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Brain–computer interface (BCI) has developed rapidly over the past two decades, mainly
due to advancements in machine learning. Subjects must learn to modulate their brain
activities to ensure a successful BCI. Feedback training is a practical approach to this
learning process; however, the commonly used classifier-dependent approaches have
inherent limitations such as the need for calibration and a lack of continuous feedback
over long periods of time. This paper proposes an online data visualization feedback
protocol that intuitively reflects the EEG distribution in Riemannian geometry in real time.
Rather than learning a hyperplane, the Riemannian geometry formulation allows iterative
learning of prototypical covariance matrices that are translated into visualized feedback
through diffusion map process. Ten subjects were recruited for MI-BCI (motor imagery-
BCI) training experiments. The subjects learned to modulate their sensorimotor rhythm
to centralize the points within one category and to separate points belonging to different
categories. The results show favorable overall training effects in terms of the class
distinctiveness and EEG feature discriminancy over a 3-day training with 30% learners.
A steadily increased class distinctiveness in the last three sessions suggests that the
advanced training protocol is effective. The optimal frequency band was consistent
during the 3-day training, and the difference between subjects with good or low MI-
BCI performance could be clearly observed. We believe that the proposed feedback
protocol has promising application prospect.

Keywords: brain–computer interface, motor imagery, training protocol, feedback, Riemannian geometry

INTRODUCTION

Brain–computer interface (BCI) is an innovative control method that functions independently of
the human peripheral nerves and muscles (Wolpaw et al., 2000; Ramadan and Vasilakos, 2017). BCI
technology has developed rapidly over the past 20 years, mainly due to the introduction of machine
learning methods that improve the accuracy and speed of BCI pattern recognition. Subjects must
learn to modulate their brain signals to ensure a reliable BCI, which can be problematic. BCI skill
corresponds to the subject’s ability to voluntarily produce brain activity patterns that are distinct
among different mental tasks and stable within one mental task, so that they can be translated
reliably and consistently into control commands (Lotte and Jeunet, 2018). However, researchers
have tended to focus on the machine learning aspects of BCI training. If subjects are unable
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to generate distinguishable electroencephalogram (EEG)
patterns, it is difficult for a decoding algorithm to recognize
them. Studies have suggested that the nature of subject
learning in MI-BCI (motor imagery-BCI) mostly belongs to
an implicit process (Kober et al., 2013; Perdikis and Millan,
2020). “Implicit” learning suggests that subjects acquire some
BCI skills imperceptibly and gradually with the help of feedback
observation, which cannot be passed on to others verbally or
schematically (Sitaram et al., 2017). Thus, feedback training
has been proven to be a practical approach to MI-BCI subject
learning (Neuper and Pfurtscheller, 2010). Implicit learning may
be better facilitated by more natural feedback provision strategies
than explanatory or instructional feedback (Schumacher et al.,
2015; Corbet et al., 2018).

Arrouët et al. (2005) visualized brain activation feedback
as a three-dimensional pattern of intra-cranial current density.
Hwang et al. (2009) created a real-time topography of cortical
activation at the feedback session. These two studies, indeed,
provided the visualization of some neurophysiological activities
directly to the subjects, which falls under the category of
neurofeedback approach to learning. Conversely, the modern
BCI training system is driven by classification outputs that
combine several spatio-spectro-temporal features of brain
activity to enable simpler, neurofeedback-like visualizations.
Non-invasive BCI training may consist of asking subjects to
perform mental imagery tasks, such as the kinesthetic motor
imagery (MI) of body limbs by imagining left- or right-hand
movements to move a cursor on a screen in different directions
depending on the mental task recognized by a classifier. Such
tasks may be combined with some form of classification certainty,
such as the probability or the distance from a separation
hyperplane (Blankertz et al., 2007; Chavarriaga et al., 2017).
Kaufmann et al. (2011) provided BCI users with a cursor and
asked them to target not only its direction but also its color
and intensity. Sollfrank et al. (2016) designed a liquid floating
through a visualization of a funnel to gather enriched visual
feedback, including information regarding EEG uncertainty.
However, showing all features to the subject is not particularly
attractive as it is believed that subjects will be overwhelmed by
such complexity.

Most training feedback approaches are dependent on
classification results, which creates significant limitations. The
training of a given classifier, for example, requires the
identification of the target state from a previous calibration
recording, which is overly time-consuming. Researchers have
investigated automatic calibration approaches, but their subjects
still had to face an unintuitive and tedious period of lacking
feedback in completing their tasks (Faller et al., 2012, 2014;
Kus et al., 2012). Many approaches provide continuous feedback
signals within a trial range (a few seconds) before the
feedback image is cleared during the interval and re-presented
in the subsequent trial (Acqualagna et al., 2016; Sollfrank
et al., 2016; Penaloza et al., 2018). Inexperienced subjects
may subconsciously employ different mental strategies over
time, so feedback signals should be gradually accumulated
and kept on the screen over a more extended period. We
hypothesize that subjects will learn more efficiently when able

to compare prior trials with current trials while observing non-
reset feedback.

To this end, we propose measuring the dissimilarities between
respective brain patterns and visualizing them as feedback from
the very beginning to the end of the learning session. The
pairwise distances of all EEG measurements in a long period
can be converted into the coordinate position on a 2D screen
and gradually presented to the subjects without any calibration
period. The distances, rather than classification results, could
provide a more precise description of the subject’s current
EEG pattern over the entire run. The spatial covariance, as a
symmetric positive definite (SPD) matrix, is commonly used
to parametrize multi-channel EEG information in a specific
frequency band. SPD matrices are defined in a Riemannian
manifold. Accordingly, operations involving them should respect
the intrinsic geometry of this manifold. Congedo et al. (2017)
introduced Riemannian geometry to EEG classifications such
as Fisher Geodesic Discriminant Analysis, Riemannian kernel-
SVM, and transfer learning (Barachant et al., 2012, 2013b; Zanini
et al., 2018). Lotte and Jeunet (2018) proposed metrics based on
Riemannian geometry to quantify the subjects’ BCI performance
independently of any classifier. Riemannian geometry methods
have not yet been used for BCI training. In this study, the
Riemannian distances among the spatial covariances of multi-
channel EEGs were measured and non-linearly transmitted
to subjects. Feedback points on the screen were used as a
concise representation of EEG measurements, where the relative
positions of points denote the similarities among them. Subjects
learned to separate points of two categories and to centralize
points within the same category. We also monitored the quality
of the EEG segment and abandoned the artifacts in real time.

