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Abstract: Fiber Bragg Grating (FBG) sensors are among the most popular elements for fiber
optic sensor networks used for the direct measurement of temperature and strain. Modern FBG
interrogation setups measure the FBG spectrum in real-time, and determine the shift of the Bragg
wavelength of the FBG in order to estimate the physical parameters. The problem of determining
the peak wavelength of the FBG from a spectral measurement limited in resolution and noise, is
referred as the peak-tracking problem. In this work, the several peak-tracking approaches are
reviewed and classified, outlining their algorithmic implementations: the methods based on direct
estimation, interpolation, correlation, resampling, transforms, and optimization are discussed in
all their proposed implementations. Then, a simulation based on coupled-mode theory compares
the performance of the main peak-tracking methods, in terms of accuracy and signal to noise
ratio resilience.

Keywords: Fiber Bragg Grating (FBG); optical fiber sensors; optical sensors; peak tracking;
wavelength shift estimation

1. Introduction

Since the first demonstrations of the photo-induced periodic modulation phenomenon in optical
fibers [1–4], Fiber Bragg Gratings (FBGs) have become established as one of the most prominent
technologies used in fiber optic sensors [5]. FBG sensors currently find relevant applications in
structural health monitoring [6–9], civil engineering [8–10], oil and gas [11–13], aerospace and
transportation [14,15], medical devices [16–18], nuclear plant monitoring [19,20], high-temperature
detection [20,21], and refractive index sensing [22], among other uses.

While the research on FBG sensors until the 2000s has mainly focused on the fabrication of
gratings in photosensitive and standard optical fibers [1,2], using techniques such as phase mask [1],
interferometric setup [2], direct inscription through pico/femtosecond lasers [23,24], and draw-tower
fabrication [25], FBG sensors have seen a progressive standardization of the optical hardware for their
interrogation. Thanks to the advances in low-cost spectrometers and tunable lasers, since the last
decade two setups have been consolidated for the FBG interrogation: the first setup is based on a
broadband source and a spectrometer [1,4,5,26] (often also referred as FBG analyzer), and has been
commercialized [27–29]; the second setup is based on a fast-scanning tunable laser that sweeps a
relatively broad wavelength range (typically 40–100 nm) and a photodetector [30–35], and has also
been industrialized [36,37].

An FBG behaves as a narrow-band optical reflection filter [1,4,38], which reflects a narrow
spectrum around the Bragg wavelength. Thus, it is possible to fabricate several FBGs in the same
fiber, each for a different Bragg wavelength, and achieve an array format. FBGs can then discriminate
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in the optical spectrum domain, in a wavelength-division-multiplexing (WDM) configuration that
allows interrogating up to 20–50 sensors in the same fiber [3,4,16–21]. In addition, thanks to
micro-electromechanical systems (MEMS)-based optical switches [39], it is possible to obtain a
multi-channel system, arranged in a time-division-multiplexing (TDM) format in which each FBG
array is interrogated by changing the switch position. MEMS switches are available in 1 × 2 and 1 × 4
(the most popular format), up to 1 × 64. The combination of TDM and WDM allows the creation of
FBG sensing networks of up to hundreds of sensors.

Interrogators measure the spectrum of the FBG or FBG array in real time. The spectrum of
the FBG shifts when a temperature or strain variation is exerted on the grating region, according
to a linear relationship [1]. Thus, in order to effectively use an FBG to estimate a temperature or
strain variation, it is necessary to estimate the FBG peak wavelength from the FBG spectrum, and
in particular the wavelength shift of the FBG from the reference position [1,38]. The peak-tracking
routine used to calculate the Bragg wavelength is an important factor in determining the accuracy of
the temperature/strain measured with the sensor.

Several peak-tracking techniques have been proposed for the fine estimate of FBG tracking.
In the first part of this work, FBG peak tracking methods are reviewed, including direct methods,
correlation-based methods, fitting methods, digital oversampling methods, transform-based methods,
and optimization-based methods. A thorough review, that extends the peak-tracking analysis released
so far [40–51], is outlined.

In the second part of the work, the several methods are compared in a simulation-based scenario,
in order to analyze the performance. FBGs are simulated with Erdogan’s coupled-mode theory
(CMT) [38], and a statistical analysis is used to evaluate the performance of all reviewed methods as a
function of the wavelength resolution and signal-to-noise (SNR) ratio of the interrogation setup and
on the grating strength coefficient [48]. This analysis allows comparing the different techniques in
different working conditions, with the aim of optimizing each method and providing a guideline for
their implementation.

The review is arranged as follows: Section 2 describes the theory of and interrogation of FBGs,
which constitutes the basis of the peak tracking analysis; Section 3 reviews the peak tracking methods
and discusses their implementation into spectral analysis; Section 4 shows a performance analysis for
the main peak tracking methods, highlighting the main strengths and criticalities in different working
conditions; Section 5 discusses and compares the results of peak tracking methods; finally, Section 6
draws conclusions.

2. FBG Sensors and Interrogation

2.1. FBG Sensors Theory

The FBG is a periodic modulation of the core refractive index of an optical fiber, which creates a
resonant structure that reflects one wavelength, the so-called Bragg wavelength [3,4]. Optically, the
FBG behaves as a narrow-band reflective filter, centered at the Bragg wavelength, which reflects a
narrow bandwidth while all the other spectral components travel through the FBG without significant
losses. Under reference conditions, the Bragg wavelength λB can be expressed as [1,38]:

λB = 2ne f f Λ (1)

where neff is the effective refractive index of the optical fiber, and Λ is the period of modulation of the
refractive index. Most systems operate around the third optical window with neff ≈ 1.5, with FBGs
centered around 1520–1600 nm, and therefore Λ typically ranges from 505 nm to 535 nm.

In a uniform FBG, Erdogan’s CMT, which can be directly implemented as in [38] or discretized
according to a layer peeling model [52,53], provides a closed-form expression for the grating reflectivity,
by solving the core mode coupling between co- and counter-propagating waves. The FBG reflectivity
for a uniform grating can be expressed then as:



Sensors 2017, 17, 2368 3 of 35

R(λ) =
sinh2

(
L
√

k2 − σ2
)

cosh2
(

L
√

k2 − σ2
)
− σ2

k2

(2)

where: λ is the wavelength, L is the grating length, and kL is a unitless number that typically ranges
from 0.1 to 4 and defines the grating strength, both in terms of full-width half-maximum (FWHM)
bandwidth, and in terms of maximum reflectivity. The coefficient σ has the following expression:
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where δneff is the amplitude of the modulation index modulation.
Figure 1 shows the relationship between the peak reflectivity and the FWHM, as a function of

the grating strength coefficient kL, for a standard uniform FBG having Bragg wavelength 1550 nm.
The peak reflectivity, which defines the amplitude of the spectral slice in correspondence to the Bragg
wavelength, grows as tanh2 (kL) [38], saturating close to 100% for kL > 2.5. The FWHM exhibits an
almost linear trend for reasonable values of kL > 1, up to kL = 4.

Sensors 2017, 17, 2368  3 of 35 

 

R λ( ) =
sinh2 L k2 −σ 2( )cosh2 L k2 −σ 2( )− σ 2

k2
 (2) 

where: λ is the wavelength, L is the grating length, and kL is a unitless number that typically ranges 
from 0.1 to 4 and defines the grating strength, both in terms of full-width half-maximum (FWHM) 
bandwidth, and in terms of maximum reflectivity. The coefficient σ has the following expression: 

σ λ( ) = π
λ

δneff +2πneff
1
λ

− 1
λB







 (3) 

where δneff is the amplitude of the modulation index modulation. 
Figure 1 shows the relationship between the peak reflectivity and the FWHM, as a function of 

the grating strength coefficient kL, for a standard uniform FBG having Bragg wavelength 1550 nm. 
The peak reflectivity, which defines the amplitude of the spectral slice in correspondence to the 
Bragg wavelength, grows as tanh2 (kL) [38], saturating close to 100% for kL > 2.5. The FWHM exhibits 
an almost linear trend for reasonable values of kL > 1, up to kL = 4. 

 
Figure 1. Peak reflectivity (left) and FWHM (right) for a uniform FBG as a function of the grating 
strength coefficient kL. Parameters: L = 1 cm, neff = 1.5, δneff = 10−6, λB = 1550 nm. 

The FBG can be used as a sensor since both terms neff and Λ in Equation (1) are dependent upon 
strain and temperature [1,4], respectively labeled Δε and ΔT. The result is that the Bragg wavelength 
λB shifts to the value (λB + Δλ) in accordance to a linear relationship [4]: 

Δλ = kε Δε +kTΔT  (4) 

where the coefficients kε and kT incorporate the dependence of both neff and Λ. For FBGs operating in 
the infrared (usually within 1500 nm and 1600 nm, as defined by most commercial devices), typical 
values of the strain-optic and thermo-optic sensitivities are kε ≈ 1 pm/με and kT ≈ 10 pm/°C [1–5]. 
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In FBG sensing applications, the peak tracking routine estimates the wavelength shift Δλ; then, 
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Figure 1. Peak reflectivity (left) and FWHM (right) for a uniform FBG as a function of the grating
strength coefficient kL. Parameters: L = 1 cm, neff = 1.5, δneff = 10−6, λB = 1550 nm.

The FBG can be used as a sensor since both terms neff and Λ in Equation (1) are dependent upon
strain and temperature [1,4], respectively labeled ∆ε and ∆T. The result is that the Bragg wavelength
λB shifts to the value (λB + ∆λ) in accordance to a linear relationship [4]:

∆λ = kε∆ε + kT∆T (4)

where the coefficients kε and kT incorporate the dependence of both neff and Λ. For FBGs operating in
the infrared (usually within 1500 nm and 1600 nm, as defined by most commercial devices), typical
values of the strain-optic and thermo-optic sensitivities are kε ≈ 1 pm/µε and kT ≈ 10 pm/◦C [1–5].

