013) A
compendium of RNA-binding motifs for decoding gene regulation.
Nature, 499, 172–177.

44. Rice,P., Longden,I. and Bleasby,A. (2000) EMBOSS: the European
Molecular Biology Open Software Suite. Trends Genet., 16, 276–277.

45. Gaudet,P., Michel,P.A., Zahn-Zabal,M., Britan,A., Cusin,I.,
Domagalski,M., Duek,P.D., Gateau,A., Gleizes,A., Hinard,V. et al.
(2017) The neXtProt knowledgebase on human proteins: 2017
update. Nucleic Acids Res., 45, D177–D182.

46. Kim,S. and Pevzner,P.A. (2014) MS-GF+ makes progress towards a
universal database search tool for proteomics. Nat. Commun., 5, 5277.

47. Qin,F., Song,Z., Babiceanu,M., Song,Y., Facemire,L., Singh,R.,
Adli,M. and Li,H. (2015) Discovery of CTCF-sensitive Cis-spliced
fusion RNAs between adjacent genes in human prostate cells. PLos
Genet., 11, e1005001.

48. Xie,Z., Babiceanu,M., Kumar,S., Jia,Y., Qin,F., Barr,F.G. and Li,H.
(2016) Fusion transcriptome profiling provides insights into alveolar
rhabdomyosarcoma. Proc. Natl. Acad. Sci. U.S.A., 113, 13126–13131.

49. Xie,Z., Tang,Y., Su,X., Cao,J., Zhang,Y. and Li,H. (2019)
PAX3-FOXO1 escapes miR-495 regulation during muscle
differentiation. RNA Biol., 16, 144–153.

50. Elenitoba-Johnson,K.S., Crockett,D.K., Schumacher,J.A.,
Jenson,S.D., Coffin,C.M., Rockwood,A.L. and Lim,M.S. (2006)
Proteomic identification of oncogenic chromosomal translocation
partners encoding chimeric anaplastic lymphoma kinase fusion
proteins. Proc. Natl. Acad. Sci. U.S.A., 103, 7402–7407.

51. Soda,M., Choi,Y.L., Enomoto,M., Takada,S., Yamashita,Y.,
Ishikawa,S., Fujiwara,S., Watanabe,H., Kurashina,K., Hatanaka,H.
et al. (2007) Identification of the transforming EML4-ALK fusion
gene in non-small-cell lung cancer. Nature, 448, 561–566.

52. Rowley,J.D. (1973) Letter: A new consistent chromosomal
abnormality in chronic myelogenous leukaemia identified by
quinacrine fluorescence and Giemsa staining. Nature, 243, 290–293.

53. Plebani,R., Oliver,G.R., Trerotola,M., Guerra,E., Cantanelli,P.,
Apicella,L., Emerson,A., Albiero,A., Harkin,P.D., Kennedy,R.D.

et al. (2012) Long-range transcriptome sequencing reveals cancer cell
growth regulatory chimeric mRNA. Neoplasia, 14, 1087–1096.

54. Mitelman,F and J.B.a.M.F.E. (2015) Mitelman Database of
Chromosome Aberrations and Gene Fusions in Cancer.

55. Wong,S. and Witte,O.N. (2004) The BCR-ABL story: bench to
bedside and back. Annu. Rev. Immunol., 22, 247–306.

56. Rabbitts,T.H. (2009) Commonality but diversity in cancer gene
fusions. Cell, 137, 391–395.

57. Kumar-Sinha,C., Kalyana-Sundaram,S. and Chinnaiyan,A.M. (2012)
SLC45A3-ELK4 chimera in prostate cancer: spotlight on cis-splicing.
Cancer Discov., 2, 582–585.

58. Qin,F., Zhang,Y., Liu,J. and Li,H. (2017) SLC45A3-ELK4 functions
as a long non-coding chimeric RNA. Cancer Lett., 404, 53–61.

59. Rickman,D.S., Pflueger,D., Moss,B., VanDoren,V.E., Chen,C.X., de
la Taille,A., Kuefer,R., Tewari,A.K., Setlur,S.R., Demichelis,F. et al.
(2009) SLC45A3-ELK4 is a novel and frequent erythroblast
transformation-specific fusion transcript in prostate cancer. Cancer
Res., 69, 2734–2738.

60. Zhang,Y., Gong,M., Yuan,H., Park,H.G., Frierson,H.F. and Li,H.
(2012) Chimeric transcript generated by cis-splicing of adjacent genes
regulates prostate cancer cell proliferation. Cancer Discov., 2,
598–607.

61. Kannan,K., Wang,L., Wang,J., Ittmann,M.M., Li,W. and Yen,L.
(2011) Recurrent chimeric RNAs enriched in human prostate cancer
identified by deep sequencing. Proc. Natl. Acad. Sci. U.S.A., 108,
9172–9177.

62. Network,T.C.G.A.R. (2014) Comprehensive molecular
characterization of urothelial bladder carcinoma. Nature, 507,
315–322.

63. Zhu,D., Singh,S., Chen,X., Zheng,Z., Huang,J., Lin,T. and Li,H.
(2019) The landscape of chimeric RNAs in bladder urothelial
carcinoma. Int. J. Biochem. Cell Biol., 110, 50–58.

64. Tagore,S., Gorohovski,A., Jensen,L.J. and Frenkel-Morgenstern,M.
(2019) ProtFus: a comprehensive method characterizing
protein-protein interactions of fusion proteins. PLoS Comput. Biol.,
15, e1007239.

65. Frenkel-Morgenstern,M., Gorohovski,A., Tagore,S., Sekar,V.,
Vazquez,M. and Valencia,A. (2017) ChiPPI: a novel method for
mapping chimeric protein-protein interactions uncovers selection
principles of protein fusion events in cancer. Nucleic Acids Res., 45,
7094–7105.

66. Gorohovski,A., Tagore,S., Palande,V., Malka,A., Raviv-Shay,D. and
Frenkel-Morgenstern,M. (2017) ChiTaRS-3.1-the enhanced chimeric
transcripts and RNA-seq database matched with protein-protein
interactions. Nucleic Acids Res., 45, D790–D795.

67. Lee,M., Lee,K., Yu,N., Jang,I., Choi,I., Kim,P., Jang,Y.E., Kim,B.,
Kim,S., Lee,B. et al. (2017) ChimerDB 3.0: an enhanced database for
fusion genes from cancer transcriptome and literature data mining.
Nucleic Acids Res., 45, D784–D789.

68. Jang,Y.E., Jang,I., Kim,S., Cho,S., Kim,D., Kim,K., Kim,J.,
Hwang,J., Kim,S., Kim,J. et al. (2019) ChimerDB 4.0: an updated and
expanded database of fusion genes. Nucleic Acids Res., 48,
D817–D824

https://www.doi.org/10.1101/011650