The purpose of this work is to determine whether the
proposed feedback protocol is an effective way to improve
subjects’ MI-BCI skills. We quantified the subjects’ performance
and learning skills, including their competency in the training
process and ability to upgrade their skills over the course of the
entire experiment. We gathered the neurophysiological evidence
of subject learning and explored the optimal EEG frequency
band for each subject during the training sessions. The feedback
protocol may be useful for subjects who attempt to improve their
MI-BCI skills to accomplish BCI applications. However, due to
the uncontrolled experimental design, we could not prove that
the proposed approach is superior to the conventional cursor
feedback training.

MATERIALS AND METHODS

Ten healthy subjects were recruited to participate in the proposed
MI-BCI training experiment. Five are female. The average age
among them was 23.4 ± 3.69 years, ranging from 20 to 33 years
of age. As shown in Table 1, 4 out of 10 subjects had former BCI
experience. Specifically, s4, s5, and s9 have performed SSVEP-
BCI experiment for half an hour, and s7 has performed MI-BCI
experiment for two sessions (about 1 h). We also investigated
subjects’ handedness according to the Chinese Handedness Scale
(Li, 1983), which includes writing, holding chopsticks, throwing
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things, brushing teeth, using scissors, lighting a match, threading
a needle, holding a hammer, holding a racket, and washing their
face with a towel. If a subject gets used to doing all 10 items
with the left hand dominant, he or she was considered to have
“strong left-handedness.” A subject had “left-handedness,” if he
or she gets used to doing only the first six items with the left
hand and any one of the remaining four items with the right
hand, and vice versa. If a subject gets used to doing one to five
items among the first six with one hand and the remaining items
with the other hand, he or she was considered to have “mixed
handedness.” As shown in Table 1 (Column 3), the number
of subjects with “strong right-handedness,” “right-handedness,”
and “mixed handedness” are 7, 2, and 1, respectively. None
were left-handed.

Experimental Setup
As shown in Figure 1, MI-BCI training was conducted for three
consecutive days. Each day contained two sessions, for a total of
six sessions. Subjects were allowed to rest for any amount of time
at will, and the EEG cap was not removed or replaced between
two sessions on the same day. Five runs, each of approximately 6-
min duration, make up one session. In each session, subjects were
asked to rest and remain still for 10 s before the first run. The 10-
s resting-state EEG measurement was considered a baseline for
the initialization of the artifact detection. Subjects were free to

rest as long as they wished in the interval between two runs. Each
run was composed of 40 trials. At the trial start, a “beep” sound
prompted subjects to shift their attention from the feedback on
the right-side screen to the instruction on the left-side screen. The
fixation appeared to remind subjects to stay still. After 2 s, the
subjects performed MI of the left hand as the left arrow appeared
(with an auditory “left” reminder synchronously), or the right
hand when the right arrow appeared (accompanied by an
auditory “right” reminder). The MI task lasted 4 s, during which
the feedback was updated at the end of the first, second, third, and
fourth seconds. A 2-s rest period was then offered and the next
trial proceeded. The subjects were instructed to suppress muscle
movement to prevent artifacts. All experimental procedures were
approved by Northwestern Polytechnical University Medical and
Experimental Animal Ethics Committee with written informed
consent from all subjects.

A 10–20 system EEG cap and Neuracle wireless amplifier were
used to record the EEG signals. EEGs from 30 electrodes (F3, FZ,
F4, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, C5, C3, C1,
Cz, C2, C4, C6, CP3, CP1, CP2, CP4, P5, P3, PZ, P4, P6, PO7,
and PO8) distributed symmetrically over two hemispheres of the
sensorimotor area were collected during the training experiment.
Only 10 electrodes (FC3, FC4, C5, C3, C1, C2, C4, C6, Cp3, and
Cp4) were employed for feedback. The reference electrode Cz
was placed in the central–parietal area. All impedances were kept

TABLE 1 | The former BCI experience, handedness, MI-BCI performance, and the optimal EEG frequency band for 10 subjects.

Subject number Former BCI experience Handedness MI-BCI performance Optimal frequency band (Hz)

First two sessions All six sessions

s1 No Strong-right “Good” 9–13 8–12, 9–13

s2 No Mixed “Low” 26–30 12–16, 26–30

s3 No Strong-right “Low” 9–13 9–13, 8–12

s4 SSVEP-BCI Mixed “Low” 19–23 19–23, 18–22

s5 SSVEP-BCI Strong-right “Low” 26–30 26–30, 25–29

s6 No Right “Low” 26–30 26–30, 13–17

s7 MI-BCI Strong-right “Good” 10–14 10–14, 11–15

s8 No Strong-right “Low” 26–30 26–30, 25–29

s9 SSVEP-BCI Strong-right “Good” 11–15 11–15, 10–14

s10 No Strong-right “Low” 26–30 26–30, 25–29

The MI-BCI performance is measured in the first session. If the ClassDis of the first session was higher than the average ClassDis among 10 subjects, the subject was
considered to have “good” MI-BCI performance; otherwise, they were treated as having “low” MI-BCI performance.

FIGURE 1 | MI-BCI training structure.
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below 5 k�. The EEG signals were band-pass filtered between
0.01 and 100 Hz and sampled at 250 Hz.

Experimental Design and Protocol
The 3-day training experiments were carried out under the
same feedback protocol apart from an optimal subject-specific
frequency band that was employed for the last 2 days. Subjects
were seated in a comfortable chair in front of a computer
screen in a quiet laboratory. The screen was divided into
left and right parts, as mentioned above. Subjects were given
instructions on the left side of the screen and feedback on
the right. EEG measurements were taken in four 1-s segments
using a 1-s window with zero overlaps during the 4-s feedback
period from when the arrow appeared to the end of the hand
imagination in each trial. At the end of the first, second, third,
and fourth seconds, the 1-s EEG measurement was used to
display an updated five-step feedback point. The current 1-s
EEG measurement was judged as an artifact or not with the
Riemannian Potato method. If the EEG was of good quality, the
EEG was retained and the following four steps proceeded. If not,
the EEG was abandoned and a sharp beep was emitted to remind
the subject to stay still and concentrate.

