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Abstract
We draw attention to an under-appreciated simulation method for generating artificial data in a phylogenetic context. The 
approach, which we refer to as jump-chain simulation, can invoke rich models of molecular evolution having intractable 
likelihood functions. As an example, we simulate data under a context-dependent model allowing for CpG hypermutability 
and show how such a feature can mislead common codon models used for detecting positive selection. We discuss more 
generally how this method can serve to elucidate the ways by which currently used models for inference are susceptible 
to violations of their underlying assumptions. Finally, we show how the method could serve as an inference engine in the 
Approximate Bayesian Computation framework.

Keywords  Positive selection · CpG hypermutability · Substitution models · Site-interdependent models · Model violations · 
Likelihood ratio test · Approximate Bayesian Computation

Introduction

Model-based analyses of sets of homologous DNA and 
amino acid sequences have become routine practice in 
the study of molecular evolution. By definition, models of 
molecular evolution make simplifying assumptions about 
the underlying evolutionary process. However, relaxing 
the assumptions commonly adopted in model-based infer-
ences can be technically challenging. For instance, relaxing 
the assumption of independence between sites can require 
elaborate nested Markov chain Monte Carlo (MCMC) 
approaches [e.g., (Robinson et al. 2003)] or Approximate 
Bayesian Computation (ABC) (Laurin-Lemay et al. 2018b). 
Indeed, we may still be years away from the development 

of inference-capable methods utilizing models that account 
for most of the understood factors at play in molecular 
evolution.

In the meantime, understanding the quantitative impacts 
of model violations on current widely adopted inference 
methods is crucial. For example, do codon models used 
to detect positive selection at the amino acid level actually 
detect such features, or are they being deceived by unac-
counted determinants of the molecular evolutionary pro-
cesses? The use of simulations, based on richer models than 
those used for inference, can shed light of these issues.

Traditionally, simulation of molecular evolution over phy-
logenetic trees is done by relying on the calculation of transi-
tion probabilities (in the stochastic process sense, rather than 
the biochemical sense) by exponentiation of a substitution 
rate matrix and drawing a state at a descendant node of a 
branch in proportion with these computed probabilities. This 
is the mode of operation of well-known simulation software, 
such as Seq-Gen (Rambaut and Grassly 1997) and Evolver 
from PAML (Yang 2007). However, conducting simula-
tions on the basis of matrix exponentiation is limited to the 
models where such calculations are tractable, typically, the 
models that can be readily used for inference.

The traditional simulation approaches cannot be used for 
studying models where the rate at a particular codon site 
might be influenced by the codon states at other sites. In 
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its most general form, such a model would operate in the 
sequence state space [see, e.g., (Robinson et al. 2003; Rod-
rigue et al. 2009)] and would require a rate matrix that is 
61N by 61N (assuming a universal genetic code that prohibits 
stop codons), where N is the length of the codon sequence. 
With a typical protein of, say, 300 codons, it is not possible 
to perform any matrix algebra on the resulting 61300 by 61300 
dimensional rate matrix. Thus, conducting simulations under 
this class of models requires an alternative approach.

The Jump‑Chain Method

The jump-chain method relies on generating full realiza-
tions of the substitution process along the branches of the 
phylogeny by drawing dwell times as well as the nature 
of all events. Such simulations are used in many fields to 
study stochastic processes (Çinlar 1975; Gillespie 1977). 
The approach requires no matrix algebra on a substitution 
rate matrix and thus enables simulations with more com-
plex models, such as those where the state space is at the 
level of the entire sequence. Ultimately, under such a model, 
simulating any particular substitution event—including the 
dwell time to that event and the nature of the substitution 
itself—requires knowledge of the state of the entire cod-
ing sequence. Although applicable under any model, the 
jump-chain method is the only approach currently known 
that allows one to generate artificial data under models with 
dependence between sites. In a phylogenetic context, it oper-
ates with the following steps:

Designate the location of the root of the tree Any point 
along the tree is acceptable as a root, if dealing with a time-
reversible Markov substitution process as we will do here. 
On the other hand, the substitution model used for simulat-
ing does not need to be time reversible; there is no such 
constraint in the jump-chain simulation theory, although in 
such cases the root location becomes meaningful.

