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Abstract

We analyze the effectiveness of the first six months of vaccination campaign against SARS-

CoV-2 in Italy by using a computational epidemic model which takes into account demo-

graphic, mobility, vaccines data, as well as estimates of the introduction and spreading of

the more transmissible Alpha variant. We consider six sub-national regions and study the

effect of vaccines in terms of number of averted deaths, infections, and reduction in the

Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-

pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the

effectiveness in counterfactual scenarios with different vaccines allocation strategies and

vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR:

[16, 454–42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564–6, 980, 070]) infections and a

new pandemic wave in the country. During the same period, they achieved a −22.2% (IQR:

[−31.4%; −13.9%]) IFR reduction. We show that a campaign that would have strictly priori-

tized age groups at higher risk of dying from COVID-19, besides frontline workers and the

fragile population, would have implied additional benefits both in terms of avoided fatalities

and reduction in the IFR. Strategies targeting the most active age groups would have pre-

vented a higher number of infections but would have been associated with more deaths.

Finally, we study the effects of different vaccination intake scenarios by rescaling the num-

ber of available doses in the time period under study to those administered in other countries

of reference. The modeling framework can be applied to other countries to provide a mecha-

nistic characterization of vaccination campaigns worldwide.

Author summary

We propose a realistic epidemic model to study the first six months of the COVID-19 vac-

cination campaign in Italy. The model is applied to six subnational territories and is

informed with a wealth of data describing demographics, the impact of non-
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pharmaceutical interventions (NPIs) on contacts patterns, vaccines administration, and

the spread of the Alpha variant. The results highlight the critical beneficial effects of the

vaccination campaign. As of 2021/07/05 vaccines averted 29K+ deaths, 4.5M+ infections,

and a new pandemic wave in the country with respect to a baseline without vaccines but

the same NPIs. Through counterfactual scenarios, we show that a strict vaccine prioritiza-

tion by age would have avoided additional fatalities while prioritizing the most socially

active part of the population would have led to a smaller number of infections but more

deaths. Our framework provides the anatomy of the vaccination rollout and its effects on

the COVID-19 Pandemic in Italy. Furthermore, it can be used to provide a characteriza-

tion of vaccination campaigns in other countries.

Introduction

After almost a year marked by the implementation of non-pharmaceutical interventions

(NPIs) [1–5] and enormous losses in terms of human lives and socioeconomic disruptions, on

the 27th of December, 2020, simultaneously with other European countries, the first dose of

vaccine against COVID-19 was administered in Italy [6]. The vaccine rollout proceeded priori-

tizing healthcare personnel, care facilities residents, and 80+ individuals. Unfortunately, as in

many other countries, the success of the COVID-19 vaccination campaign was hindered by

several obstacles. Delays in deliveries from suppliers, temporary suspensions and changes in

the administration protocol of the AstraZeneca vaccine, and the logistical issues linked to the

delivery of millions of doses over the national territory are just some examples. Furthermore,

the vaccine rollout and its effect on the pandemic were challenged by the March 2021 epidemic

surge due to the spread of the more transmissible SARS-CoV-2 Alpha variant (Pango lineage

B.1.1.7), first detected in the United Kingdom in September 2020 [7–12]. In Italy, the first

Alpha case was identified in late December 2020. By week 4 of 2021 the variant was responsible

for more than 50% of newly reported cases, and for more than 80% by week 12 [13].

In this complex epidemiological landscape, it is extremely important to provide a character-

ization of the effects of the vaccination program and to which extent they contributed to a

decrease in the number of newly reported cases and deaths. In the United Kingdom it has

been estimated that the vaccines averted around 300000 additional deaths during the first six

months of 2021 [14] and saved around 2790000 lives in the United States during the same

period [15]. In the context of Italy, optimal allocation of vaccines [16, 17] and the potential

combined effect of NPIs and rollout on epidemic scenarios [18] have been explored. A national

level study [19], explored the impact of the vaccination program in Italy and evaluate possible

prospects for reopening the society.

Here, we develop a computational multi-strain epidemic model able to provide a detailed

sub-national characterization of the first six months of the Italian COVID-19 vaccination cam-

paign. We inform the model with real data on mobility changes [20] and policy interventions

[21] capturing the variations in contacts modulated by NPIs. We use a mechanistic approach

based on international travel flows to characterize the Alpha variant introductions [22, 23].

Data on vaccines rollout come from official sources of the Italian Government [24] and con-

sider separately the four vaccines authorized in Italy in the period under investigation: Pfizer/

Biontech, Moderna, Vaxzevria (Astrazeneca), and Janssen (Johnson & Johnson). This data

provides the number of daily inoculations by age, priority group, geographical area, and vac-

cine supplier. The model is calibrated on reported weekly deaths over the period 2020/09/01–
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2021/07/05 separately for different NUTS1 regions through an Approximate Bayesian Compu-

tation method [25].