An FBG can work as a single-element sensor, providing one measurement output, however, it is
possible to maximize the sensing capacity by inscribing an array of FBGs, each having a distinct Bragg
wavelength, on the same fiber. Modern inscription methods such as draw-tower fabrication [25,54]
can fabricate up to 50 FBGs per single array, with wavelength spacing of ~2 nm between each Bragg
wavelength. The resulting spectrum is the combination of all the FBG individual spectra.

In FBG sensing applications, the peak tracking routine estimates the wavelength shift ∆λ; then,
it is possible to estimate either ∆ε or ∆T from Equation (4), whereas the sensitivity coefficients kε are
obtained through a calibration [5].
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2.2. FBG Interrogation Systems

The current FBG interrogation systems are designed to measure in real time the spectrum of an
array of FBGs, with sampling rates ranging from 1–10 Hz for static systems to 1–5 kHz for dynamic
systems. The two most popular methods are based on a white-light setup, and a scanning laser system.

The white-light setup is illustrated in Figure 2, as commercialized in [27–29]. The light source is a
broadband source, typically a superluminescent LED (SLED). Light is routed to the FBG sensing array
by means of a coupler, which also allows directing the FBG array backreflection to a charge-coupled
device (CCD) spectrometer, that measures the spectral intensity. SLED and spectrometer bandwidths
are matched, and usually ranging from 40 nm to 80 nm [29]. A 1 × N switch allows multiplexing in the
time-domain (TDM) and the combination of TDM and WDM forms a sensing network with a relatively
large capacity. The white-light setup has a fast response, limited only by the spectrometer (and, in
TDM, by the switching time of the 1 × N), but its resolution is limited by the diffraction grating of the
spectrometers. Several spectrometers used in FBG sensing have 9-bit (512 pixel) wavelength resolution,
almost evenly over a bandwidth of 40 nm or 80 nm [27,29]; thus, the wavelength resolution of the
interrogation system is 78 pm or 156 pm, respectively. Therefore, the spectrum of the FBG is coarsely
sampled. On the other side, due to the lack of scanning elements and the possibility to set the exposure
time of each photodetector element, this interrogation system has a favorable SNR and has a good
long-term stability.
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Figure 2. Schematic of white-light interrogation system for FBG sensor networks. Red lines show
optical connections; the blue box includes all the building blocks of the interrogator. Colored sensors
refer to FBG arrays (one wavelength per color).

The main alternative to white-light setups is a scanning-laser based system, which is based on
a narrow-linewidth laser that rapidly scans a wavelength range. This setup is shown in Figure 3, as
industrialized in [36,37]. The light source is a low-power tunable laser, controlled in temperature
by a thermo-electric controller (TEC) and in wavelength by a sweep-function generator, which is
often implemented in the data acquisition (DAQ) hardware. The laser is followed by an isolator to
filter out backreflections. A splitter 1 × N (typically 1 × 4 or 1 × 8) is used for multiplexing into
multiple channels. Couplers are then used to route light to each FBG array and pack to a photodetector
(PD), followed by a transimpedance amplifier (TIA), to obtain the output. The DAQ maintains the
synchronization between the sweep-function generator and the array of photodetectors. The main
advantage of this setup is the wavelength resolution, as 5–10 pm resolution over up to 100 nm can be
obtained [36]. However, the system has an inferior SNR and long-term wavelength stability, due to the
use of a laser source.

The effect of wavelength resolution is shown in Figure 4, where an FBG spectrum (in ideal
noise-free conditions) is simulated using the CMT in Equations (1)–(3) under reference condition and



Sensors 2017, 17, 2368 5 of 35

with ∆λ = 20 pm wavelength shift, for 3 different values of wavelength grid resolution δλ. For a
narrow sampling (δλ = 5 pm) all the spectral details, including the side lobes [38], are visible in the FBG
spectrum; extending the wavelength grid to a coarse resolution (δλ = 78–156 pm), the FBG appears as a
small set of pixels (where we define pixel as the wavelength spacing between two adjacent wavelengths
of the grid), and the spectrum appears to slightly change shape as a result of the under-sampling.
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3. Review of Peak Tracking Methods

Peak tracking methods for FBGs are reviewed in Table 1. Direct methods perform peak detection
on the FBG spectrum by means of direct analysis of the spectrum. Fitting methods perform an
interpolation of the FBG spectrum with an analytical function (polynomial, Gaussian, spline), which is
then processed to obtain the peak position. Correlation-based methods perform a mutual correlation
between the reference FBG spectrum, acquired without any strain or temperature variation, and the
measured spectrum. All the previous methods can be applied on the measured FBG spectrum, or
(in case of low wavelength resolution) the spectrum can be over-sampled or resampled to artificially
expand the resolution δλ. Transform-based methods convert, by means of operation such as Fourier
Transform, Wavelet, or Karhunen-Loeve Transform, the FBG spectrum in a new domain; the peak
search is then implemented in this new domain.
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It is important to notice that some methods estimate the Bragg wavelength (λB,e) of the measured
spectrum, without any a priori knowledge; other methods estimate the wavelength shift (∆λe) from
the reference position and require the knowledge of the spectrum in reference condition, which is
usually performed at the start of the measurement or during calibration. In practical terms, since ∆λ is
the only parameter that is needed for the temperature or strain estimation, the two operations have the
same effect for most of the applications.

Table 1. List of peak-tracking techniques reviewed in Section 3.

Type Method Main References

Direct
Maximum [41,42]

X-dB bandwidth [42,47,55]
Centroid [41,42,46,56]

Curve fitting

2nd order polynomial [42,46]
Gaussian→polynomial [57]

Gaussian fit [58]
High-order polynomial [40,42]

Spline [42,59]

Correlation
Wavelength shifted correl. [48,60]

Cross-correlation [61,62]
Correlation→polynomial [63]

Oversampling 1 Upsampling [48,55]
Resampling [48,55]

Transform

Fast phase correlation [44,64]
Linear-phase operator [42]

Karhunen-Loeve Transform [65–67]
Capon-KLT [68]

Wavelet [69,70]

Optimization Neural network [40,71,72]
Genetic layer peeling [49,53]

1 Overampling routines are not used directly for FBG tracking, but in connection with the previous
peak-tracking methods.

3.1. Direct Methods

Direct methods are computationally fast methods that perform simple operations on the reflection
spectrum R (λ) without altering or processing its shape:

3.1.1. Maximum

The maximum method, as described in [41,42], simply estimates the peak wavelength as the
wavelength at which the maximum reflectivity is observed using Equation (5) [73]:

λB,e = λ|R(λ)=Rmax
(5)

where Rmax is the maximum measured reflectivity. As shown in [42], this method is clearly inefficient
in terms of accuracy compared to any other method that has been further implemented.

3.1.2. X-dB Bandwidth (X-BW)

The X-dB bandwidth method is one of the most popular techniques for interrogation of FBGs in
dense wavelength sampling (δλ = 1–5 pm) [42], and is often implemented by the software onboard of
commercial interrogators [55]. The approach is sketched in Figure 5 and analytically implemented in
Equations (6)–(8), where X is in dB [74]:

Rth =
Rmax

10 log10 X
(6)
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λth = λ|R(λ)≥Rth
(7)

λB,e = min(λth) +
max(λth)−min(λth)

2
(8)

The first operation is to set a threshold Rth, having spectral amplitude X dB below the maximum
measured reflectivity Rmax. Then, the set of wavelengths λth is calculated as the values for which
the reflectivity exceeds Rth; so that they represent the inner bandwidth of the FBG. Finally, the Bragg
wavelength is estimated as the center of the inner bandwidth. The value X is often set to 3 dB [48]: in
this case the X-BW coincides with the evaluation of the center of the FWHM; however it is possible
to adjust X in order to select a narrower or wider portion of the FBG. In the case of a perfectly
symmetrical FBG spectrum, the estimated FBG wavelength coincides with the Bragg wavelength in
Equations (1)–(3). In applications where the FBG spectrum is asymmetrical, the estimated wavelength
is the center of the X-dB bandwidth and may differ from the Bragg wavelength. However, since the
spectra shift without altering their shape, this bias does not alter the definition of ∆λ.
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3.1.3. Centroid

The centroid method, sketched in Figure 6, determines the Bragg wavelength as the center of
mass of reflection spectrum of the FBG.
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As in [41,42,46,56], the method is algorithmically implemented with a set of two summations:

λB,e =
∑
n

λn · R(λn)

∑
n

R(λn)
(9)
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where the pixel index n sweeps over the whole set of wavelengths that includes the main portion of
the FBG spectrum. Empirically, the Bragg wavelength estimated with the centroid may depend on the
width of the spectral range included in the analysis; and this method (like the previous bandwidth
tracking) may show a bias of the estimated wavelength versus the Bragg wavelength. However, since
we are interested only in the wavelength shift from reference position, this offset does not alter the
estimation of ∆λ.