Next, the retained 1-s EEG was band-pass filtered in 8–30 Hz
for the first two sessions and in a narrower subject-specific
4-Hz wide frequency band for the rest of the sessions. The
covariance matrix for the filtered 10-channel EEG was estimated.
All previous 1-s EEG covariance matrices that belonged to the
feedback period within the current run were saved, the number
of which was assumed as N. The pairwise Riemannian distances
among N trials of EEG covariance matrices were calculated to
create an N × N symmetric matrix. In order to display each
1-s EEG as a point on the 2D screen, the distance matrix
was reduced into two dimensions with diffusion map (Coifman
et al., 2005). The diffusion map is a non-linear dimension
reduction tool that integrates local similarities to provide a global
description of samples.

Finally, the 2D vector was plotted in a coordinate axis across a
scatter diagram, as shown in Figure 2 and Supplementary Video
1. The red and green points represent 1-s EEG measurements
for the left-hand MI and right-hand MI, respectively, and the
red and green rectangles denote the center of mass for the two
respective conditions. The updated point is marked with a five-
pointed star with the color of the corresponding category. The
distance between the two rectangles represents the dissimilarity
between two tasks from all prior EEG measurements. When a
point falls on the periphery of the point cluster (but not beyond
a specific range), the recent mental activity differs from other
mental states. When a point falls near the overlap of the two-
point clusters, conversely, the current mental activity is relatively
similar to another mental state.

Online Signal Processing
EEG signals were subjected to online data preprocessing (artifact
detection), feature extraction (Riemannian geometry), and the
generation of feedback (diffusion map). Traditionally, the SPD
matrices are treated as if they are naturally lying in Euclidean
space, whereas the natural geometry to be considered is

Riemannian. We utilized several essential tools that have been
introduced in Barachant et al. (2012) and Congedo et al. (2017)
to manipulate the EEG data in a Riemannian manifold, and
employed a manifold learning, diffusion map, to realize the
visualization of feedback points.

Riemannian Geometry Methods
We registered the 1-s band-pass filtered EEG measurement as
X ∈ Rn×T , where n and T denote the number of channels
and the sample points, respectively (n = 10, T = 250 in this
experiment). The n ∗ n symmetric covariance matrix of each EEG
measurement can be defined as

PX =
1

T − 1
XXT (1)

The basic properties of SPD matrix spaces can be found in the
literature (Congedo et al., 2017). We set P(n) as the space of the
set of SPD matrices. The distance between two points P1,P2 ∈

P(n), namely, the geodesic connection between P1 and P2, can
be expressed as

δ(P1,P2) =
∣∣∣∣∣∣log

(
P−1/2

1 P2P
−1/2
1

)∣∣∣∣∣∣
F
=

( n∑
i=1

log2 λi

)1/2

(2)

where || · ||F denotes the Frobenius norm and λi, i = 1, ...n
denotes the eigenvalues of P−1

1 P2. Two statistical descriptors, the
Riemannian mean P̄ and the mean absolute deviation σP, of a set
of SPD matrices are:

P̄ = argminP

N∑
i=1

δ2
R (Pi,P) (3)

The Riemannian mean of N SPD matrices (N > 2) serve to find
a point in the SPD manifold with the nearest distance to each
SPD matrix. The Riemannian mean P̄ can be iteratively identified
in the literature (Moakher, 2005). We set the first and second
experimental trials as two different categories to determine the
Riemannian mean after the third trial. P̄ was iterated using
the following equation as a new SPD matrix was added to the
manifold:

P̄t+1 = (P̄t)
1/2
[(P̄t)

−1/2P(P̄t)
−1/2
]
1/α(P̄t)

1/2 (4)

where the matrix P denotes the new matrix, P̄t is the Riemannian
mean matrix from the previous iteration, and α represents the
speed of the adaptation. Besides, the mean absolute deviation
of the set of Pi is the average distance between each Pi and the
Riemannian mean P̄:

σP =
1
N

N∑
i=1

δR
(
Pi, P̄

)
(5)

Artifact Detection
We used a multivariate EEG artifact detection method called
Riemannian Potato, which estimates a reference point in
Riemannian manifold and rejects any EEG segment that has a
long Riemannian distance from the reference point (Barachant
et al., 2013a). The EEGs were band-pass filtered between 1 and
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FIGURE 2 | MI-BCI training feedback protocol.

30 Hz before calculating the covariance matrix. The initialization
of the reference point was the Riemannian mean of 10 1-s
EEG covariance matrices of the 10-s staying-still-period EEG
measurement recorded before the first run. The reference point
was adapted during the whole session using Eq. (4) with α of
100. The reference point was only adjusted when the current EEG
segment was of good quality.

The initial threshold th was defined by the mean µ and the
standard deviation σ among the Riemannian distance between
the 10 1-s EEG covariance matrices of 10-s staying-still-period
and the initial reference point, that is:

th = µ+ 2.5σ (6)

When the Riemannian distance between the current EEG and the
reference point is greater than th, the current EEG segment is
considered as an artifact. µ and σ are also iterated mildly by every
clean EEG.

µt+1 = (1− w) ∗ µt + w ∗ δt+1,

σt+1 =

√
(1− w) ∗ σ2

t + w ∗ (δt+1 − µt+1)
2

(7)

where δt+1 represents the Riemannian distance between the
newly added clean EEG and the reference point, which is
calculated using Eq. (2). µt and σt represent the mean and
standard deviation in the previous iteration. w represents the
speed of the adaptation, which equals 0.01. This method revealed
gnashing, sleepiness, head movements, and jaw movements
expressed during the experiment.