We estimate that vaccines averted 29, 350 (IQR: [16, 454–42, 826]) deaths and 4, 256, 332

(IQR: [1, 675, 564–6, 980, 070]) infections between 2020/12/27 and 2021/07/05 with respect to

a counterfactual scenario without vaccines and the actually implemented NPIs. In the same

period, they contributed to an overall reduction of the Infection Fatality Rate (IFR) by −22.2%

(IQR: [−31.4%; −13.9%]). We also estimate that even even with stringent additional NPIs, the

absence of vaccines would have led to 12K+ more deaths and 540K+ infections. Furthermore,

we study counterfactual scenarios in which we either assign vaccine in a very strict decreasing

age order or first to 20–49 age groups. We estimate that 31, 786 (IQR: [19, 115–44, 733]) deaths

would have been averted in the first scenario and only 21, 440 (IQR: [8, 006–35, 429]) when

prioritizing younger age groups. Nonetheless, the second strategy would have implied less

infections. We also explore the effects of different rollout speeds applying the vaccination rates

observed in the United Kingdom (UK) and the United States (US). As expected, when more

doses are available (vaccination rates of UK or US), additional benefits are observed in terms

of averted deaths and infections. Interestingly, we find that not only the number of vaccines

but also the timing of availability is an important factor determining the outcome of the vacci-

nation campaign. For instance, a vaccination rate timeline similar to the US one would have

resulted in an additional� 45% averted deaths (median: 42, 578, IQR: [29, 768–55, 835]).

The presented modeling framework is a general tool for the mechanistic study of counter-

factual scenarios evaluating, and informing the design of vaccination campaigns, and can be

extended to additional countries depending on data availability.

Results

We adopt a SLIR-like compartmentalization setup with the addition of specific compartments

to account for vaccination and the emergence of a more transmissible virus strain. The model

includes the age-stratification of the population and of their contacts. Specifically, the popula-

tion is divided into ten age groups and the contacts between them are defined by the country-

specific contacts matrix C from Ref. [26]. Variations in contacts induced by non-pharmaceuti-

cal interventions at workplaces and in the community settings are modelled considering data

from the COVID-19 Community Mobility Report published by Google [20]. We account for

restrictions in schools using the Oxford COVID-19 Government Response Tracker [21] and

the timeline of government interventions. The model includes a seasonal modulation to

account for variations in factors such as humidity and temperature that can influence transmis-

sibility [23, 27]. As a way to include a second, more transmissible virus strain, the compartmen-

tal structure is extended with specific Latent and Infectious compartments. We refer the reader

to the Material and Methods section and the S1 Text for further details about the epidemic

model as well as for a sensitivity analysis around the choice of parameters presented below.

To capture geographical heterogeneities in vaccines’ administration, spreading of the virus,

and variant’s importations our model is run for each NUTS1 region in Italy. In addition, we

split the NUTS1 region Isles into its two NUTS2 territories, Sicily and Sardinia. As a result, we

model six different areas: North West, North East, Center, South, Sicily and Sardinia. These

regions are very similar in terms of age pyramids, but differ for population size, population

density, and COVID-19 burden. For example, at the start of our simulations in September

2020, Northern Italy (which is the most populous, denser region, and the epicenter of the Ital-

ian outbreak) reported much higher incidence per 100’000 respect to center and southern

regions. In the S1 Text we provide a comprehensive demographic and epidemiological profile

of these areas. The number of individuals in different age groups for each region is taken from
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the official census [28]. We use official sources for the epidemiological data [29]. As detailed in

the S1 Text, the model is calibrated separately for each of the six regions using an Approximate

Bayesian Computation (ABC) technique [25, 30]. We set the calibration period to 2020/09/01–

2021/07/05 and we use weekly deaths as output quantity. The free parameters are the transmis-

sibility β, the delay in deaths reporting Δ, the modulation of seasonality αmin, and the initial

conditions for the number of individuals in each compartment.

We model the vaccines rollout in Italy from official data [24] which provides the number of

daily doses (1st and 2nd) divided by age groups, risk category, supplier, and region. In Fig 1A

we plot the number of 1st and 2nd doses administered daily in the country as reported by offi-

cial sources [24]. The first batch of Pfizer/BioNTech vaccines received in late December 2020

was administered mainly to healthcare workers and care facilities residents. These individuals

received the 2nd dose in the last two weeks of January. This explains the very low number of 1st

doses given in this time range. Similarly, the decline observed since early June 2021 is due to

the high number of 2nd doses administered during this period. As of 2021/07/05, 58.1% of the

total population received at least one dose, while 32.7% received two, with low variability

across different regions (see Fig 1B). In Fig 1C we show the average age of the vaccinated in

time. We see the following trend: in January/February 2021 the average age is around 50, this

is due to the vaccinations of healthcare personnel; after, the campaign proceeded prioritizing

Fig 1. Vaccination campaign in Italy. A) Number of daily first and second administered daily in the country. B) Percentage of total population

vaccinated with one/two dose in different regions considered. C) Average age of those who received the first dose of vaccines (dashed line). Grey lines

indicate the average age of vaccinated in different regions considered. D) Total number of first doses administered between 2020/12/27 and 2021/07/05

by vaccine supplier.

https://doi.org/10.1371/journal.pcbi.1010146.g001
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mainly the elderly as shown by the increase of average age; finally, from mid-April average age

of the vaccinated declines since the rollout was extended to younger age brackets. The grey

lines indicate the average age of the vaccinated in the different regions considered. As we can

see, they do not diverge significantly from the national average. Finally, in Fig 1D we show the

total number of (first) doses administered by vaccine suppliers. We see that most of the people

received the Pfizer/BioNTech vaccines (68.9%), followed by Vaxzevria (AstraZeneca) (18.4%),

Moderna (9.0%), and Janssen (Johnson&Johnson) (3.7%).