3.2. Curve Fitting Methods

In a curve-fitting method [75–77], the FBG spectrum is interpolated with a function that
approximates its shape. Although the CMT theory [38] provides a closed-form expression for the FBG
spectrum, it requires a non-linear optimization that is usually not performed (unless in the case of
genetic algorithm [52]). Instead, simpler analytical formats that make use of polynomial regression,
and depend on a smaller number of parameters are used:

3.2.1. 2nd Order Polynomial

Polynomial fitting methods involve fitting the measured FBG spectrum with a polynomial
function, which can be implemented using regression methods [75]. The most classical method
is a second order polynomial [42,55,76], thanks to its simple implementation and the unambiguous
Bragg wavelength estimation. This method is sketched in Figure 7. In the following formulas:

R(λ) ≈ a2λ2 + a1λ + a0 (10)

∂R
∂λ

= 0→ 2a2λ + a1 = 0 (11)

λB,e = −
a1

2a2
(12)

in first place we approximate the FBG spectrum as a 2nd order polynomial function, determining the
set of three coefficients a2, a1, a0. This operation can be performed using a least-squares interpolation
method based on quadratic regression. The operation in Equation (10) is performed only on the inner
part of the spectrum, which resembles a parabolic function having a2 < 0; for this reason, this operation
is typically preceded by a thresholding as in Equation (6), which is usually performed with X = 3
dB [40,55]. Since the spectrum is now approximated as a polynomial of 2nd order and a2 < 0, there
is only one maximum which can be obtained as in Equation (11) by setting the derivative to zero;
analytically this is calculated as in Equation (12) without any ambiguity. Software implementation
of the 2nd order polynomial fitting method show a good reliability, as the regression does not return
badly conditioned polynomials in reasonable SNR regime; this is often implemented in curve-fitting
toolboxes [75].Sensors 2017, 17, 2368  9 of 35 
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3.2.2. Gaussian Polynomial Fit

In this method proposed by Chen and Vallan [57], the FBG spectrum is approximated as a
Gaussian function; this is shown in Figure 8.
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Under this assumption, we can express the FBG spectrum as:

R(λ) ≈ A · exp

[
− (λ− λ0)

2

2σ2

]
(13)

and the Gaussian is determined by the parameters A, σ, λ0. Following the steps in [57,78], Equation (13)
can be manipulated by dividing the left term by A, and taking the logarithm of both terms:

ln[R(λ)] ≈ ln A− (λ− λ0)
2

2σ2 (14)

which is now a second order polynomial. We can then highlight the 3 coefficient of the polynomial, by
making them explicit solving the right term of Equation (14):

ln[R(λ)] ≈ − 1
2σ2 λ2 + λ0

σ2 λ +
(

ln A− λ0
2

2σ2

)
= a2λ2 + a1λ + a0

(15)

and we can highlight that the logarithm of the reflection spectrum can be approximated as a second
order polynomial; the coefficients of the polynomial are related to the Gaussian parameters in
Equation (13):

a2 = − 1
2σ2 ; a1 =

λ0

σ2 ; a0 = ln A− λ0
2

2σ2 (16)

Again, we can estimate the Bragg wavelength by imposing that the derivative of ln[R(λ)] is set
to zero:

∂(ln R)
∂λ

= 0→ 2a2λ + a1 = 0 (17)

and the Bragg wavelength can be estimated as:

λB,e = −
a1

2a2
(18)
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which is the same result of Equation (12), because still related to a 2nd-order polynomial.
Computationally, in this method the second-order regression is applied to the logarithm of the
spectrum, implementing directly Equation (15) regardless of the relationship between (a2, a1, a0)
and (A, σ, λ0), and then the Bragg wavelength is calculated from Equation (18).

3.2.3. Gaussian Fit

The Gaussian fit algorithm, as described in [58], imposes the non-linear regression in Equation (13).
Rather than reducing to a polynomial function, the least square method [76] can be applied directly to
the spectrum using Equation (13), and the goal is to estimate the parameter λ0. This method can be
implemented using commercially available curve-fitting toolboxes [75].

3.2.4. Higher-Order Polynomial Fitting

The method proposed in [40,46] performs the curve fitting of the whole FBG spectrum with a
N-th order polynomial function:

R(λ) ≈
N−1

∑
n=0

anλn (19)

and estimates the Bragg wavelength by finding the highest maximum of the function used to interpolate
R(λ). This is simply performed by zeroing the derivative:

∂R
∂λ

= 0⇒
N−1

∑
n=1

nanλn−1 = 0 (20)

In this method, due to the higher order of the polynomial, there are multiple maxima (and minima)
in Equation (20); their discrimination is inherently depending on the conditioning of the polynomial in
Equation (19).

3.2.5. Spline

The spline method proposed in [40,42,77] allows interpolating the reflection spectrum R(λ) with
a piecewise polynomial function. Typically a cubic spline is used as interpolant, because it ensures
a smooth transition between each spectral value up to the second derivative (C2 continuity [77,79]).
The spline is calculated as follows: given the spectrum R(λ) sampled on the wavelength grid λ1,
λ2, . . . , λN, each wavelength acts as the knot of the spline, and one interpolant function Pi is found
between each pair of adjacent knots:

R(λ) ≈ Rk(λ) = a3,kλ3 + a2,kλ2 + a1,kλ + a0,k︸ ︷︷ ︸
λk≤λ≤λk+1

, ∀k = 1, . . . , N − 1 (21)

Since each k-th cubic spline function is defined between λk and λk+1, the interpolation is piecewise,
and the spectrum can be approximated as:

R(λ) ≈ R1(λ)︸ ︷︷ ︸
λ1≤λ≤λ2

∪ R2(λ)︸ ︷︷ ︸
λ2≤λ≤λ3

∪ . . . ∪ RN−1(λ)︸ ︷︷ ︸
λN−1≤λ≤λN

(22)

The spline is thus defined by the 4(N − 1) set of ai,k coefficients in Equation (21). For each spline,
four conditions have to be satisfied [77]:

Rk(λk) = R(λk)

Rk(λk+1) = R(λk+1)
∂Rk
∂λ (λk) =

∂Rk
∂λ (λk+1)

∂2Rk
∂λ2 (λk) =

∂2Rk
∂λ2 (λk+1)

(23)
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where the first two equations force the spline interpolant to coincide with the knots, and the last two
equations force the two derivatives to be identical in the knots. According to [79,80], Equation (23) can
be converted into a matrix and solved.

In a spline-based FBG tracking, the FBG spectrum is interpolated with a cubic spline on its grid
with resolution δλ solving Equation (23) and obtaining the coefficients in Equation (21). Then, by
means of Equation (22), it is possible to extend the approximation to all the inter-pixel points, as a
matter of fact expanding the spectral estimate to all the values within each knot. The FBG peak is
then computed by selecting the maximum value of the spline [40,42]; however, a better alternative is
to search for the X-BW bandwidth within the spline-fitted function. The spline process is shown in
Figure 9, where a simulated FBG simulated on a 40-pm wavelength grid is interpolated with a spline
on a grid of 0.1 pm resolution.
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3.3. Correlation-Based Methods

Correlation-based methods are based on the calculation of the mutual correlation between
the measured spectrum, and the reference spectrum acquired during calibration. These methods
do not measure the Bragg wavelength but rather the wavelength shift from the reference to the
measured spectrum.

3.3.1. Wavelength-Shifted Mutual Correlation

The method, as described in [48,60], compares the spectrum of the FBG in reference condition
Rref(λ) and the measured spectrum R(λ), which is a replica of Rref(λ) shifted by the quantity ∆λ.
The method consists of identifying the estimated wavelength shift ∆λe as the value of wavelength
shift (discretized over the pixels of the spectrometer) for which the mutual correlation is maximum.
In terms of implementation, the m-th value of mutual correlation is equal to:

Pm = ∑
λ

Rre f (λ) · R(λ−m · δλ) (24)

where m is an integer, that allows scanning all the possible wavelength values around the FBG peak.
The mutual correlation P is a digital function, having maximum value Pmax; the estimated wavelength
shift ∆λe is equal to the value of mδλ for which the autocorrelation is maximum:

∆λe = δλ · m|Pm=Pmax
(25)



Sensors 2017, 17, 2368 12 of 35

The process is illustrated in Figure 10. On the left, we consider the reference and measured spectra,
the latter being a replica of the original pattern. The autocorrelation Pm has a shape that resembles the
inner FBG spectrum, and the peak is located in correspondence of the estimated wavelength shift.Sensors 2017, 17, 2368  13 of 35 
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(Left) reference and shifted spectra simulated over the wavelength resolution δλ = 5 pm; the shifted
spectrum has 45 pm wavelength shift. (Right) the mutual correlation Pm is calculated over all the
wavelength shift values, identifying the wavelength shift as the value that maximizes Pm: this coincides
with the wavelength shift.

3.3.2. Cross-Correlation

This method is similar to the wavelength-shifted correlation, but does not involve repeating
the calculation in Equation (24) for all the values of m. The correlation P(λ) is directly evaluated by
computing the cross-correlation of the measured and reference spectra as they are detected [61–63]:

P(λ) = ∑
λ

Rre f (λ) · R(λ) (26)

and then the wavelength shift corresponds to the wavelength, on the grid, for which the maximum
value of P is recorded:

∆λe = argmax
∆λ

P(λ− ∆λ) (27)

In a noise-free configuration, solving the cross-correlation with Equations (26) and (27) and the
wavelength-shifted correlation in Equations (24) and (25) yield the same results, however a very slight
difference may emerge when the spectra are corrupted by noise.