In addition, another artifact removal was performed using
ICA (independent component analysis), resulting in loss of
about 20% of the trial, before calculating the sensorimotor
rhythm (SMR) discriminancy, since we tended to use purer
EEG signal when analyzing the SMR discriminancy. Specifically,
after removing the artifacts using Riemannian artifact detection
method, the EEG data were decomposed by ICA. Then, we
rejected the ICs (independent components) by scalp maps and
rejected the epochs of IC time courses according to the abnormal

values, abnormal trends, abnormal distributions, improbable
data, and abnormal spectra.

Diffusion Map
The Riemannian distance between each pair of EEG covariances
is an N × N symmetric matrix. We introduced a manifold
learning method, diffusion map, to dimensionally reduce the
Riemannian distance matrix into two dimensions. A diffusion
map computes a family of embeddings of a dataset into a low-
dimensional Euclidean space whose coordinates can be calculated
from the eigenvectors and eigenvalues of a diffusion operator on
the data (Coifman et al., 2005; Krauss et al., 2018). Four steps
are included in this process. First, a Gaussian kernel matrix K is
constructed:

K ij = exp

(
−

δ2 (Pi,Pj
)

ε

)
(8)

where ε is the kernel scale, which was equal to 20 in our case.
Next, the diffusion matrix is created by normalizing the rows of
the kernel matrix:

Knorm
= D−1/2KD−1/2 (9)

Where Knorm represents the diffusion matrix and D is a
diagonal matrix whose elements are the sums of rows of K .
The eigenvectors of Knorm are calculated, ϕi ∈ RN , and the
eigenvalues are λ0, λ1, · · · , λN−1. Finally, the elements in P(n)
are mapped to a d-dimensional Euclidean space using the d
dominant eigenvectors and eigenvalues:

Y
′

i =


λ1ϕ

i
1

λ2ϕ
i
2

...

λdϕ
i
d

 (10)

where d was set to 2 here; Y i denotes the x- and y-coordinates for
ith element on the feedback screen. The distance between points
in Euclidean space is equal to the “diffusion distance” between
probability distributions centered at those points.
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Evaluation of Subjects’ Performance
Three metrics were used to evaluate the subjects’ learning
effects: class distinctiveness, discriminancy of EEG features, and
classification accuracy.

Class Distinctiveness
The distinctiveness of two patterns can be expressed by the
Fisher criterion, where the distance and absolute deviation can
be replaced by properties of Riemannian geometry (Lotte and
Jeunet, 2018). We used the metric ClassDis to determine the
distinctiveness of EEG pattern pairs (class A and class B):

ClassDis(A,B) =
δR(P̄A, P̄B)

1/2(σPA + σPB)
(11)

where P̄A, P̄B, and σPA , σPB are the Riemannian mean and
the mean absolute deviation of EEG covariance matrices of
class A and class B, respectively. The Riemannian distance δR( )
and mean absolute deviation σc were computed by Eqs (2, 5),
respectively. A higher ClassDis reflects smaller class dispersion
and greater distance between classes.

EEG Feature Discriminancy
In addition to measuring the learning effects with class
distinctiveness, we also assessed the discriminancy of EEG
features (Perdikis et al., 2018). The discriminancy of a given
spatio-spectral EEG feature, which corresponds to a specific EEG
channel and a frequency band, for two MI tasks was quantified by
the Fisher score:

FS =
|µ1 − µ2|√

s21 + s22
(12)

where µ1 and µ2 denote the means of the feature’s sample
values for left hand-MI and right hand-MI, and s1, s2 denote
the standard deviations. The EEG features were first spatially
filtered with a Laplacian derivation, and then the power spectral
density of each channel was computed with 2-Hz resolution
in 1-s windows sliding every 62.5 ms. The discriminancy over
30 channels physiologically relevant to MI topographic and the
specific spectral band was computed as the average Fisher score
of all features. In addition, the ICA artifact removal method was
performed after Riemannian Potato method when calculating the
SMR discriminancy.

Classification Accuracy
Rather than only the ClassDis and FS metrics, we also calculated
the off-line classification accuracy (CA) to investigate the
performance of subjects across the 3-day-training process. EEG
signals varied at the run scale, so we employed fivefold cross-
validation on 160 EEG samples within each run, where a 4-s
EEG measurement was divided into four 1-s EEG segments
in each trial. We used a supervised Riemannian classifier
called minimum distance to Riemannian mean to obtain off-
line CA (Barachant et al., 2012). It computed the Riemannian
distance between the unlabeled EEG covariance matrix and the
Riemannian Mean of every intra-class covariance matrix. The
class with the smallest Riemannian distance corresponds to the
one of the unlabeled EEG.

Statistical Analysis
We conducted planned comparisons on the first and last session
as well as the first and last day for all cases. The first and last
session (day) of the averaged learning curve among subjects
were compared and tested for significant differences by using
the polynomial contrasts of one-way repeated-measures ANOVA
model. Mauchly’s test was used to check for sphericity in
the ANOVA. Greenhouse–Geisser epsilon values were used to
account for any violations of sphericity. The first and last
session (day) of the learning curve per subject were compared
and tested for significant differences at the 95% confidence
interval using paired, two-sided Wilcoxon rank-sum tests.
The training effects are reported here as Pearson correlation
coefficients with significance at the 95% confidence interval
through Student’s t-test distribution. The relationship among the
evaluation metrics ClassDis, FS, and CA, was also determined by
the Pearson correlation.

Advanced Training Protocol
Researchers have suggested that subjects can only increase their
MI-BCI performance in a more specific frequency band even
when using a broad EEG frequency band in training feedback
(Lotte and Jeunet, 2018). Thus, restraining the feedback tasks to
focus on an optimal frequency band may increase the efficiency
of learning for each subject. We used the 8- to 30-Hz frequency
band in the first two sessions of our experiment and a subject-
specific 4-Hz wide frequency band in the remaining four sessions.
The broad frequency band (8–30 Hz) was decomposed into a
total of 19 frequency bands, namely, 8–12, 9–13, . . ., 26–30 Hz,
i.e., every 4-Hz wide band with a 1-Hz step between consecutive
bands. The ClassDis was calculated for these 19 bands using Eq.
(11): ClassDisf , f = 1, . . . , 19. The ClassDisf was then averaged
among the 10 runs in the first two sessions, and the frequency
band corresponding to the highest ClassDisf was chosen as the
optimal EEG band for the remaining four sessions.