Our model explicitly accounts for the arrival and spread of the more transmissible SARS-

CoV-2 variant Alpha. The introductions of this lineage in the different regions are estimated

with the Global Epidemic and Mobility model (GLEAM [22, 23, 31]) using actual origin-

destination data during the period 2020/09/01–2020/12/31 (see details in the Material and

methods section). In Fig 2A we show the estimated date of dominance yield by the model cali-

bration, defined as the first day in which Alpha variant was responsible for at least 50% of the

infections. Across the different regions, we estimate that Alpha became dominant within the

first two weeks of March, 2021.

In Fig 2B we compare the estimated national Alpha variant prevalence (median and 90%

CI) with available genomic data from GISAID [13, 32]. Our modeling approach is able to

reproduce the national growth of Alpha variant. We obtain a weighted mean absolute percent-

age error of wMAPE = 0.34 between the simulated and real prevalence. We acknowledge a

deviation between simulated and real prevalence by late April. This is due to the arrival of the

Delta variant, which has been estimated to be more transmissible than Alpha [33] and that we

do not include in our model. The Delta variant became dominant at the end of the temporal

window under study [34, 35]. Furthermore, its rapid raise in the share of cases took place in a

background of receding infections. Hence, the absolute number of Delta cases, in the period

under study, is only a very small fraction of the total. Neglecting its arrival and spread, though

a simplification, does not alter the overall picture emerging from our model.

Fig 2. Alpha variant spreading and dominance. A) Estimated date of dominance of the Alpha variant in different regions. B) Comparison between

estimated and reported national prevalence of Alpha variant.

https://doi.org/10.1371/journal.pcbi.1010146.g002
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Averted deaths and infections

In Fig 3A we show the estimated number of COVID-19 deaths and infections averted by vac-

cines. To obtain these quantities, we first calibrate the model using real data on mobility, policy

interventions, epidemic evolution, and vaccines rollout. Then, we compare the number of pro-

jected deaths and infections in simulations with vaccines administered and without.

The results suggest that vaccines avoided 29, 350 (IQR: [16, 454–42, 826]) deaths between

2020/12/27–2021/07/05. This is about 50% of the number of deaths reported in the country

during the same period. If we look at the different regions considered, 8, 877 (IQR: [5, 502–12,

429]) deaths were averted in North West, 3, 121 (IQR: [498–6, 035]) in North East, 6, 498

(IQR: [4, 144–8, 700]) in Center, 7, 960 (IQR: [4, 885–11, 216]) in South, 2, 253 (IQR: [1, 206–

3, 314]) in Sicily, and 640 (IQR: [219–1, 132]) in Sardinia. To give a better idea, these numbers

Fig 3. Averted deaths and infections. A) Estimated averted deaths and infections in different regions considered with respect to a

baseline without vaccines. Median and interquartile (IQR) range are reported. The base layer for the map is available in the Database

of Global Administrative Areas and can be downloaded from https://gadm.org/download_country.html. B) Number of weekly deaths

at the country level as reported by official surveillance and as estimated by our model with and without vaccines rollout (median and

90% confidence intervals displayed).

https://doi.org/10.1371/journal.pcbi.1010146.g003
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(medians) corresponds to the following percentages of the total number of deaths observed in

the regions during the same period: 58% in North-West, 20% in North East, 60% in Center,

65% in South, 63% in Sicily, and 77% in Sardinia.

Similarly, 4, 256, 332 (IQR: [1, 675, 564–6, 980, 070]) infections were avoided in the coun-

try, divided into the different regions as follows: 987, 556 (IQR: [226, 372–1, 760, 203]) in

North West, 482, 314 (IQR: [72, 632–975, 406]) in North East, 865, 176 (IQR: [474, 062–1, 282,

665]) in Center, 1, 296, 823 (IQR: [584, 453–2, 042, 629]) in South, 450, 259 (IQR: [246, 653–

642, 726]) in Sicily, and 174, 204 (IQR: [71, 392–276, 441]) in Sardinia.

Furthermore, our results suggest that vaccines prevented an additional COVID-19 wave. In

Fig 3B we show the estimated number of weekly deaths (median and 90% CI) at the national

level in the simulations with and without vaccines. The two curves start to visibly diverge in

mid-March, around the peak of the wave of infections led by the emergence and dominance of

the Alpha variant. Interestingly, the difference between the two curves becomes even bigger by

late April, when some restrictions were partially eased in the country. We estimate that, in

absence of the vaccines, this reopening would led to a rapid resurgence in infections and

deaths, reaching a peak higher than those observed in January and March 2021. We note how

this result should be interpreted carefully. Indeed, an hypothetical upturn in fatalities would

have likely led to countermeasures, a u-turn in the reopening timeline, and as result to a lower

disease burden at the price of further socio-economic losses. Although it is very hard to assess

the extent to which new restrictions would have been put in place in case of an epidemic resur-

gence, in the S1 Text, we investigate a scenario where NPIs as strict as those put in place in the

second pandemic wave would have been used to contrast the disease resurgence in absence of

vaccines. In other words, we modified the baseline against which the impact of vaccines is

measured. The results indicate that, even with a very strong reduction of socio-economic activ-

ities, the absence of vaccines would have led to 12K+ more deaths and 540K+ infections. These

numbers are in line with estimates recently reported in Ref. [19].