Draw a root state This step, common to both traditional 
and jump-chain methods, consists of a draw from the sta-
tionary distribution of the Markov process. For traditional 
models, such as the general time-reversible model or its 
special cases, this amounts to a simple draw of a nucleo-
tide based on the nucleotide frequency parameters. When 
simulating under a more complex model where the station-
ary distribution is intractable [e.g., (Robinson et al. 2003; 
Rodrigue et al. 2005)], one can first simulate a long series 
of substitution events along an artificial branch (using the 
steps explained below) in order to obtain an initial state 
from which to simulate over the phylogeny. Doing so will 
be equivalent to a draw from the intractable stationary dis-
tribution. Alternatively, one could be interested in studying 
the substitution process starting from a real sequence, which 
could serve as the root state.

Draw a waiting (dwell) time The simulation process 
bifurcates independently from the root node, each branch 
using the root state drawn in the previous step. Along one 
of these branches, a random variable is drawn from an expo-
nential distribution parameterized by the rate away from the 
root state. Under traditional models, the rate away from a 
state is equal to the negative of the corresponding diago-
nal entry in the substitution rate matrix. Otherwise, the rate 
away from a state is calculated as the sum of rates in the 
substitution matrix to all directly accessible states; assuming 
a point-mutation process, whereby multi-nucleotide events 
are assigned a rate of 0, there are at most 9N accessible 
states. Denoting the rate away from a state as R, the dwell 
time t is given by computing the probability integral trans-
form of an exponential distribution of rate R and setting 
t = −ln(1 − U)∕R , where U is a uniform random draw from 
the unit interval.

Draw the next state If the dwell time drawn in the pre-
vious step does not exceed the length of the branch along 
which we wish to simulate, the next state is drawn with a 
probability proportional to the rate to that state in the sub-
stitution matrix. This draw thus only requires the rates of 
the directly accessible next states (i.e., that imply a point 
mutation). Once drawn, this state becomes the reference for 
the next dwell time to be simulated.

Set the descendant node The previous two steps are 
repeated until the drawn dwell time brings the process 
beyond the end of the branch. The state at the descendant 
node is thus set as the last state drawn, and the procedure 
of the previous two steps then bifurcates independently, and 
so on until a dwell time is drawn beyond the length of each 
of the terminal branches of the tree, thereby producing the 
simulated alignment.

The only disadvantage is when simulating over trees 
with numerous long branches, which can amount to draw-
ing numerous substitution events and thus becoming time 
consuming. On the other hand, detailed substitution histories 
can themselves become a subject of study [e.g., (Nielsen 
2002; Bollback 2005)].

A Practical Example

As an example, we simulated data under a codon substitu-
tion model that allows for context-dependent hypermut-
ability. Specifically, we consider the case of a cytosine 
that is followed by a guanine (CpG) along a protein-coding 
DNA sequence. The cytosine in a CpG context is often 
methylated in mammalian genomes (Tweedie et al. 1997), 
which gives it a high propensity to mutate to thymine 
through spontaneous deamination (Bird 1980). Because 
CpG contexts can span two adjacent codons, the widely 
held assumption of independence between sites becomes 
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invalid. The first step in constructing such a model is there-
fore to envision the substitution process directly in the 
space of all possible codon sequences of a given length. 
Following the usual practice of traditional codon models, 
we focus on a point mutation-based process, which means 
that rates are only assigned to events in which the initial 
and final states differ by one nucleotide; the rates between 
two sequences with multiple nucleotide differences are set 
to zero. For a given sequence, the rate away is the sum of 
rates to all nearest sequences. This latter property means 
that the rate away from any given sequence of length N 
codons involves less than 9N terms, since there are only 9 
nearest neighbor states for each codon (with stops codons 
excluded from the state space, there are less than 9 on 
average). For simplicity, one can represent the basic idea 
of the model in a simple 61-by-61 rate matrix, but with 
the understanding that a site-dependent parameter is also 
invoked, which requires the knowledge of the states at 
adjacent codons. In other words, with the site-dependent 
parameter, the rate specified for a given event at a particu-
lar codon site can change as the states at neighboring sites 
change. Thus, the rate from one codon i to another j (which 
differ only by one nucleotide at position c) at a particular 
site is given by:

where �jc
 is the frequency of the target nucleotide, � is the 

transition over transversion rate ratio, � modulates the CpG 
transition rate, and � is the non-synonymous to synonymous 
rate ratio. For our simulations, we used the nucleotide-level 
parameter values, tree topology, and branch lengths obtained 
from running the classic version of this codon substitution 
model ( � = 1 ) on a mammalian data sets taken from Laurin-
Lemay et al. (2018a). We explored three different values for 
� : 0.2, 0.5, and 0.8. For each of these values, we simulated 
100 replicates with � = 1 , i.e., the classic codon model, 100 
replicates with � = 4 , and another 100 replicates with � = 8 , 
the latter being a typical value observed on mammalian data. 
This experiment was replicated with 9 other parameter con-
ditions (for a total of 10; see supplementary materials).