Brain–computer interface learning should necessarily take
place in variables fed through given feedback. These variables
differed between the first day and the next 2 days of our
training process. Thus, the learning curve of ClassDis and EEG
feature discriminancy was established based on three conditions.
The first was the “actual, online” result, which reflects what
the subjects were seeing from the visual feedback. The EEG
covariance matrix was computed on the broadband (8–30 Hz)
for sessions 1 and 2 and on the subject-specific optimal bands
for sessions 3–6. Second was the “broadband” result, in which
EEG covariance matrix was calculated on the broadbands all
over. Third was the “subject-specific” result, in which the EEG
covariance matrix was computed only on the subject-specific
bands throughout.

RESULTS

We first determined the class distinctiveness and
neurophysiological evidence of subject learning. Next, we
determined the optimal frequency band across sessions and
the influence of the different frequency bands on the location
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of feedback points. Finally, we tested the off-line classification
accuracies throughout the training process.

Class Distinctiveness Results
We employed the metric ClassDis to measure the distinctiveness
between left hand-MI and right hand-MI EEG signals throughout
the training process. The learning curve of ClassDis is provided
in three versions: “actual, online,” “broadband,” and “subject-
specific.” The average “actual, online” ClassDis of 10 subjects
throughout training is shown in Figure 3A. The blue dashed
line represents the learning curve for 30 runs and the black
line represents the corresponding linear fit. Significant positive
Pearson correlations between ClassDis and the run index
indicated the existence of a significant training effect on class
distinctiveness (r = 0.52, p = 0.003, and N = 30). Figure 3C
shows where our training procedure increased the ClassDis from
0.315 ± 0.012 (N = 5, first session) to 0.359 ± 0.012 (N = 5, last
session) and similarly from 0.327 ± 0.019 (N = 10, first day) to
0.353 ± 0.017 (N = 10, last day). These improvements did not
show any significance according to the polynomial contrasts of
one-way repeated-measures ANOVA model though [session 1 vs.
session 6: F(1,9) = 0.984, p = 0.347, and partial η2 = 0.203; day 1
vs. day 3: F(1,9) = 1.172, p = 0.307, and partial η2 = 0.115].

Next, we divided the subjects with good MI-BCI skill and low
MI-BCI skill into separate categories. According to the ClassDis
value of the first session, subjects with ClassDis greater than 0.317
(equal to the average ClassDis among 10 subjects in session 1)
are good-performance subjects, whereas those with ClassDis less
than 0.317 are low-performance subjects. As shown in Table 1
(Column 4), s1, s7, and, s9 are good-performance subjects and

the others are low-performance subjects. It appears that all three
good-performance subjects have strong right-handedness.

The average “actual, online” ClassDis of three good-
performance subjects and seven low-performance subjects across
sessions are shown in Figure 3B; there is a slightly decreasing
trend of the average ClassDis for good-performance subjects
(orange dots) over the runs (r =−0.26, p = 0.158, and N = 30). On
the contrary, Figure 3B shows a statistically significant increasing
trend in the average ClassDis for low-performance subjects (blue
dots) over the runs (r = 0.73, p< 0.001, and N = 30). The ClassDis
for good-performance subjects decreased from 0.544 ± 0.035
(N = 5, first session) to 0.495 ± 0.025 (N = 5, last session) and
similarly from 0.521 ± 0.047 (N = 10, first day) to 0.479 ± 0.053
(N = 10, last day), as shown in Figure 3D, both with no significant
difference [session 1 vs. session 6: F(1,2) = 0.336, p = 0.621,
and partial η2 = 0.144; day1 vs. day3: F(1,2) = 2.013, p = 0.292,
and partial η2 = 0.502]. Figure 3E shows where our training
procedure increased the ClassDis for low-performance subject
from 0.261± 0.007 (N = 5, first session) to 0.325± 0.011 (N = 5,
last session) and similarly from 0.282 ± 0.024 (N = 10, first day)
to 0.321 ± 0.012 (N = 10, last day). The improvement from the
first day to the last day showed a statistical significance [session
1 vs. session 6: F(1,6) = 3.423, p = 0.114, and partial η2 = 0.363;
day1 vs. day3: F(1,6) = 6.397, p = 0.045, and partial η2 = 0.516].

The learning metric ClassDis per subject is shown in
Supplementary Figure 1. The overall learning effects, which
despite clear trends, may be biased by certain subjects. We found
that 30% of the subjects show a statistically significant increasing
trend of the “online, actual” ClassDis over the runs (s3: r = 0.40,
p = 0.027; s5: r = 0.54, p = 0.002; and s6: r = 0.42, p = 0.021,

FIGURE 3 | Average “actual, online” learning curve of ClassDis for two MI tasks across six sessions (A) among 10 subjects and (B) among subjects with good
(orange) and low (blue) MI-BCI skill. The corresponding linear fits and Pearson correlation coefficients demonstrate training effects. Average and standard deviation of
ClassDis in first and last session (day), (C) among 10 subjects, (D) among subjects with good MI-BCI skill, and (E) among subjects with low MI-BCI skill. The first
and last session (day) of ClassDis tested for significant differences using the polynomial contrasts of one-way repeated-measures ANOVA model, ∗p < 0.05. The
dependent variable and the independent variable (within-subject factor) are ClassDis and run, respectively, and ClassDis ranges from 0 to 1.
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and N = 30); however, 20% of them show a decreasing trend (s1:
r = −0.07, p = 0.724; s7: r = −0.54, p = 0.002, and N = 30). The
subjects who reveal a statistically significant increasing trend in
terms of the learning metric were considered to be “learners,” and
those who show a decreasing trend over the proposed training
procedure were considered “non-learners”; all learners were also
low-performance subjects.