Counterfactual vaccination scenarios

We implement several counterfactual scenarios to assess the effectiveness and quantify the

impact of different vaccines allocation strategies. Along with the real vaccine allocation, that

we will call actual strategy, we consider two additional counterfactual strategies. In strategy 2
we imagine a scenario where vaccines are allocated in decreasing age order starting from the

80+. This allocation strategy aims at reducing disease severity by targeting first individuals at

higher risk of facing severe outcomes such as hospitalization and death. It is important to men-

tion that the actual strategy and strategy 2 are very similar. However, in the actual rollout strat-

egy some categories, for example teachers and other professional categories, were added to the

list of priority (in some regions) thus not respecting the strict age order we consider in strategy
2. In strategy 3, instead, we first allocate vaccines to the age groups 20–49 and then homo-

geneously to the rest of the population. This strategy aims at reducing disease transmission pri-

oritizing individuals that are socially active [36–39]. Clearly also younger age brackets of the

population are very socially active, however until the end of May 2021 COVID-19 vaccination

was approved only for adults (18+). It is important to notice how both strategies account for

front-line workers and the fragile population as recorded in the data. For more details on the

vaccine allocation scenarios see the Materials and methods section.

In Fig 4A we compare these strategies in terms of averted COVID-19 deaths and infections.

Since the different regions considered have different populations, we express averted deaths

and infections as percentages with respect to the baseline simulations without vaccines. We see

a common pattern emerging. Indeed, in all regions strategy 2 is the most effective in reducing
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the number of deaths, followed by the actual strategy and strategy 3. As a concrete example, we

estimate that in South Italy vaccines averted 29% (IQR: [19%–37%]) of the deaths that would

have been observed without vaccines. This figure increases to 32% (IQR: [22%–40%]) when

the strategy 2 is considered, while it drops to 20% (IQR: [9%–30%]) with strategy 3. When

instead averted infections are considered, we find the ordering inverted: strategy 3 is the most

efficient in reducing COVID-19 infections, followed by the actual strategy and strategy 2. This

is in line with previous findings in the context of COVID-19 vaccination modeling [36, 40]. At

Fig 4. Comparison of vaccine allocation strategies. A) Averted COVID-19 deaths and infections, both at subnational and national level (medians and

interquartile ranges are reported). B) Percentage reduction of the Infection Fatality Rate as of 2021/07/05. In all panels, actual strategy denotes an

allocation strategy that follows the observed allocation as it unfolded during the pandemic, strategy 2 considers the case where vaccines are allocated in

decreasing age order starting from the 80+, strategy 3 considers the case in which vaccines are first allocated to the age groups 20–49 and then

homogeneously to the rest of the population, and no-vaccine denotes the counterfactual scenario in which vaccines were not administered. In both

panel we report the statistical significance of the Kruskal-Wallis H-test comparing different scenarios as follows: ����: pvalue� 10−4, ���: 10−4 < pvalue�
10−3, ��: 10−3 < pvalue� 10−2, �: 10−2 < pvalue� 0.05, and otherwise blank if pvalue> 0.05.

https://doi.org/10.1371/journal.pcbi.1010146.g004
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the national level, we estimate that the strategy targeting first strictly the elderly would have

prevented more deaths (31, 786, IQR: [19, 115–44, 733]) with respect to the actual strategy (29,

350, IQR: [16, 454–42, 826]), while a strategy prioritizing the younger would have avoided

much less deaths (21, 440, IQR: [8, 006–35, 429]). We use the Kruskal-Wallis H-test to

statistically compare the different strategies [41]. The null hyphotesis of this test is that the

median of the two groups is the same. In Fig 4A we report the statistical significance of the

tests comparing different pairs of strategies as follows: ����: pvalue� 10 − 4, ���: 10 − 4< pvalue
� 10 − 3, ��: 10 − 3< pvalue� 10 − 2, �: 10 − 2< pvalue� 0.05, and otherwise blank if p> 0.05.

Across the board, averted deaths and infections obtained using different vaccination strategies

in the simulations are always statistically different. We only notice two comparisons (averted

infections in actual strategy and strategy 3 for South and Sicily) that are not statistically

significant.

Similarly, we compare strategies according to their impact on the Infection Fatality Rate

(IFR), defined as the fraction of infections that result in death. In Fig 4B we show, at both

regional and national level, the percentage reduction of the IFR achieved as of 2021/07/05 with

different vaccine allocation strategies (medians and IQRs are reported). We note a much more

marked distinction between strategies with respect to results in Fig 4A. This is not surprising,

indeed the same reduction in deaths, for example, can be achieved both reducing mortality or

the number of people that are reached by the disease. As expected, across the different regions,

when vaccines are not considered the IFR remains constant (i.e., reduction of −0.06%, IQR:

[−0.99%;1.27%]). The strategy 2 is instead the most effective one in reducing the IFR, followed

by the actual strategy, and finally strategy 3. Indeed, we estimate that in Italy vaccines reduced

COVID-19 IFR by −22.2% (IQR: [−31.4%; −13.9%]), while a strategy prioritizing strictly the

elderly would have implied a reduction of −29.2% (IQR: [−38.2%; −21.2%]). On the other

hand, a strategy targeting the younger would have had a very small impact on IFR (−2.1%,

IQR: [−6.0%; 1.5%]). Also in this case we compare the reduction of IFR obtained using the

Kruskal-Wallis H-test. Differences among strategies are always strongly statistically significant.

Interestingly, also the difference between strategy 3 and the scenario without vaccine is signifi-

cant. This implies that also prioritizing individuals at lower risk of dying from COVID-19

have a small, tough statically significant effect on IFR.