3.3.3. Correlation Polynomial Fit

This method, introduced in [63], is based on a sequence of two steps. At first, using Equation (26)
the mutual correlation P(λ) between the reference and measured spectra is computed. Then, the
peak-search method (and particularly, the polynomial fitting method in Equations (10)–(12) is used on
P(λ); in practice the same routine for peak search is applied to determine the maximum of the mutual
correlation. This method is sketched in Figure 11.
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3.4. Oversampling

3.4.1. Upsampling

Upsampling is not a technique for peak tracking, but rather complements the other previously
introduced methods. The goal of oversampling the FBG spectrum is to artificially expand the resolution
of the spectrometer δλ into a much denser wavelength grid δλR. This operation is critical for methods
that are resolution-limited, in which peak resolving is tied to the resolution of the spectrometer. Using
oversampling methods [81–85], it is possible to oversample at a very high rate, thus achieving a
new wavelength grid δλR << δλ; the oversampling rate Q = δλ/δλR can be as high as ~150–300,
which converts a grid of 78–156 pm [28,29] into a grid with ~1 pm spacing [40,48,55]. However, this
grid expansion is artificial, and does not maintain the details of the FBG spectrum. On the other
side, it is possible to select a slight grid expansion (Q = 4–10) for narrow resolution grid, to slightly
improve accuracy.

Upsampling methods artificially expand a digital signal acquired at a lower bit-rate into a higher
bit-rate, and is often implemented in audio processing and wireless systems [81,85]. It can also
be applied to FBG sensors, as the reflection spectrum of the FBG is regarded as a digital signal of
length L1 and upsampled into a signal with length L2 = QL1, multiple of the input signal length.
With the upsampling method, the inner spectral samples between one pixel and the next pixel can be
determined using a digital filter, obtaining an estimate of the sequence that could have been obtained
with a narrower resolution.

The oversampling process is the result of two distinct steps [83]. In the first step (zero-stuffing),
the input R(λ) computed over the wavelengths λ1, . . . , λL1 is rewritten by inserting (Q − 1) zero
values within each pixel. The new spectral signal RS(λ) thus has the following expression:

RS[n] =

R(λ1), 0, 0, . . . , 0︸ ︷︷ ︸
Q samples

, R(λ2), 0, 0, . . . , 0︸ ︷︷ ︸
Q samples

, . . . , R(λL1), 0, 0, . . . , 0︸ ︷︷ ︸
Q samples

 (28)

where n in this case assumes the meaning of the digital sample. The second step involves a digital
low-pass filter, that smoothens the shape of RS(λ) turning it into the best approximation of an
oversampled replica of R(λ). Finite-impulse response (FIR) filters are used for this task [84,85]; the
upsampling filter has cut-off digital frequency π/Q and gain Q (assuming the digital frequency to be
in the range within −π and +π). The resample spectrum is then computed as the convolution:
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RR[n] = h[n] ∗ RS[n] =
T

∑
k=1

h[k] · RS[n− k] (29)

where T is the number of taps in the filter. The implementation of Equation (6) can work for any digital
filter; a common approach (implemented in several toolboxes for digital signal processing [83]) is to
use a least-square FIR filter.

3.4.2. Resampling

While the classical upsampling implies an integer resampling rate Q, resampling allows one to
obtain fractional resampling rates Q = Q1/Q2. The process is similar to oversampling, but two filters
and a decimator are employed in cascade [81]. The first filter is a low-pass filter, having gain Q1 and
cut-off digital frequency π/Q1; the second filter has unitary gain, and cut-off frequency π/Q2, and
is followed by a decimator of size Q2 that select one sample and discards the subsequent (Q2 − 1)
samples. The most popular implementation of resampling is a polyphase quadrature filter [82], which
is included in most popular commercial toolboxes for signal processing, and has been applied to FPGA
(field-programmable gate array) for integrated circuit design [86].

The resampling process for an FBG is outlined in Figure 12, where an FBG spectrum simulated
with 40 pm resolution grid is resampled with different rates. The chart shows that several of the
spectral features are maintained, as the artificial wavelength grid expands into the new set of samples.
Bringing the resolution to 1 pm allows reconstructing several of the side lobes of the FBG, while the
spectral profile is smoothed through the low-pass filter. The behavior is similar for an integer or a
fractional resampling rate, when a polyphase filter is used. Resampling and upsampling are used
in conjunction with the previous methods for peak tracking, applying the method on the resampled
spectrum RR rather than on the original spectrum [55].Sensors 2017, 17, 2368  15 of 35 
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F k  = R λn( )e− j2πnk
N

n=1
N

  (30) 

Fref k  = Rref λn( )e− j
2πn k−1( )

N

n=0
N−1
  (31) 
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Δλe =median
k

Δλe ,1 ,Δλe ,2 ,,Δλe ,k−1( )  (33) 
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Figure 12. Effect of resampling on a FBG spectrum: the figure shows an FBG spectrum simulated on
a wavelength grid of 40 pm resolution filtered through a polyphase resampling filter, showing the
digital signals input (a) and output (b–d) of the resampler. (a) Original signal; (b) polyphase filter with
Q = 4, bringing the artificial resolution to 10 pm; (c) polyphase filter with Q = 40, bringing the artificial
resolution to 1 pm; (d) polyphase filter with Q = 15/3, bringing the artificial resolution to 8 pm.

3.5. Transform-Based Methods

Transforms have been employed for advanced tracking methods, often with the possibility of
inter-pixel discrimination, thanks to their capability to move the analysis from the original domain to
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an alternative domain, where wavelength shifts can be discriminated with a higher sensitivity, without
resorting to computationally heavy optimization techniques.

3.5.1. Fast Phase Correlation (FPC)

The method for fast phase correlation has been outlined by Lamberti et al. in [44,64], and
requires the measured spectrum R(λ) as well as the reference spectrum Rref(λ), where λ1, . . . , λN.
At first, the Fourier transforms of both R(λ) and Rref(λ) are computed through the N-size Fast Fourier
Transform (FFT):

F[k] =
N

∑
n=1

R(λn)e−j 2πnk
N (30)

Fre f [k] =
N−1

∑
n=0

Rre f (λn)e−j 2πn(k−1)
N (31)

Then, for each iteration k higher than 2, it is possible to set an estimation of the wavelength shift
through the phases of F and Fref [64,87]:

∆λe,k−1 =
(
∠F[k]−∠Fre f [k]

)
· Nk

2π
δλ (32)

where the operator ∠ is the phase of the complex number, in radians. By scrolling the index k, it is
possible to obtain subsequent estimates of ∆λ: in the implementation of [64], at each iteration k, there
are (k − 1) values of ∆λe and the median value is chosen:

∆λe = median
k

(∆λe,1, ∆λe,2, . . . , ∆λe,k−1) (33)

The fast phase method presented in [64] allows performing Equation (33) on a number of samples
lower than N, as the median operator converges with a relatively fast rate.

3.5.2. Linear Phase Operator (LPO)

The linear phase operator method is described in [42] requires a two-step process. A FIR filter h is
designed having the following z-transform:

H(z) = 1 + z−1 − z−3 − z−4 (34)

where the filter coefficients [1, 1, 0, −1, −1] are generated for a 4-th order phase processing filter.
The spectrum is then processed through the filter h, obtaining the digital output signal y[n]:

y[n] = h[n] ∗ R[n] =
5

∑
k=1

h[k] · RS[n− k] (35)

The output of the filter is shown in Figure 13.
It is possible to show that the filter in Equation (34) induces a change of the waveform of the FBG,

with two peaks for y > 0 and y < 0. At this stage, virtually all the previous methods can be used to
track the Bragg wavelength. In [42] the authors use a simple method that substantially estimates the
Bragg wavelength as the zero-crossing point in proximity of the positive and negative peak of the y[n]
waveform. Extending this method to the algorithm used in particle imaging [88], it is possible to use
the FFT of y[n] to process the shift from the original position; in this case, the phase of the FFT of y[n]
is evaluated, showing a progressive shift of the higher digital frequencies towards larger phase values.
This is shown in Figure 13, for the original and wavelength-shifted spectra.
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3.5.3. Karhunen-Loeve Transform (KLT)

This method, implemented in [65,66] and resembling principal component analysis [89], is
designed for the coarsest wavelength resolution and resolves inter-pixel peak tracking. The KLT
is implemented with the following set of calculations [65–67]:

F[k] =
N

∑
n=1

R(λn)e−j 2πnk
N (36)

M =



F[1] F[2] F[3] · · · F[N]

F[2] F[1] F[2] · · · F[N − 1]

F[3] F[2] F[1]
. . .

...
...

...
. . . . . . F[2]

F[N] F[N − 1] · · · F[2] F[1]


(37)

M = V ·D ·V−1 (38)

D =


ξ1 0 · · · 0

0 ξ2
. . .

...
...

. . . . . . 0
0 · · · 0 ξN

 (39)

The first step, in Equation (36), calculates the FFT of the reflection spectrum R(λ) evalauted over N
wavelengths λ1, . . . , λN. The FFT output F[k], k = 1, . . . , N is then extended to its Toeplitz matrix M as
in Equation (37) [65]. This procedure allows extending from a one-dimensional to a two-dimensional
problem. The KLT is then applied, which consists of the decomposition of the matrix M into a set of
orthonormal basis: the procedure is efficient when it is possible to isolate the contribution of the signal
from the noise terms. As shown in Maccone’s works on radar signal processing [90,91], the KLT can
be implemented through eigendecomposition as in Equation (38). In this case, the diagonal matrix D
contains, on its main diagonal, the eigenvalues ordered in ascending order such that ξ1 < ξ2 < . . . < ξN
(and since M is a Toeplitz matrix, the eigenvalues are all real and positive); V contains on each column
the eigenvector corresponding to each eigenvalue in D. After D is found in Equation (39), the highest
rank eigenvalue ξN is extracted [65,90].