The average ClassDis value of 10 subjects throughout training
in terms of “broadband” and “subject-specific” versions are
shown in Supplementary Figure 2. Significant positive Pearson
correlations between the learning metric value and run index
confirm a significant training effect both on “broadband”
ClassDis (r = 0.81, p < 0.001, and N = 30) and “subject-specific”
ClassDis (r = 0.80, p < 0.001, and N = 30). The proposed
training procedure increased the ClassDis in “subject-specific”
version from 0.330 ± 0.019 (N = 10, first day) to 0.390 ± 0.025
(N = 10, last day), and the improvement is statistically significant
[F(1,9) = 5.568, p = 0.043, and partial η2 = 0.382]. The
ClassDis for each subject in these two versions were provided in
Supplementary Figures 3, 4. On the “broadband” ClassDis, 40%
of the subjects are learners (s1: r = 0.36, p = 0.048; s3: r = 0.60,
p < 0.001; s5: r = 0.54, p = 0.002; and s6: r = 0.55, p = 0.002)
and 20% are non-learners (s7: r =−0.31, p = 0.099; s8: r =−0.05,
p = 0.788). On the “subject-specific” ClassDis, 30% of the subjects
are learners (s1: r = 0.44, p = 0.016; s3: r = 0.59, p < 0.001; and
s5: r = 0.53, p = 0.002) and 20% are non-learners (s7: r = −0.26,
p = 0.170; s8: r =−0.07, p = 0.714).

Neurophysiological Evidence of Subject
Learning
In order to assess the existence of subject learning effects directly
at the EEG feature level, we used the Fisher score metrics to
measure the separability of the EEG spectral distributions for the
two MI tasks. Figure 4A shows the “actual, online” topographic
maps of discriminancy. s1, s7, and s9 largely maintained the same
brain pattern (SMR discriminancy in channel C2 for s1 and s3,
in channel C2, CP4, and Cp1 for s9); s2 showed an increasingly
obvious SMR discriminancy in channel C2, even increasing the
strength of medial modulation (channel C1, Cz, FC1, FCz, and
Fc2) in the last session. On the contrary, s2, s4, s5, s6, and s10
showed subtle and unstable SMR discriminancy throughout the
training process, though some showed a slight increase.

Figure 4B shows the average “actual, online” learning curve
of the discriminancy for 10 subjects across all sessions. The
significant positive Pearson correlations between the SMR
discriminancy and session index prove the existence of a
significant training effects in terms of the neurophysiological
evidence (r = 0.90, p = 0.014, andN = 6). Supplementary Figure 5
shows the “actual, online” learning curve of the discriminancy per
subject. The proposed feedback protocol appears to have been
effective in inducing an emerging SMR pattern (“actual, online”
frequency band, over all 30 channels) for some of the subjects.
More specifically, it substantiated a significant enhancement over
the sessions for s3, s9, and s10 (s3: r = 0.81, p = 0.042; s9:
r = 0.88, p = 0.022; and s10: r = 0.95, p = 0.004). Supplementary
Figures 6–9 show the discriminancy maps and corresponding
learning curves for “broadband” and “subject-specific” frequency

bands. Moreover, we calculated the average “actual, online”
discriminancy of subjects’ SMRs among 10 channels that the
proposed feedback employed in order to estimate the relationship
between EEG discriminancy and ClassDis (calculated using only
10 channels). It indicates that FS correlated closely with the
metric “actual, online” ClassDis (N = 60, r = 0.83, and p < 0.001).
Hence, the increased SMR modulation seems be crucial for
enhanced MI-BCI skill.

The Optimal Frequency Band Results
The optimal frequency band for each subject played an important
role in MI-BCI training, as the effect of training in the last
2 days was dependent on the selected frequency band. The
optimal EEG frequency bands for the first two sessions and
all six sessions are shown in Table 1 (Columns 5 and 6). We
found that the optimal frequency bands for the first two sessions
are consistent with those for all sessions, notably the same as
the best or the second-best frequency band for all sessions.
The subjects were assessed according to the average ClassDis of
the six sessions. The average ClassDisf , f = 1, . . . , 19 of good
and low-performance subjects are shown in Supplementary
Figures 10A,B, respectively. The curves of ClassDisf for 30 runs
(fine colorful lines) in Supplementary Figure 10A are in close
accordance with the averaged curve among them (thick black
line). The thick black line reaches its highest point at 10–14 Hz,
then declines, and then increases again before leveling off in the
beta band. As shown in Supplementary Figure 10B, the 30 curves
of ClassDisf are also consistent with the averaged curve among
them but do not change much with the frequency band. The
highest ClassDisf is 11–15 Hz and the second highest is 24–28 Hz,
belonging to alpha and beta bands, respectively.

We also investigated the influence of the different frequency
bands and time windows on the feedback point diagram. As
shown in Figure 5A, point clusters for left hand-MI (red)
and right hand-MI (green) can be clearly distinguished when
the optimal frequency band is chosen. Their corresponding
Riemannian mean (two rectangles) are also far apart. As
compared to Figure 5A, red and green point clusters in Figure 5B
show significant overlapping, and the two rectangles are very
close to each other.

Figure 5C shows variations in performance over time
expressed as a feedback point diagram for two trials within a run
(red for left hand-MI and blue for right hand-MI). Two EEG
trials belonging to two MI tasks are shown as an example. A 6-
s EEG segment from the beginning of a trial to the end of the
imagination task was decomposed into 51 time windows using
a 1-s time window with a 0.1-s step. The first 11 time windows
belong to the resting state, and the last 40 belong to the MI
tasks. Each black, red, and blue point was computed within the
corresponding time window separately. Most of the transparent
red and blue points fall around the black points; the red and blue
points fall farther from the black points as the color deepens.
The dark points belonging to each class accumulate near the
two sides of the black points. This suggests that the brain needs
time to transition from the resting state to a stable SMR. The
distinctiveness between two MI tasks reaches its maximum at an
identifiable time point.
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FIGURE 4 | Discriminancy of EEG features. (A) The “actual, online” (8–30 Hz) topographic maps of discriminancy per training session on 30 EEG channel locations
over sensorimotor cortex. Red indicates high discriminancy between left hand-MI and right hand-MI tasks employed by 10 subjects. Discriminancy of each channel
is quantified as Fisher score of power spectral density distributions of EEGs for two MI tasks in “actual, online” frequency band within each session. (B) Average
“actual, online” learning curve of EEG feature discriminancy for 10 subjects. Discriminancy value of each session calculated by averaging Fisher scores among all 30
channels. Corresponding linear fits and Pearson correlation coefficients are reported to indicate training effects.