One additional question concerns what could have happened in Italy with the availability

and timeline of vaccination programs as in other countries such as United Kingdom and the

United States. In Fig 5 we show averted deaths considering the vaccine allocation and rescaling

doses to match vaccination rates in the UK and US. The focus of these counterfactual scenarios

is on the vaccination speed. We neglect differences across the countries such as the regulatory

frameworks that controlled the availability of particular vaccines due to their approval or tem-

porary suspension. At the sub-national level, averted deaths (median and IQR) are expressed

as percentage of fatalities observed in the simulations without vaccines. We also report the

total number of averted deaths (median and IQR) at the country level. We estimate that 46,

046 (IQR: [33, 696–59, 022]) deaths would have been averted if Italy had the same availability

of vaccines of the UK, and 42, 578 (IQR: [29, 768–55, 835]) when matching the availability of

the US. This implies approximately an additional 16, 700 and 13, 200 lives saved with respect

to the actual rollout case in the case of, respectively, UK and US. We note how the total num-

ber of doses administered in the period under study differs in the three scenarios. We see in

Fig 5 that as of 2021/07/05 33.1M doses are administered in Italy, 41.8M when matching the

UK, and 35.4M when matching US. Finally, Fig 5 reports also the significance level of the

Kruskal-Wallis H-test comparing different vaccination rates. We observe a statistical signifi-

cance among scenarios.
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Discussion

We presented the anatomy of the first six months of the vaccine rollout in Italy. We showed

that vaccines prevented an additional wave of infections after the partial reopening of the

country in late April, 2021. These results (49 averted deaths per 100, 000) are in line with

reports from the United Kingdom and the United States, where, respectively, in first six

months of the rollout around 300000 (45 per 100, 000) and 279, 000 (85 per 100, 000) addi-

tional deaths have been averted [14, 15].

Thanks to the mechanistic nature of our modeling approach, we analyzed and compared

different vaccines allocation strategies through counterfactual scenarios. The strategy strictly

prioritizing the elderly would have prevented more deaths and contributed to a higher reduc-

tion in the observed IFR. On the other hand, prioritizing the most active age groups (i.e., youn-

ger) we would have averted more infections but lead to more fatalities. Similarly, rescaling the

number of available doses to those delivered in other countries of reference, we tested the

effects of faster vaccination rates.

The present work comes with limitations. First, the compartmental setup used to model dis-

ease progression is a relatively simple one compared to other approaches that consider, for

example, also the pre-symptomatic and asymptomatic stages of the infection or waning immu-

nity [19, 42, 43]. Nonetheless, it has been previously used in several works in the context of

COVID-19 modeling [22, 39, 44, 45]. Second, both the vaccination protocol and the effect of

Fig 5. Comparison of vaccination speeds and doses. We show the percentage of deaths averted with respect to simulations without vaccines in

different regions considering the real data-driven campaign, and rescaling the number of doses to match those administered in the United Kingdom

and the United States. We also report the estimated total number of deaths (median and IQR) averted in Italy as well as the number of cumulative doses

administered in the scenarios. The figure also shows the statistical significance of the Kruskal-Wallis H-test comparing different scenarios as follows:
����: pvalue� 10−4, ���: 10−4 < pvalue� 10−3, ��: 10−3 < pvalue� 10−2, �: 10−2 < pvalue� 0.05, and otherwise blank if pvalue> 0.05.

https://doi.org/10.1371/journal.pcbi.1010146.g005

PLOS COMPUTATIONAL BIOLOGY Anatomy of the first six months of COVID-19 vaccination campaign in Italy

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010146 May 25, 2022 10 / 20

https://doi.org/10.1371/journal.pcbi.1010146.g005
https://doi.org/10.1371/journal.pcbi.1010146


vaccines on disease progression are an approximation of reality [46]. For simplicity we consid-

ered, besides the wild type, only one additional virus strain, although we acknowledge that the

Alpha variant was not the only variant of concern circulating in Italy during the period consid-

ered [47]. Beside the importation data from GLEAM, we model each region separately, thus

neglecting the coupling between them via different forms of mobility. Deaths are modelled by

considering the IFR from [48] and their modulation as function of vaccination status, but

neglecting comorbities in the population. Finally, in the counterfactual scenarios we consid-

ered all individuals willing to receive vaccines. While the vaccination rates in Italy show a high

vaccine acceptance (81.5% of the population 12+ completed the vaccination course and 85.7%

received at least one dose as of 2021/10/19 according to official sources [49]), this is an opti-

mistic assumption. In the S1 Text we relax this and we study the effect of vaccine hesitancy.

We measured the effects of vaccines respect to a baseline that considers the observed contact

patterns during the rollout. As mentioned above, the resurgence of infections and deaths, that

would have been observed without vaccines, would have led to new NPIs aimed at limiting the

chains of infections. In the S1 Text, we investigate a different baseline where an uptick of cases

and deaths is associated to NPIs as strict as those put in place in second pandemic wave (i.e.,

fall 2020). Interestingly, even with a very strong reduction of socio-economic activities the lack

of vaccines would have led to 12K+ extra deaths and 540K+ infections. These number are in

line with the recent estimates presented in Ref. [19]. Hence, it is important to acknowledge

how the selection of the baseline against which the impact of the rollout is quantified affects

the results. As we have experienced throughout 2020, very restrictive NPIs can reduce the bur-

den of the disease in absence of vaccines. However, it is very hard to estimate what would have

been the response to a new pandemic wave induced by the Alpha variant and the lack of vac-

cines, especially considering the NPIs fatigue of the population after months of restrictions.