The KLT method is shown in Figure 14 for an FBG and two different sampling resolution (78 pm
and 156 pm). The highest rank eigenvalue ξN obtained through the process in Equations (36)–(39)
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is used as a metric for peak tracking. When a wavelength shift ∆λ is applied to the FBG, the KLT
output exhibits a function that resemble, in waveform, the FBG inner spectrum, and has a periodicity
exactly equal to the resolution δλ. This accomplishes the goal of expanding the FBG tracking from a
resolution-limited grid to an accurate inter-pixel detection; the curve ξN(∆λ) can be obtained during
calibration [67]. However, the method is limited to a range of ∆λ equal to δλ/2 without ambiguity,
and the function is not linear in trend, thus the method has a variable sensitivity. In order to double
the interrogation range to δλ, in [66] it is proposed to downsample the FBG spectrum.
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Figure 14. Output of the KLT for a simulated FBG, with wavelength shift ∆λ ranging from −200 pm to
+200 pm. The charts are obtained for a wavelength grid resolution of 78 pm (left) and 156 pm (right).

The KLT can be combined with the centroid method [65,67], to extend the interrogation to the
whole range of ∆λ: the centroid method selects the semiperiod of ξN (∆λ), providing a first estimate
(ballpark); then, the KLT is used for the fine tracking after the semiperiod has been identified.

3.5.4. Capon-KLT

The Capon-KLT method [68] is similar to the KLT, maintaining the calculations in
Equations (37)–(39). The FFT in Equation (36) is replaced with a Capon frequency estimation [92,93]:
the Capon algorithm allows achieving an improved estimate of the power spectral density of the input
signal, and is not limited by the resolution as the FFT [92]. Implementation-wise, the Capon estimator
takes the input R(λ) and estimates F[k], k = 1, . . . , T as:

F[k] = F( fk) =
1

aH( fk)RRR−1a( fk)
(40)

where fk is the k-th digital frequency, arbitrarily chosen between 0 and 1. Since the Capon method
is based on a FIR filtering [93], the length of F and R can be different (unlike in the standard KLT).
We can set the length of F[k] to T, i.e., k = 1, . . . , T corresponding to the range f 1, f 2, . . . , fT. Then, the
matrix RRR is the T-size covariance matrix of the spectrum R(λ) and a is a T-size steering vector with
the following definition:

a( fk) =


1

e−j2π fk

e−j4π fk

...
e−j2π(T−1) fk

 (41)

The method implemented in [68] for fast computation sets T = 5, and fk = [0.1, 0.125, 0.15, 0.175, 0.2].
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3.5.5. Discrete Wavelet Transform (DWT) Denoising

The DWT method, described in [69,70,94], is used to denoise the FBG spectrum, increasing the
SNR through one or multiple DWT and inverse (IDWT) filtering. The principle of operation is to
use the wavelet functions to filter out part of the noise, while maintaining the shape of the FBG.
1-dimensional Daubechies decimated wavelets db1 and db3 [95] have been used for this task, as they
are effective in smoothing out the noise affecting the FBG. As a first step, the FBG spectrum is processed
with two filters, determining the approximation coefficients and the details coefficient; in the denoising
process, the approximation coefficient of the wavelet is thresholded, removing the coefficients of
magnitude higher than the threshold [69]. Then, the reverse process is applied reconstructing the
signal. The output of the DWT→thresholding→IDWT can be again filtered one or more times through
the same process. In [69], the DWT is also applied to other sensing tasks, such as discriminating spectra
of FBG and Fabry-Perot sensors.

This process is shown in Figure 15, where the FBG spectrum is first filtered through a DWT,
then thresholded, and then reversed with the IDWT; this process is incorporated in modern wavelet
toolboxes [96], that incorporate the db1 and db3 coefficients. Each filtering through the DWT reduces
the samples by half, since the first filter is a decimator: thus, denoising applies well only on the FBG
spectra sampled over dense wavelength grid. It is possible to notice that, apart from a delay introduced
by the db3 wavelet, multiple DWT filtering reduces the noise on each FBG spectrum, as the FBG peak
stands progressively over the noise threshold.The wavelet process of denoising, using a db3 wavelet,
is shown in Figure 16 as implemented with the Matlab wavelet analysis [69]. The figure shows the
coefficients for approximation (a3) and the detail coefficients (d1, d2, d3) that are used to progressively
denoise the input spectrum. The threshold coefficients have been estimated as 1 for the db1 wavelet,
and (1, 416, 0.19) for the db3 wavelet. The left column shows the decimated coefficients, similar to
Figure 15, which are the wavelet output; on the right column, a Q = 2 upsampler is used to restore the
initial length of the signal. The denoised spectrum can be processed with the previously mentioned
peak-tracking techniques.Sensors 2017, 17, 2368  19 of 35 
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Figure 16. Stationary wavelet analysis of an input spectrum. The upper part shows the noisy FBG
spectrum (length N = 416), and its denoised estimation through a single db3 operation. The left column
shows decimated wavelet waveforms, each having length (N/2): the chart shows the approximation
a3, and the detail d1, d2, d3. The right chart shows the upsampled (Q = 2) replicas of the decimated
coefficients, to restore the original spectral length.

3.6. Optimization-Based Techniques

3.6.1. Neural Network

The use of neural network for the peak tracking of FBGs has been introduced in [40,70,71].
The FBG spectrum R(λ1), . . . , R(λN) is sampled on an array of N wavelengths. Extending the
Gaussian-fit concept, the spectrum can be represented as a series of P radial-based functions [71]:

ϕ
(
λp
)
= e−

(λ−λp)2

2σ2 (42)

R(λ) ' F(λ) = ω1 ϕ(λ1) + ω2 ϕ(λ2) + . . . + ωP ϕ(λP) (43)

where Equation (42) shows the Gaussian base function, and Equation (43) shows the function set F
depending on the weights coefficient string [ω1, ω2, . . . , ωP]. In [40], an artificial neural network
(ANN) is used to estimate the weight coefficients on the base of a cost function that can be represented
as follows:

J =
P

∑
p=1

[
F
(
λp
)
− R

(
λp
)]2

+ γ
P

∑
n=1

ω2
n (44)

The cost function J is the sum of the reconstruction error, which is the left term in Equation (44),
and the weight-minimization function in the right term, with a coefficient γ that balances the two
terms. The ANN is applied on Equation (44), until J is minimized; then, the largest weight corresponds
to the largest radial function, which identifies the estimated Bragg wavelength. The ANN is trained
using a neuron by neuron initialization [40], and its implementation has been described in [97].

3.6.2. Genetic Layer Peeling

The layer peeling is technique for FBG analysis, based on a discrete CMT model [49,52,53].
The working principle of this approach is the discretization of a grating into a set of short layers,
each defined by its transmission matrix; the multiplication of the cascade of transmission matrices
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allows determining the whole FBG spectrum. Each transmission matrix contains the reflection and
transmission coefficient of each discrete layer, which are derived from the CMT. While the layer peeling
is used for the FBG synthesis [52], the reverse layer peeling can be used to estimate the FBG parameters
(λB, neff, kL, δneff) including the Bragg wavelength. The reverse layer peeling has been implemented
with a genetic algorithm, that is able to solve the optimization problem [53]: starting from the FBG
spectrum, the algorithm generates a guess for the FBG parameters and continues refining the estimates
until the simulated and reconstructed FBG spectra yield the best match. The layer peeling, in this
context, can be used for the estimation of λB [98].

4. Performance Analysis of Main Peak Tracking Methods

4.1. Benchmark

A simulative benchmark to insights on the performance analysis of the main peak-tracking method
has been designed using the following scenario [40,48], which mimics the process of interrogation that
is performed in most FBG applications. The process is substantially a Monte Carlo analysis [99], in
which NMC = 106 FBG spectra with a different wavelength shift are generated with additive noise, and
the peak tracking is applied to estimate the wavelength shift from the reference wavelength:

1. The original FBG spectrum is generated on a uniformly spaced wavelength grid with spectral
resolution δλ using the CMT in Equations (1)–(3). The FBG is generated at the Bragg wavelength
λB = 1550 nm, and with the following parameters: L = 1 cm, neff = 1.5, δneff = 10−6. Whenever not
explicit, the grating strength is set as kL = 1.5.

2. The original spectrum is corrupted by additive white Gaussian (AWG) noise, setting the
SNR level.

3. The peak tracking method is applied for estimating the Bragg wavelength of the FBG in reference
condition λB,ref.

4. Steps 1–3 are repeated 100 times: the Bragg wavelength λB,ref is then selected as the average of
the 100 estimates; this process helps reducing the uncertainty on the reference Bragg wavelength.

5. For n = 1, 2, . . . , NMC:

• A replica of the original spectrum, having Bragg wavelength by (λB + ∆λn) is generated on
the same wavelength grid. Each ∆λn is randomly generated using a uniform probability
density function between −20 pm and +80 pm. This corresponds to the measured spectrum.

• The shifted spectrum is corrupted by AWG noise, with the same SNR as in point 2.
This corresponds to the measured spectrum.

• The peak tracking technique is applied on the measured spectrum, estimating the Bragg
wavelength λB,e,n.

• The n-th wavelength shift is estimated as: ∆λe,n = λB,e,n − λB,ref; this corresponds to the
difference between the n-th Bragg wavelength estimate and the Bragg wavelength estimate
in reference condition.

• The error in peak tracking is equal to the difference between the estimated and generated
wavelength shifts, i.e., en = ∆λe,n − ∆λ.

6. The root mean square error (RMSE) of the NMC estimates is computed, as a metric of the
peak-tracking accuracy.

The RMSE is defined as the square root of the en terms:

RMSE =

√√√√√NMC
∑

n=1
en

NMC
(45)
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The SNR is defined as follows:

SNR =
tanh2(kL)

σ2
AWG

(46)

where σAWG is the standard deviation of the AWG random process. This definition is more accurate
than [48] because it takes into account that the FBG reflectivity has a dependence on kL, and it is a
good definition for coarse wavelength sampling [29] as the measured peak reflectivity can fluctuate
within the pixels.