CA Results
Figure 6A shows the off-line CA at the run scale in the
“broadband” version. CA varied largely between subjects (mean
0.716 ± 0.136), ranging from 0.560 to 0.916 (well-controlled).

The Pearson correlations between the CA and run index are
statistically significantly positive (r = 0.64, p< 0.001, and N = 30),
which proves the existence of a significant training effect on CA.
As shown in Figure 6B, our training procedure increased CA
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FIGURE 5 | Feedback points for different frequency bands and time windows for s1. When training-run frequency band is 9–13 Hz (A) or 13–17 Hz (B). Red points
denote 1-s feedback, red rectangle denotes Riemannian mean of feedback for left hand-MI, green points and green rectangle denote feedback and Riemannian
mean for right hand-MI. (C) Feedback points for two trials (red marks left hand-MI and blue marks right hand-MI). Color changes from transparent to dark represents
time from appearance of cue to end of MI task within one trial. Black point denotes resting state (1 s before cue).

FIGURE 6 | (A) Average “broadband” learning curve of CA for two MI tasks across six sessions among 10 subjects. The corresponding linear fits and Pearson
correlation coefficients demonstrate training effects. (B) Average and standard deviation of CA in first and last session (day) among 10 subjects. The first and last
session (day) of CA tested for significant differences using the polynomial contrasts of one-way repeated-measures ANOVA model, ∗p < 0.05. The dependent
variable and the independent variable (within-subject factor) are CA and run, respectively, and CA is ranging from 0 to 100%.

from 0.689± 0.029 (N = 5, first session) to 0.760± 0.018 (N = 5,
last session) and similarly from 0.694 ± 0.033 (N = 10, first day)
to 0.746 ± 0.025 (N = 10, last day). The improvement from the
first day to the last day showed a statistical significance as per
the polynomial contrasts of one-way repeated-measures ANOVA
model [session 1 vs. session 6: F(1,9) = 4.294, p = 0.068, and
partial η2 = 0.323; day 1 vs. day 3: F(1,9) = 8.049, p = 0.019, and
partial η2 = 0.472]. The learning metric CA per subject is given
in Supplementary Figure 11, where 30% of the subjects show
a statistically significant increasing trend in the “broadband”
CA over the runs (s3: r = 0.64, p < 0.001; s8: r = 0.41,
p = 0.026; and s9: r = 0.47, p = 0.009), though 20% of the
subjects show a decreasing trend (s2: r = -0.03, p = 0.880; s7:
r = -0.34, p = 0.063). The learning curves in Figure 6A and
Supplementary Figure 2A show similar upward trends, with a
statistically significant Pearson correlation (r = 0.773, p < 0.001).

DISCUSSION

The proposed approach takes advantage of the Riemannian
geometry method and, instead of learning a hyperplane,

iteratively calculates the Riemannian distance among covariance
matrices that are translated into the feedback visualization
through a diffusion map process. This approach serves the
purpose of, on the one hand, enabling a compressed visualization
of the overall brain pattern, which can be straightforwardly
processed by the subject and, still, depends on all features
without discarding anything. On the other hand, the Riemannian
geometry-based feedback approach aims to visualize the same
signal that will eventually control the final actuator in the BCI
system, which greatly reduces the adaptation time from BCI
training to the application (Perdikis and Millan, 2020). Besides,
it suggested that only smoothly adapting feedback is preferred,
which enhances the subject’s learning capacities. In fact, the
feedback points as well as the Riemannian mean points in the
proposed training procedure move slightly, namely, the position
of each feedback is fixed in a small area, which satisfies the
requirements for feedback adaptation.

The main contribution of this work is the provision
of quantitative evidence regarding the proposed online data
visualization feedback protocol. The linear fit of the average
learning curve of “actual, online” ClassDis moved upward, which
indicated the existence of the overall training effect. Compared
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with the first day, ClassDis values under the subject-specific
frequency band were significantly higher on the third day.
However, only 3 out of 10 of the subjects were learners, and all
were low-performance subjects. Thus, training effects in terms
of ClassDis tended to be larger in low performers, since they
were not affected by ceiling effects, unlike good performers. The
result is in accordance with observations made by Meng and He
(2019), who found a significant improvement in ITR only in the
low-performance group.

Besides, the average ClassDis decreased in session 4 among
6 out of 10 subjects compared to session 3. This drop may be
attributable to the advanced training protocol. We replaced the
training feedback with the advanced protocol from the second
day of training onward, where a narrower frequency band was
used when estimating SPDs. SPDs with a narrower frequency
band contained less distinctiveness information for the two MI
tasks, making it harder for subjects to separate point clusters
from the two classes. We infer that the difficulty led to some
maladjustment in the subjects, therefore decreasing the ClassDis
values. However, the averaged ClassDis for both good- and
low-performance subjects increased steadily over the last three
sessions. To this effect, the advanced training protocol had a
positive effect on subjects’ MI-BCI performance in the long term.

We also analyzed the neurophysiological evidence of subject
learning using the SMR discriminancy. The intensity of the
average SMR discriminancy over the sensorimotor area varied
largely among the subjects. The training procedure effectively
induced an emerging SMR pattern for only three of the
subjects. Three learners under these two metrics diverged. The
reason is that, on the one hand, the slight difference was
insufficient to separate two tasks despite the upward trend in
SMR discriminancy. On the other hand, the metric of EEG
feature discriminancy represented the pure SMR due to the
additional artifacts removal method using ICA. Conversely, the
distinctiveness between two classes may be enhanced by non-
SMR features. Besides, according to the upward trend of s2, s4,
s8, and s10, we may speculate that studies, possibly with more
training sessions, are required to enhance the training effect.

Thus, from the results of the class distinctiveness and the
discriminancy of EEG feature, we concluded that besides some
slight trends, no sold, reliable evidence of learning has been
found, and that future work should ultimately answer this
question with more extensive and better-designed studies.