In conclusion, we combined mathematical modeling and data to provide a realistic repre-

sentation of the interplay of COVID-19 spread, vaccines rollout, NPIs, and the emergence of a

more transmissible virus strain. The results highlight the strong positive impact and key role of

vaccines in the evolution of the COVID-19 pandemic in Italy. While we have focused only on

the Italian context, our approach can be easily extended to other countries helping to charac-

terize and evaluate vaccination campaigns worldwide.

Materials and methods

The epidemic model

Individuals who are susceptible to the disease are placed in the S compartment. Interacting

with the infectious, they can get infected, either with the wild type (denoted with the subscript

WT) or with the variant of concern Alpha (denoted with subscript VOC), and transition to the

Latent L compartments. After the latent period �−1, L become infectious and enter the com-

partments I. Lastly, after the infectious period μ−1, I individuals transition to the Removed

compartments R (a schematic representation of the compartmental structure is provided in

Fig 6). Similar approaches have been previously used to model disease progression in the con-

text of COVID-19 [22, 44, 45]. Furthermore, we account for the age-stratification of the popu-

lation and of their contacts. Individuals are divided into the following 10 age groups: 0–9,

10–19, 20–24, 25–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80+. The number of contacts

between age groups is defined by the country-specific contacts matrix C from Ref. [26]. Besides

for age, the model does not consider explicitly other groups of the population, such as front

line workers, that might be more exposed to risk of the infection. However, as described more

in details below, we follow the real vaccination data administering doses to the priority groups

of the population distinguishing these only by their age. We simulate the number of daily
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Fig 6. Schematic representation of the epidemic model and transitions between compartments. For simplicity, we represent the

model for a single age group. Dashed lines indicate data-driven transitions linked to vaccination status, solid lines indicate that

simulated transitions. In the bottom of the figure we report the rate of transitions related to both infection and and recovery/death.

https://doi.org/10.1371/journal.pcbi.1010146.g006
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deaths by applying the age stratified Infection Fatality Rate (IFR) from Ref. [48] to the number

of daily recoveries for each age group. In practice, individuals going out from the I compart-

ments can either transition to the R or the D compartments according to the IFR. To account

for delays between the end of infectious period (I! D) and actual death/reporting of death,

we record the simulated fatalities of a certain day only after Δ days. This means adding a

Do (superscript o stands for “observed”) compartment towards which D individuals transit at a

rate 1/Δ. The model accounts for a seasonal modulation to model variations in factors such as

humidity and temperature that can influence transmissibility [23, 27]. In practice this implies

a rescaling of the effective reproductive number Rt! si(t)Rt, with si(t) equal to the following

function:

siðtÞ ¼
1

2
1 �

amin

amax

� �

sin
2p

365
ðt � tmax;iÞ þ

p

2

� �

þ 1þ
amin

amax

� �

ð1Þ

Where i refers to the hemisphere considered, and tmax,i is the time corresponding to the maxi-

mum of the sinusoidal function. For the northern hemisphere it is fixed to January 15th. We

set αmax = 1 and consider αmin as a free parameter (see more details below).

As mentioned, additional Latent and Infectious compartments, denoted with the subscript

VOC, are included to model a second, more transmissible virus strain. Given β as the trans-

mission rate of the wild type, the second strain has a rate β(1 + ψ), where ψ captures the

increased transmissibility. We assume that this second strain has the same latent and infectious

period as well as IFR of the wild type, and we set ψ = 0.5, compatible with the characteristics of

the Alpha variant [7, 10]. In the S1 Text we repeat the analyses considering different values of

ψ and an increased IFR. Individuals infected with the second strain are initialized considering

realistic estimates of Alpha variant importations from GLEAM [22, 23, 31] during the period

2020/09–2020/12, more details on importations are provided below.

Finally, we include specific compartments to model the vaccination campaign. Our general

modeling setup accommodates both single and two doses vaccines. Fig 6 captures the transi-

tions across different vaccination statues driven by the real data and/or by the counterfactual

strategy under investigation. In particular, individuals who received one dose of vaccine move

to the compartments denoted with the superscript V1. We assume that all individuals except

for the infectious can receive the vaccine. Hence, susceptible, latent and recovered are vacci-

nated proportionally to their number. Individuals in SV1 see their probability of infection

reduced by a factor 1 − VES1, where VES1 represents the effectiveness of vaccine against infec-

tion. If these individuals get infected, their IFR is also reduced by a factor 1 − VEM1. This

implies that the overall efficacy of the 1st dose against death is VE1 = 1 − (1 − VES1)(1 − VEM1).

The number of daily first doses by age group, vaccine type, and priority group is taken from

official sources [24]. If the vaccine has a two doses regiment individuals then receive the sec-

ond inoculation, on average, after ΔV2 days and transition to the compartments with super-

script V2. Similarly to the 1st dose, the 2nd dose provides an efficacy VES2 and VM2 implying an

overall VE2 = 1 − (1 − VES2)(1 − VEM2). We also consider that all vaccinated individuals are

less infectious by a factor (1 − VEI) (VEI = 40% [50]) and that vaccines have reduced efficacy

against the Alpha variant. We model separately the different vaccines authorized in Italy: Pfi-

zer/BioNTech (ΔV2 = 21days), Moderna (ΔV2 = 28days), Vaxzevria/AstraZeneca (ΔV2 =

90days), an Janssen (single dose). Since vaccine protection is not immediate, we introduce a

delay of ΔV days between administration (of both 1st and 2nd dose) and actual effect of the vac-

cine. For example, an individual who received the 1st dose on day t, will be protected with effi-

cacy VE1 only, on average, after ΔV days. Hence, the transitions to compartments with

superscript V1 and V2 take place at rate D
� 1

V after first and second inoculation. Here we set
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ΔV = 14days. It is important to stress how the protection from the first or second dose of vac-

cine starts only after such transitions. In the S1 Text we assess the impact of these choices. We

find that the main results remain unaltered when modeling vaccine protection delays and sec-

ond doses inoculation differently. Values of vaccine efficacy and ΔV2 used in the simulations

are reported in Table 1. We use Ref. [50] to inform the choice of different vaccine efficacy.