This simulation takes into account AWG noise. In case of a non-Gaussian noise (as in some
spectrometers based on twin 256-pixel hardware [29], which exhibit a higher frequency noise) a
whitening filter can be applied [100]. The SNR shows the limit of noise that cannot be further reduced.

4.2. X-BW Method

Figure 17 shows the estimated RMSE for the 3-dB bandwidth tracking method, as a function of
both SNR (in a range 30–60 dB) and for different wavelength grids (1, 5, 10, 20, 78 and 156 pm), which
represent the resolution of most commercial instruments [27–29,36,37].
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Figure 17. Performance analysis of X-BW peak tracking technique: the RMSE on peak detection is
reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 pm, 20 pm,
78 pm, 156 pm). (Left) FBG spectra are processed without resampling. (Right) FBG spectra have been
resampled, on a new grid with δλR = 1 pm (corresponding to Q = δλ/(1 pm)). Threshold: X = 3dB.

As a first result, without any resampling, we observe that the resolution is the limiting factor for
RMSE, while the SNR does not account for a relevant impact on performance. For a coarse sampling,
the SNR has little or no effect on the peak-tracking accuracy: for all SNR values, the RMSE is equal
to 28.7 pm for δλ = 156 pm, 15.2 pm for δλ = 78 pm, and decreases to 4.9 pm for δλ = 20 pm, which
implies a relatively dense wavelength sampling. Lowering the grid to 10 pm the RMSE ranges from
2.0 pm to 3.8 pm according to SNR. For narrow grids, the sub-pm accuracy is achieved (0.8 to 1.2 pm
for δλ = 5 pm; 0.3 pm to 0.9 pm for δλ = 1 pm). A ~1 pm accuracy can be considered sufficient for most
applications, that do not involve precision sensing.

Resampling plays a significant role in improving the accuracy, for all values of wavelength grids.
In Figure 17 (right), results are shown for resampled spectra with δλR = 1 pm, thus with Q ranging
from 5 to 156 depending on the spectral density. For δλ up to 20 pm, the RMSE improves and overlaps
to the values obtained for δλ = 1 pm, thus with RMSE ranging from 0.3 pm to 0.9 pm depending
on the SNR. For coarse sampling [29], the accuracy improves to 4.2 pm for δλ = 78 pm, while for
δλ = 156 pm, the RMSE is still unacceptable (24.5 pm). From this analysis, it can be concluded that the
3-dB bandwidth tracking is effective in delivering pm-level accuracy for instruments with resolution
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20 pm or better, provided that resampling is used. A further resampling to a better grid (δλR = 0.1 pm)
does not dramatically improve performance and the obtained RMSE gets to ~0.2 pm, while yielding a
10 times larger computational effort.

A further analysis can be carried out to evaluate the impact of the FBG bandwidth (kL coefficient)
and the threshold X on the RMSE. Setting a resolution of δλ = 20 pm resampled with Q = 20, and
SNR = 45 dB, the simulation in Figure 18 shows the RMSE as a function of X (in range 2–8 dB) and kL
(in range 0.8–4). The chart shows that regardless of the X selection, the RMSE strongly increases by 0.5
to 2 orders of magnitude for larger kL values: this is largely due to the effect of side lobes, which are
progressively included within the bandwidth and affect the polyphase resampling. The selection of a
lower value of X, at least for good SNR regime, can improve the performance, as the RMSE recorded
for X = 2 dB shows the lowest RMSE (0.23 pm) for the widest kL range. Values of X equal or lower of
1 dB however are ineffective in discriminating the inner FBG spectrum. Overall, the analysis shows
that the X-BW peak tracing method is effective with lower X values, and with low-reflective FBGs
such as [25]. The X-BW peak-tracking method appears to have a performance bound for SNR of
approximately 30 dB, as even with resampling lower values of SNR result in excessive RMSE.
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Figure 18. Sensitivity of bandwidth-tracking method to grating strength kL and threshold selection X.
The chart reports RMSE (kL) for several values of X.

4.3. Centroid Method

The performance analysis for the centroid method is shown in Figure 19, and exhibits a different
trend. Unlike the X-BW method, the centroid accuracy is strongly dependent on both SNR and δλ

in absence of artificial oversampling. This is shown in Figure 19a, where all the RMSE curves have
the same slope: the SNR is inversely proportional to the RMSE, as expected from [46]. For high SNR
values (60 dB), the achieved RMSE is close to 0.2 pm for δλ = 1 pm, and worsen by a factor 10 as the
SNR decreases by 20 dB. The 1-pm RMSE target is achieved for δλ up to 20 pm (at SNR = 60 dB), while
coarse wavelength grids are not yielding a sufficient RMSE even for the highest SNR.

The situation dramatically changes when resampling is incorporated in the tracking method.
As for the previous case, resampling has been performed setting δλR = 1 pm. In this case, the
wavelength resolution of the spectrometer is not a major limitation, and the RMSE is limited only from
the SNR: all values of δλ within 1 pm and 20 pm yield the same RMSE, while for δλ = 78 pm the results
are still very similar, and only for δλ = 156 pm an impairment is observed. The 1-pm target is achieved
by all methods for SNR higher than 47 dB (52 dB for δλ = 156 pm). Overall, the resampling method
plays a significant role in improving the results. On the other side, the variation of kL coefficient does
not significantly alter the RMSE.
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Figure 19. Performance analysis of centroid peak tracking technique: the RMSE on peak detection is
reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 pm, 20 pm, 78
pm, 156 pm). (a) FBG spectra are processed without resampling. (b) FBG spectra have been resampled,
on a new grid with δλR = 1 pm.

4.4. Second Order Polynomial Fit

Similarly to the previous analysis, the 2nd order polynomial peak tracking yields a SNR- and
grid-dependent RMSE as shown in Figure 20. Again, for non-resampled data the RMSE vs SNR trend
exhibits an inversely proportional relationship. More interestingly, resampling also has the effect of
saturating the performance to the same level as δλ = 1 pm, with the possibility of achieving 0.1 pm
RMSE for SNR = 60 dB, 1 pm RMSE for SNR = 35 dB, even for δλ = 78 pm. Performance rates show an
impairment for δλ = 156 pm quantifiable in 5 dB in excess of SNR to achieve the same RMSE.

Sensors 2017, 17, 2368  24 of 35 

 

the effect of noise at least for the determination of the polynomial coefficients. Indeed, the centroid 
method performs better than the polynomial fit for low SNR (<5 dB), in which however the RMSE 
would be unacceptable for most applications. 

 
Figure 20. Performance analysis of 2nd order polynomial peak tracking technique: the RMSE on peak 
detection is reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 
pm, 20 pm, 78 pm, 156 pm). (a) FBG spectra are processed without resampling. (b) FBG spectra have 
been resampled, on a new grid with δλR = 1 pm. 

4.5. Gaussian Fit 

With the Gaussian polynomial fit method, which requires interpolating the logarithm of the 
FBG spectrum with a quadratic function, as well as with the Gaussian-fit technique, the obtained 
RMSE is higher than with polynomial fitting, but does not worsen proportionally to the SNR. The 
results for the Gaussian polynomial fit method, assuming resampling to δλR = 1 pm, are shown in 
Figure 21; similar results have been obtained for the Gaussian fit. The minimum RMSE for SNR = 60 
dB is equal to 2.4 pm, higher than with previous technique, and higher than the typical target for 
most FBG applications. Counterintuitively, the Gaussian fit method performs better with coarser 
wavelength grids (156 pm) when it is originally implemented as in [57] and in Figure 21: this is due 
to the effect of side lobes, which are emphasized by the logarithmic operation and affect the 
quadratic regression routine, and in undersampled spectra they are slightly flattened out thus 
reducing disturbance. This effect fades when only the inner FBG portion is used for the regression 
routine. However, this Gaussian fit method appears not effective in tracking of standard uniform 
FBGs to the pm-level accuracy, particularly if compared to polynomial fit. 

 
Figure 21. Performance analysis of Gaussian→polynomial peak tracking technique: the RMSE on 
peak detection is reported as a function of SNR, for different values of sampling grid δλ (1, 5, 10, 20, 
78, 156 pm); FBG spectra have been resampled, on a new grid with δλR = 1 pm. 

30 35 40 45 50 55 60
0.1

0.3

1

3

10

SNR (dB)

R
M

S
E

 (p
m

)

(a) Original

30 35 40 45 50 55 60
0.1

0.3

1

3

10

SNR (dB)

R
M

S
E

 (p
m

)

(b) Resample

 

 

δλ = 1 pm
δλ = 5 pm
δλ = 10 pm
δλ = 20 pm
δλ = 78 pm
δλ = 156 pm

30 35 40 45 50 55 60

5

10

15

20

25

SNR (dB)

R
M

S
E 

(p
m

)

 

 

δλ = 1 pm
δλ = 5 pm
δλ = 10 pm
δλ = 20 pm
δλ = 78 pm
δλ = 156 pm

Figure 20. Performance analysis of 2nd order polynomial peak tracking technique: the RMSE on peak
detection is reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 pm,
20 pm, 78 pm, 156 pm). (a) FBG spectra are processed without resampling. (b) FBG spectra have been
resampled, on a new grid with δλR = 1 pm.