We found that the optimal frequency bands for good-
performance subjects were highly consistent among the 30
runs and all belong to the alpha band (10–14 Hz). The
optimal frequency bands for low-performance subjects were
also consistent among 30 runs and belong to both alpha and
beta bands. This finding may be useful for the selection of
optimal frequency bands in MI-BCI application. The frequency
band corresponding to the highest averaged ClassDisf could be
selected for calibration sessions and treated as the permanent
optimal frequency band for other MI-BCI activities. The
off-line CA results showed a significantly positive Pearson
correlations between the “broadband” CA and the run index.
The CA variations were also closely correlated with the ClassDis
variations. The Riemannian distance properties of EEGs within

a given frequency band were taken into account in both metrics,
which may account for this.

The Riemannian Mean of two categories (two rectangles on
the feedback screen) was shown in order to guarantee a relatively
small change, visually, from one feedback to the next in every
second. Indeed, the projection variability was high initially. After
few trials, each feedback point moved slightly. The position of
each feedback was fixed in a small area, which did not affect the
visualization as perceived by the subjects. Unexpectedly, however,
the projection map may have flipped symmetrically along the
x-axis or y-axis. Mathematically, the sign of the coordinate
of the feedback point changed as the experiment progressed.
To mitigate the flipped projections, we added a projection of
the Riemannian mean for two categories represented as two
rectangles on the feedback screen. The feedback points of one
category could be fixed by making the coordinate sign of the
rectangle of this category invariant, since the rectangle of one
category was always on the same side as the feedback points
of that category.

The one-by-one appearance of feedback points by diffusion
map projection after fixing the coordinate sign of the Riemannian
mean is shown in Supplementary Videos 2, 3. This appeared
to be an effective method to prevent projection variability.
Unfortunately, this did not resolve the excessive projection
variability when only a few points were displayed. Thus, the
feedback points initially had a negligible instructional effect on
subjects. This problem will need to be remedied in a future study.
Additionally, as the artifacts were far away from the normal EEG
measurements in terms of Riemannian distance, their presence
markedly affected the 2D projection representation; the normal
EEG feedback points clustered in a line on the 2D screen.
Thus, the artifact removal made a significant contribution for
preventing the position changes.

We chose five pairs of EEG electrodes on the bilateral
sensorimotor cortex. Without any subject-specific channel
selection, we investigated the power distribution throughout
the sensorimotor cortex instead of the power of one or a
few fixed electrodes. Ten electrodes were appropriate; any
additional electrodes were more likely to introduce noise when
estimating the covariance matrix. However, the estimation
precision of the 10 × 10 covariance matrix from 1-s EEG data
was relatively unclear.

A new point was presented on the feedback screen every 1 s
in accordance with our protocol. The CPU of our computer
is Intel Core i7 with 32-G RAM. The computational demand
of a new projection for each new EEG covariance matrix was
approximately 0.43 s (in real time). The processing time increased
with the number of EEG covariance matrices during one run,
as a new EEG covariance matrix required the computation of
Riemannian distances from all the previous covariance matrices.
Implementing a faster-updated rate was difficult for the proposed
feedback protocol, as a faster pace would have necessitated more
feedback points, to the point that the processing time may have
exceeded the update time in the later stage of a run, thus causing
the experiment to collapse.

We carefully considered the design of our training experiment.
Before the experiment started, we only prompted subjects to
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perform kinesthetic—rather than visual—MI tasks but did not
prescribe a specific mental strategy. Therefore, the subjects could
fully explore the mental strategies with the most remarkable
difference between two hands-MI according to the real-time
feedback points.

There are two limitations in our experimental design that will
need to be resolved in any follow-up work. First, we included
subjects with previous BCI experience, which confounded
the training effects. When investigating whether subjects can
learn a skill, it is necessary to ensure that no subject is
already an expert or has even been exposed to the training
previously. Second, we intended to prove that the proposed
approach is an alternative to the conventional cursor feedback
training regarding subject learning; unfortunately, we designed
an uncontrolled experiment and thus could not fully determine
whether the proposed approach is better than the conventional
one. Two pieces of literature with relatively long experiment
length conducted uncontrolled experiment (Perdikis et al., 2018;
Meng and He, 2019). Barsotti et al. (2018) and Penaloza et al.
(2018) obtained significant differences between the proposed
feedback method and the conventional method; however, the
experiment length all lasted for only 1 day. In our opinion, the
1-day experimental design suffered from a lack of longitudinal
evaluation (Perdikis and Millan, 2020). Hence, even if it could
be observed a significant difference, it cannot be concluded
whether a new feedback method has contributed, or the observed
effects regard short-term adaptation of the subjects to the
new interface. In addition, Sollfrank et al. (2016) provided a
well-designed controlled experiment; however, no significant
difference was found between the controlled feedback and the
multi-modal funnel feedback. We will continue completing the
controlled experiment for further research referring to this
experimental paradigm.

The proposed feedback protocol focused on subject learning.
We did not explore machine learning methods in this study. The
compression points of 160 EEG measurements in one run (when
no artifact was detected) appeared in turn. By the next run, all
the previous 160 points were cleared from the screen. This may
have left subjects unable to continuously learn the prior training
experiments. However, it was not feasible to simply display the
previous compression points on the screen, due to the intrinsic
non-stationarity of EEG data and the probability of converting
different mental strategies for the subject. Perdikis and Millan
(2020) concluded that subject learning capacities can be fostered
as if machine learning adaptation is only enabled at the beginning
of new sessions until non-stationarity effects are alleviated. In
the future, we will employ the affine transformation method at
the beginning of new sessions to allow for continuous learning
(Zanini et al., 2018).

CONCLUSION

In this study, we established a Riemannian geometry-based
data visualization MI-BCI training feedback protocol that allows
subjects to learn to modulate their SMRs by separating points of
different colors and then centralizing points of the same color

on a feedback screen. The proposed protocol does not require
training calibration and provides continuous feedback over a long
period of time. We observed overall training effects among 10
subjects after 3-day training. However, no solid, reliable evidence
of learning was found in most of the subjects. We speculate that
the subjects’ training efficacy could be improved by longitudinal
experimentation according to the neurophysiological evidence.
We found increases in ClassDis for the last three sessions,
which suggests that the proposed protocol has positive effects
in the long term. In the future, our observations can be
strengthened by further improving the protocol design and the
experimental design.
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