A full decsription of the model, including all the constitutive equations are detailed in the

S1 Text. The model’s equations are integrated through chain binomial processes in order to

ensure the discrete and stochastic nature of the transitions among compartments. Namely, at

each time step t the number of individuals in age group k and compartment X transiting to

compartment Y is sampled from PrBinðXkðtÞ; pXk!Yk
ðtÞÞ, where pXk!Yk

ðtÞ is the transition prob-

ability. In the S1 Text we report all the details including the full system of differential equations

defining the model and the values of the parameters used in the simulations.

Modeling of non-pharmaceutical interventions

The contacts matrix C, which defines the rates of contact between age groups, is made up of

four contribution: contacts that happen at home (Chome), school (Cschool), workplace (Cwork),

and general community settings (Ccommunity). We model the variations in contacts induced by

non-pharmaceutical interventions at workplaces and in the community settings using data

from the COVID-19 Community Mobility Report published by Google [20]. More in detail,

the report provides the positive or negative percentage variation wl(t) of number of visits to

specific location l on day t with respect to a pre-pandemic baseline. We compute a proxy of

contacts variation as follows: rl(t) = (1 − wl(t)/100)2. Indeed, the number of contacts between

individuals is proportional to the square of their number. We use the field workplaces
percent change from baseline to compute the contacts variations parameter in

workplaces, and the average of the fields retail and recreation percent change
from baseline and transit stations percent change from baseline for

the general community settings. The data are provided at the level of the NUTS2 regions. We

derive the contacts variation parameters for a NUTS1 region computing the weighted average

with respect to the population of the parameters of the included NUTS2 territories. Lastly, we

also perform temporal aggregation taking the weekly average of these parameters.

We model variations in contacts in schools using the timeline of policy interventions. More

in detail, we reproduce the two phases of the Italian government approach to the implementa-

tion of containment measures. During the first one (before 2020/11/06), interventions where

taken mostly at the national level. We capture the effects of NPIs on schools in this phase using

data from the Oxford COVID-19 Government Response Tracker [21]. The report provide

daily indexes expressing the strictness of policies regarding school closures at the national

level. During the second phase, regions where divided into risk zones according to the local

state of the epidemic [51]. Each risk zone had specific rules regarding schools and allowed

Table 1. Vaccine efficacy.

VE1 (VES1) VE2 (VES2) ΔV2

Wild Type Alpha Wild Type Alpha

Pfizer 90% (80%) 50% (40%) 95% (90%) 90% (80%) 21 days

Moderna 90% (80%) 50% (40%) 95% (90%) 90% (80%) 28 days

AstraZeneca 70% (60%) 50% (40%) 80% (70%) 75% (65%) 90 days

Janssen 70% (60%) 50% (40%) / / /

https://doi.org/10.1371/journal.pcbi.1010146.t001
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activities. We model this taking into account the actual time-varying definition of risk zones in

Italy. Full details are provided in the S1 Text.

Therefore, the contacts matrix at time t will be a combination of the four layer with the

related reduction factors:

ĈðtÞ ¼ Chome þ rschoolðtÞ � Cschool þ rworkðtÞ � Cwork þ rcommunityðtÞ � Ccommunity ð2Þ

Modeling introductions of the alpha variant

We model the introduction of Alpha variant infections in each geographical area using

GLEAM, a global stochastic metapopulation model that simulates the mobility of people across

more than 3,300 sub-populations in about 190 countries/territories [22, 23, 31]. Sub-popula-

tions are defined by the catchment area of major transportation hubs and mobility among

them includes both long-range air travel (obtained from the International Air Transport Asso-

ciation and Official Airline Guide (OAG) databases) and short-scale commuting patterns. Ori-

gin-destination data on passengers provided by the OAG [52] from 2020 are used to model

international airline travel. The model is calibrated to importation of cases from China at the

beginning of the Pandemic as well as the evolution of deaths in each country. GLEAM

accounts for travel limitations, mobility reductions, and government interventions. We

account for the stochastic nature of importations and onset of local transmission considering

307, 000 stochastic simulations generated by the model. We consider arrivals of individuals in

the latent compartment only for each age bracket. Indeed, travelers were required to show a

negative test and other measures were implemented in airports to prevent symptomatic indi-

viduals to travel. The first two specimens of the Alpha variant were collected on September 20

and 21, 2020 in London and in the Kent area. We modeled the emergence of the Alpha variant

on week 38 of 2020 assuming a cluster of symptomatic/exposed infectious individuals drawn

from a Poisson distribution with mean value of 40 symptomatic individuals. In the main text,

we assume the new variant as 50% more transmissible (i.e., ψ = 0.5), in line with current esti-

mates [7].