Overall, the performance of the 2nd order polynomial is better than that of the previous methods,
particularly for coarser wavelength resolution. Using resampling, it is possible to obtain pm-level
detection with reasonable SNR, approaching 0.2 pm RMSE with outstanding SNR (~55 dB). The kL
coefficient does not play a significant role in the estimation: while, as shown in Figure 7, the best match
between the FBG spectrum and interpolant is achieved for kL ~1.5, the regression forces the polynomial
function to match the FBG center even if the spectrum and interpolant have different shapes.
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Compared to the previous centroid method, which is also noise-limited, the slope of the
RMSE(SNR) curves is lower for the polynomial fit. This is mainly due to the implementation of
the algorithm: while the centroid method is directly affected by the SNR, in this case regression
mediates the effect of noise at least for the determination of the polynomial coefficients. Indeed, the
centroid method performs better than the polynomial fit for low SNR (<5 dB), in which however the
RMSE would be unacceptable for most applications.

4.5. Gaussian Fit

With the Gaussian polynomial fit method, which requires interpolating the logarithm of the FBG
spectrum with a quadratic function, as well as with the Gaussian-fit technique, the obtained RMSE is
higher than with polynomial fitting, but does not worsen proportionally to the SNR. The results for the
Gaussian polynomial fit method, assuming resampling to δλR = 1 pm, are shown in Figure 21; similar
results have been obtained for the Gaussian fit. The minimum RMSE for SNR = 60 dB is equal to 2.4 pm,
higher than with previous technique, and higher than the typical target for most FBG applications.
Counterintuitively, the Gaussian fit method performs better with coarser wavelength grids (156 pm)
when it is originally implemented as in [57] and in Figure 21: this is due to the effect of side lobes,
which are emphasized by the logarithmic operation and affect the quadratic regression routine, and
in undersampled spectra they are slightly flattened out thus reducing disturbance. This effect fades
when only the inner FBG portion is used for the regression routine. However, this Gaussian fit method
appears not effective in tracking of standard uniform FBGs to the pm-level accuracy, particularly if
compared to polynomial fit.
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Figure 21. Performance analysis of Gaussian→polynomial peak tracking technique: the RMSE on peak
detection is reported as a function of SNR, for different values of sampling grid δλ (1, 5, 10, 20, 78,
156 pm); FBG spectra have been resampled, on a new grid with δλR = 1 pm.

4.6. Spline

The spline method has been implemented as in Section 3.2, by applying the spline fit to estimate
the set of polynomial coefficients, evaluate the spline on a very narrow grid (0.1 pm as in Figure 9), and
use the 3-dB bandwidth to estimate the Bragg wavelength. In this procedure, resampling does not have
influence as the spline coefficients (evaluated over the grid δλ) are evaluated over a narrower grid.

The performance analysis is shown in Figure 22. The spline technique returns a RMSE very similar
for δλ up to 20 pm, and increases for the coarser grids. SNR limits the RMSE in a similar fashion
to polynomial fit, as the RMSE(SNR) functions are linear as in Figure 20, but with a slower slope.
Quantitatively, the spline method provides the lowest RMSE within the direct and fitting methods,
because it comprises the fitting and resampling within its routine. At SNR = 60 dB, the RMSE ranges
between 0.03 pm and 0.1 pm; depending on the grid resolution, the RMSE = 1 pm target is achieve for
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SNR ranging from 27.5 dB and 39 dB. Overall, performances of the spline method are acceptable even
for lower values of SNR (25 dB).
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Figure 22. Performance analysis of spline peak tracking technique: the RMSE on peak detection is
reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 pm, 20 pm,
78 pm, 156 pm); the spline coefficients have been estimated on the original grid and reevaluated over a
grid with 0.1 pm resolution.

4.7. Correlation

The correlation method, as discussed in [60], is designed to operate in low SNR regime, since the
correlation process yields an output that is resilient to noise [48,61]. Figure 23 shows the performance
analysis, which has been evaluated for SNR decreasing to 0 dB. Without resampling, the method is
substantially resolution-limited. For high SNR, the RMSE (SNR) curves are horizontal, while SNR
starts to play a substantial role in reducing the accuracy only within 20–30 dB (40 dB for the narrowest
resolution). The RMSE in this saturation condition is equal to ~30% of δλ (0.3 pm for δλ = 1 pm up to
20 pm for δλ = 78 pm). However, this regime yields unsatisfactory performance in terms of overall
RMSE, as the 1-pm target can be achieved only with 1-pm sampling grid.Sensors 2017, 17, 2368  26 of 35 
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Figure 23. Performance analysis of correlation-based tracking technique: the RMSE on peak detection
is reported as a function of SNR, for different values of sampling grid δλ (1 pm, 5 pm, 10 pm, 20 pm,
78 pm). (Left) FBG spectra are processed without resampling. (Right) FBG spectra have been resampled,
on a new grid with δλR = 1 pm.
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Resampling to δλR = 1 pm allows improving the performance, as the curves tends to flatten to
the δλ = 1 pm condition. The target RMSE of 1 pm can be achieved at SNR = 30 dB, while the coarser
resolutions returns a higher RMSE. Data for δλ = 156 are not shown as they exceed the 30-pm range
shown in the chart.

The chart in Figure 23 is derived under the assumption that the reference spectrum is recorded
with the same SNR of the measured spectrum. Performance can improve by lowering the SNR (or the
resolution) on the reference spectrum as it is acquired: in this case it is possible to maintain horizontal
curves for a further ~3 dB of SNR.

Focusing on the narrowest wavelength grid (1 pm), as the only one that allows achieving a low
RMSE, the kL coefficient plays a significant role in the performance of the correlation method, as shown
in [48], since the correlation is more efficient with wider spectra. Figure 24 shows the variation of
the RMSE with different kL levels. For the lowest SNR value (30 dB), the RMSE ranges from 0.9 pm
(kL = 0.8) to 0.4 pm (kL = 4); a similar trend is shown for SNR = 40 dB, whereas the RMSE decreases
from 0.4 pm to 0.3 pm, while for higher SNR (50 dB) the method is resolution-limited and therefore the
RMSE remains almost even over the whole kL range.
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Figure 24. Dependence of the RMSE for the correlation-based tracking method on FBG strength kL, for
different values of SNR. The FBG spectrum is sampled on a 1-pm grid.

By applying a polynomial fit to the correlation (correlation→polynomial fit method) performances
are slightly better, as a reduction of the RMSE of 1.5 times is observed in the best condition. However,
the method does not allow estimating the Bragg wavelength with uncertainty much lower than the
wavelength resolution.

4.8. Wavelet

The wavelet transform has the main benefit of denoising the FBG spectrum when operating in
low-SNR regime. The effect of the wavelet is shown in Figure 25, as the db3 wavelet is applied to filter
out noise in a 1-pm sampled FBG with SNR equal to 3 dB and 23 dB.

It is not straightforward to evaluate the impact of the wavelet in terms of SNR improvement.
In both cases, we observe that the variance outside of the inner FBG region decreases from the initial
value to 4.0 × 10−4 for SNR = 3 dB and 2.5 × 10−6 for SNR = 23 dB, as a result of the low-pass filtering
imposed by the wavelet. However, this portion of the spectrum is not used for the analysis. In the inner
FBG part, we observe that the wavelet flattens out the side lobes and returns an output that preserves
most of the original shape, while removing part of the noise as a result of low-pass processing.
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Figure 25. Effect of wavelet denoising on a FBG spectrum sampled over 1 pm wavelength grid.
(left chart) SNR = 3 dB; (right chart) = 23 dB. Denoising has been performed with db3 wavelet.

4.9. KLT

As in [65,66], the KLT is the method that allows the best inter-pixel discrimination within
transform-based techniques. The method, coupled to a centroid tracking for discriminating the
semiperiod of operation [65], is intended to application to coarsely sampled spectra: thus, the analysis
is focused on δλ = 156 pm as in [29]. Unlike the previous method, the KLT does not have a linear
sensitivity: thus the obtained RMSE corresponds to the average RMSE obtained over the range of
spectral shift ∆λ.

The performance analysis is reported in Figure 26; results are slightly different from [65,66] due
to the different SNR definition. The minimum RMSE is 0.18 pm, while the 1-pm target is achieved for
a reasonably high SNR (45 dB). Overall, the KLT is able to return an inter-pixel detection even without
resampling the signals.
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Figure 26. Performance analysis of KLT tracking technique: the RMSE on peak detection is reported as
a function of SNR, for coarse grid (δλ = 156 pm).

Since the KLT has a non-linear output, highlighted in Figure 14, the kL value as well as the
FBG reference wavelength (which can be tuned, for example by pre-straining the grating) can affect
the accuracy of the tracking method. To evaluate the sensitivity, Figure 27 shows the derivative of
the ξN high-rank eigenvalue as a function of the wavelength shift ∆λ: the term |∂(ξN)/ ∂(∆λ)|is
proportional to the RMSE. The result shows the trend similar to [66]. The chart shows a zero in the
sensitivity for every value of kL at ∆λ = 27 pm, and a sensitivity peak with an inner zero of sensitivity
for ∆λ = −51 pm, which corresponds to the transition between two adjacent semiperiods. Higher
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sensitivity values are observed for kL = 1.7–2.2, while for smaller values the smaller reflectivity imposes
a reduction of sensitivity. For high values of kL (2.7 or higher) the sensitivity is low as the spectrum
is flatter.
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5. Discussion

In Section 3, the peak tracking methods for FBG detection have been described and classified, while
in Section 4 the most significant peak-tracking methods have been analyzed using a simulation-based
benchmark to estimate their accuracy as a function of SNR and wavelength resolution grid δλ.
Quantitatively, the comparison between the different techniques yields some results that can
be discussed.