Counterfactual vaccine allocation scenarios

We investigate the impact of two counterfactual vaccination strategies in which we change the

allocation strategy. Strategy 2 aims at mitigating the spread by reducing the severity of the dis-

ease. This is achieved prioritising the part of population exposed to higher risks of facing severe

outcomes (e.g., death) if infected. Since the IFR of COVID-19 strongly correlates with age, in

this scenario we start vaccinating the age group 80+ and then we proceed in strictly decreasing

order of age until all 50+ individuals are vaccinated. After, we distribute vaccines homo-

geneously to the population under 50 since we assume that vaccines are made available to

everyone after that individuals associated with higher IFR have been vaccinated. With strategy
3 disease mitigation is achieved by reducing transmission rather than severity. In our simula-

tions, this translates in targeting first the most active age groups (for which vaccines were

approved) and then the rest of the population. Following previous work in the context of

COVID-19 vaccination campaign and considering that in the period of study vaccines were

approved only for adults (18+), we select the age groups 20–49 as the primary target of this

allocation strategy [36, 40]. These former studies also showed that prioritising the elderly is

preferable in terms of number of averted deaths, while vaccinating the younger is more effi-

cient at reducing cumulative incidence. In both scenarios, we still give vaccines according to

the real data to healthcare workers, care facilities residents, and people with comorbidities that
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are considered risk factor for COVID-19. Official sources stopped to provide the information

regarding the categories of the vaccinated individuals on 2021/05/26, therefore after this date

we allocate vaccines following only the strategy considered. To match our age group resolu-

tion, in the counterfactual vaccine allocation strategy 2 and 3 we only give vaccines to the

10+ individuals. In Fig 7 we show the average age of vaccinated individuals in different alloca-

tion strategies. Across the regions considered, we observe that at the beginning of the rollout

different strategies look similar. Indeed, in that period received the vaccines healthcare work-

ers and fragile individuals that are accounted for also in the counterfactual scenarios as men-

tioned previously. Since the beginning of February 2020, instead, strategies start to differ. In

particular, the strategy targeting the elderly (strategy 2) shows a higher average age with respect

to the (actual strategy). This is because, despite elder individuals were prioritized in the actual

vaccination campaign in Italy, also other categories were initially given a priority, such as

teachers. Reasonably, the strategy targeting first younger individuals (strategy 3) shows a lower

average age of vaccinated with respect to the other two. In the counterfactual strategies we

assume that all individuals are willing to receive the vaccine.

We consider additional counterfactual scenarios in which we apply to Italy the vaccination

rates of other countries of reference, namely United Kingdom, and United States. These coun-

tries administered more vaccines than Italy as of 2021/07/05, and were faster especially during

the early months of the rollout. We rescale the number of doses as follows. If in Italy on day t
were administered xt doses per person (Xt in total), while in the other country yt, in the coun-

terfactual scenario we deliver on day t a number of doses X0t ¼ Nx � yt (where Nx is the Italian

population). We stress how we only change the number of available doses while we keep, in all

scenarios, the same data-driven age allocation strategy and the same vaccines administered.

Indeed, we do not aim to replicate exactly the vaccination campaigns of other countries of ref-

erence, but only to test different rollout rates.

Fig 7. Average age of vaccinated in different allocation strategies. Actual strategy denotes the observed vaccine allocation as it unfolded during the

pandemic, strategy 2 considers the case where vaccines are allocated in decreasing age order starting from the 80+, and strategy 3 considers the case in

which vaccines are first allocated to the age groups 20–49 and then homogeneously to the rest of the population.

https://doi.org/10.1371/journal.pcbi.1010146.g007
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Comparing different scenarios

We compare different scenarios calculating averted deaths, infections, and IFR reductions. We

compute averted deaths and infections as follows. For a given parameter set θi sampled from

the posterior distribution (see next section) and scenario we run two simulations, one with

vaccines implemented according to the scenario and one without vaccines (i.e., baseline).

Then we compute averted deaths as: averteddeaths;i ¼ deathsno vaccine
i � deathsscenarioi where

deathsno vaccine
i and deathsscenarioi are the total number of deaths observed in the two simulations.

In some cases we express averted deaths as a percentage with respect to the baseline as follows:

averteddeaths;i;% ¼ 100� ðdeathsno vaccine
i � deathsscenarioi Þ=deathsno vaccine

i . We repeat this procedure

N = 3000 times and we compute the median and confidence intervals on the sample of

averteddeaths,i obtained. With an analogous calculation we compute averted infections. The IFR

reduction is instead computed as follows. First, we define the IFR of day t as the fraction of

individuals going out from the infectious compartments I that eventually die after Δ days. As

reference value we take the IFR on the start of the vaccinations (2020/12/27). Therefore, the

IFR reduction in a simulation is: IFRreduction;i ¼ 100 � ðIFRref
i � IFRlast

i Þ=IFR
ref
i , where IFRref

i is

the IFR on the reference date and IFRlast
i is the IFR on the last simulation date. We repeat this

procedure N = 3000 times and we compute median and confidence intervals on the obtained

set of IFRreduction,i values.

Model calibration

The model is calibrated on reported weekly deaths over the period 2020/09/01–2021/07/05

separately for different regions under study through an Approximate Bayesian Computation

method [25, 30]. The free parameters are the transmissibility β, the delay in deaths reporting

Δ, the modulation of seasonality αmin, and the initial conditions for the number of individuals

in each compartment. Full details are provided in the S1 Text.

Supporting information

S1 Text. Supplementary and sensitivity analysis to the modeling framework. In this supple-

mentary material we present the model calibration procedure, additional analyses and exten-

sions of our model. We also run extensive sensitivity analysis on the parameters used in the

main text.
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43. Di Domenico L, Pullano G, Sabbatini CE, Boëlle PY, Colizza V. Impact of lockdown on COVID-19 epi-
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