An unambiguous result of the simulation benchmark is that resampling is a key asset in expanding
the performance, in the compatible methods. All proposed methods find a great benefit from the
upsampling or resampling, and even though the FBG shape can be altered (due to the delay introduced
by the upsampler) and the new grid δλR is indeed artificial, it is possible to obtain a significant
performance boost. While the results obtained without resampling substantially demonstrate that
the peak-tracking RMSE is both SNR-limited and resolution-limited for most tracking techniques,
when resampling on a much narrower grid it is possible to expand the performance by a great amount
and partially compensate the poor resolution of spectrometers. Overall, while some methods are
directly dependent on the resolution (for example X-BW and correlation, which are calculated on the
wavelength grid and therefore cannot discriminate within two pixels), when resampling is applied
the coarse grid appears more as an acceptable penalty on RMSE rather than a limitation. Thus,
performance in the following are discussed only in the case of resampled FBG spectra.

Among direct methods, the X-BW method (typically implemented as FWHM) is one the most
popular methods on-board of interrogators based on scanning source [36,55]. Its achieved RMSE is
≤ 1 pm for SNR as low as 30 dB, but it is effective only when the resolution is δλ ≤ 20 pm. Thus,
the method is robust with SNR but cannot be applied to spectrometers and FBG analyzers that have
a coarser resolution. The centroid method instead achieves RMSE ≤ 1 pm only for SNR ≥ 45 dB,
but it provides better performance for coarse resolution as the 1-pm RMSE level can be achieved
also for δλ equal 78 pm and 156 pm (for SNR = 47–52 dB), yielding a sensitive penalty only for the
coarsest resolution.

The second-order polynomial fit appears as a very efficient method for FBG interrogation. This is
due to the fact that, while the spectra (particularly for high kL values) do not match a parabolic
function, the least square method is effective in minimizing the discrepancy between the Bragg
wavelength and the maximum position of the parabolic interpolant, making this method robust.
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Performance are similar to centroid in terms of SNR resilience, and slightly better in quantitative
terms: the RMSE ≤ 1 pm is achieved for SNR ≥ 40 dB, and a penalty is observed for δλ = 156 pm.
The spline method appears to have excellent performances, as the 1-pm RMSE target is achieved for
SNR ≥ 30–37 dB and its performance appear to be more resilient to the width of δλ. Overall, the spline
has the great benefit of performing interpolation and resampling in a single operation, because once
the spline coefficients have been estimated on the original grid, they can be estimated on any arbitrary
grid. The Gaussian method provides performance inferior to other fitting methods.

The correlation methods yield inferior performance, and suffer from wavelength grid limitations.
Its performances are competitive only on very low SNR regime, similar to X-BW methods.

Among transform-based methods, the KLT obtains the best performance in terms of RMSE.
This method, which adapts the principal component analysis to FBG tracking, is effective in converting
a small wavelength variation into a significant variation of ξN. This method is intended for coarse
wavelength sampling, where other methods can fail to deliver a low RMSE. However, its accuracy is
dependent on the calibration function, which is not linear; furthermore, a second interrogation system
(centroid in [65]) is required to estimate the correct semi-period as the KLT is intrinsically limited to a
small spectral range.

The wavelet denoising process, using standard wavelet packets such as Daubechies or Haar that
are included in commercial toolboxes [96], is effective in denoising the FBG spectrum. The efficacy
is in part due to a low-pass filtering, while the real effect on the FBG spectrum is less evident and in
part can change the shape of the spectrum, which may affect the estimate. However, the evidence
in [69] suggests that wavelet can be effective in multi-sensor networks, whereas FBGs need to be
discriminated from other typologies of sensors.

Qualitatively, the transposition of the simulation-based results in experimental setups depends on
too many factors to be properly accounted. At first, the resolution grid for resampling has been chosen
as δλR = 1 pm, but can be arbitrarily increased or reduced according to the specifications. Secondly,
several additional factors affect the grating peak wavelength estimate. These include: distortions and
asymmetries of the FBG spectral profile (as opposite to the CMT-simulated spectra [38]); uncertainty
on the wavelength grid, due to temperature (in spectrometers [27,29]) or misalignments in the laser
source (in tunable scanning lasers [37]); effect of side lobes, which can be apodized; presence of
multiple spectral peaks, as sometimes recorded in direct FBG inscription with femtosecond lasers [23];
uncompensated fluctuations of the power through the whole optical fiber path. Furthermore, most
FBG sensors operate in WDM-array format, and thus their spectra may be affected by the neighbor
FBGs. Qualitatively, these factors affect differently each tracking technique. X-BW, correlation, and
fitting methods are generally more robust to amplitude variations, because the calculations are poorly
dependent on the spectral amplitude. KLT and transform methods on the other side are less tolerant to
non-compensated power fluctuations or spectral deformations of the FBG.

The performance analysis also depend on the target RMSE, which in turn depends on the
application for the FBG sensing network. 1-pm accuracy is considered a target in most modern
applications, and it corresponds to 1 µε for strain sensing or 0.1 ◦C for temperature detection. For this
reason, the resampling rate imposed in the performance analysis has been set to δλR = 1 pm. However,
some applications require one order of magnitude improvement and in this case it is possible to lower
the artificial grid resolution to δλR ~0.1 pm, which leads to a slight performance improvement, which
is still inferior to a factor 10, and often irrelevant when peak tracking is SNR-limited.

The computation time plays a significant role in the application of peak-tracking in real time
sensing. For a single FBG, the execution of the peak-tracking routine is performed once for each
measurement; in WDM networks with W sensors per array, the overall spectra are cut into W
spectral slices each corresponding to one FBG, and then peak-tracking is applied W times, serially
(as typically done through DAQ through a computer) or in parallel (as potentially done via FPGA
or microcontrollers [86]). Most spectrometers return a 1 kHz sampling rate for the whole spectrum,
thus the measurement time is TM = 1 ms [29]. Calling TC the computation time for one peak-tracking
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process, it is important to verify whether TM >> WTC: in that case peak tracking does not delay
the acquisition speed of the spectrometer. If TM ~WTC, the peak tracking does introduce a delay to
peak tracking, without dramatically reducing the speed; if TM << WTC, the computational bottleneck
is represented by the peak-tracking routine, and therefore the DAQ system is as fast as the FBG
peak estimation.

Direct methods are extremely fast: both X-BW and centroid have computation times TC ≤ 10 µs,
well compatible with W ~100, regardless of the signal length. For quadratic and polynomial fitting,
that are based on the same regression routine, the computation time is 1.6 ms for a signal with length
1000, and 0.7 ms for a signal length equal to 50. This result is compatible with dynamic detection
(~1 kHz) of a single FBG, or for a static detection (~10 Hz) of an FBG chain. Spline routine has a similar
computation time (3.3 ms for length 1000, 1.4 ms for length 50) as the regression procedure is similar,
but the spline coefficients are re-evaluated over a narrower grid. The correlation method, implemented
as in Equation (26), is nearly as fast as centroid because it is based on a similar computation and
thus is well suited for dynamic sensing, while correlation→polynomial fit is limited in speed by the
regression. The FPC achieves a computation time in the order of 5 ms. The computation time of KLT is
strongly dependent upon signal length: while all the previous methods range from O(N) to O(N logN),
the KLT implemented as in [65] is O(N2 logN), and thus its computation time is equal to 1 ms for a
signal of length 5, but approaches 10 ms for length 50 and is equal to 0.4 s for N = 500. However,
since the KLT is mainly intended for coarse sampling, its implementation is mainly addressed to a
short-length KLT. Optimization techniques have not been included in performance analysis, because
their implementation is extremely slow (several minutes for the genetic algorithms at the base of
layer peeling, and tens to hundreds seconds for the neural network): for this reason, these methods
appear to be far from being integrated on commercial spectrometer software. Digital resampling, at
the base of most techniques, does not significantly impact on computation time, as its computation in
Equation (29) is faster than the peak-tracking computations. The calculation of TC for peak-tracking
routines has been performed on a processor 2.6 GHz Intel Core i5 with 16 GB RAM, and peak-tracking
methods have been implemented in MATLAB R2013a.

While working with dense sampling does not constitute a major issue in modern systems, thanks
to the establishment of tunable scanning lasers and the advent of dense-resolution setups based
on semiconductor optical amplifier (SOA) Fabry-Perot methods [101,102], continuous research is
performed to reduce the cost of spectrometers and make them more affordable and portable. Methods
with inter-pixel capacity, either derived from artificial sampling or inherent in the peak-tracking method
(such as the polynomial fitting or the KLT) and with fast computation will support the interrogation
of FBGs even in a coarser sampling condition, close to Nyquist digital sampling boundary. In this
scenario, it is expected that the combination of a plurality of peak-detection systems can overcome
the use of a single technique. For example, the use of wavelet as a denoising method to pre-process
the FBG spectrum, followed by a KLT, can improve over current performance limits. In general,
transform-based methods represent the state of the art of signal processing, and it is expected that they
can find future avenues in FBG peak-tracking, a task somehow similar to particle motion detection or
pattern recognition. Computationally, the use of FPGAs can help to parallelize the FBG tracking in
sensor arrays.

6. Conclusions

In conclusion, the peak-tracking techniques for FBG interrogation have been reviewed and
compared. Peak-tracking algorithms are embedded into the software of FBG interrogators, and are an
essential part in FBG sensing networks as they allow estimating temperature/strain from FBG spectra.
The methods analyzed in this work obtain different performance in terms of RMSE, resilience to SNR,
and resilience to wavelength grid resolution.

Overall, the findings of the review and analysis show that direct and fitting methods are
well suited for fast FBG interrogation, and the use of resampling makes them effective even with
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coarse wavelength grids. Correlation-based methods instead are extremely resilient to SNR. Among
transform-based methods, the KLT provides a good potential for precision-sensing. All these methods
have fast implementation, and can be operated for real-time sensing without reducing the sampling
rate of the interrogation hardware.
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