In panels a, b, and c of Fig. 1, we report the maxi-
mum likelihood values of � obtained under the M0 model 
within CodeML (Yang 2007), with the distribution of all 
100 values shown as a histogram. For the simulations with 
� = 1 , the recovered � values closely match those used for 
the simulations (marked with a dashed line), with about 

(1)Qij =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�jc
, if syn. tr.,

�jc
�, if syn. ts. non − CpG,

�jc
��, if syn. ts. CpG,

�jc
�, if non − syn. tr.,

�jc
��, if non − syn. ts. non − CpG,

�jc
���, if non − syn. ts. CpG,

half of the simulations on either side of the true value. 
For simulations with � = 4 , the M0 model overestimates 
� values in most replicates. Nearly all � values are over-
estimated in simulations with � = 8 . These results sug-
gest that applying the M0 model to data where CpGs are 
hypermutable is likely to lead to an overestimation of the 
key parameter of interest (see Supplementary Materials 
for details).

Panels d, e, and f of Fig. 1 show a similar set of experi-
ments, but with data sets simulated with a mixture (equally-
weighted) of � values. For each set of 100 simulations with 
different � values, the panels indicate the percentage of sig-
nificant likelihood ratio tests recovered from running M7 
and M8 models within CodeML. In other words, the y-axis 
shows the percentage of replicates that reject the null M7 
model, suggesting the presence of positive selection. At 
� = 4 and particularly at � = 8 , a large proportion of simu-
lations would be considered to contain signals of positive 
selection, although all simulations were conducted with 
mixtures of � values less than 1. Again, these results sug-
gest that such a classic statistical test with codon models is 
susceptible to error in the presence of CpG hypermutability 
(see Supplementary Materials for details).

Future Uses

Phylogenetic simulations using the jump-chain method were 
used with a substitution model with dependence between 
sites by Robinson et al. (2003) as means of verifying their 
implementation. They have also been used as a means to 
performing posterior predictive checks [e.g., (Nielsen 2002; 
Rodrigue et al. 2006; Rodrigue et al. 2009; Lartillot et al. 
2007; Laurin-Lemay et al. 2018b)]. In recent years, such 
simulations have been used to study the effect of epistasis 
on new models (Rodrigue and Lartillot 2017; Latrille et al. 
2021). As done here, Laurin-Lemay et al. (2018a) explored 
the effect of CpG hypermutability on a test for detecting 
codon usage bias. Most of these applications remain within 
a small circle of researchers. We believe the method has an 
under-appreciated simplicity that is important to the study of 
much richer evolutionary models than those currently used 
for inference.

The method also has the potential to serve as a central 
kernel for the development of new inference-capable mod-
els that do not have a tractable closed-form likelihood, 
using ABC. The general idea of the ABC approach is to 
simulate a very large number of data sets, for instance, 
using the jump-chain method, utilizing a wide range of 
parameter values, and retaining the parameter values that 
produced data sets very similar to the true data set of inter-
est. Indeed, Laurin-Lemay et al. (2018b) used this simula-
tion approach in the context of an ABC implementation to 
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study a site-dependent mutational process of CpG hyper-
mutability within a mutation–selection framework.

We applied the methods of Laurin-Lemay et al. (2018b) 
to simulations with � = 8 in the context of the more clas-
sical codon model studied here, to see if it could provide 
reasonable estimates of � (see Supplementary Materials 
for details). As a preliminary exploration and to keep 
calculations manageable, we applied the method to only 
three simulations. Note that the simulations are stochastic 
processes, which will vary from one instance to the next; 
the actual realized CpG hypermutability can be slightly 
higher, or lower, than the parameter value used for simu-
lation. All three inferences yield posterior distributions 
for � that are close to the true value and include it within 
their 95% credibility intervals (Fig. 2). These preliminary 
results suggest that the method could be used not only to 
measure the level of CpG hypermutability but also to study 
the impact of accounting for this site-dependent process 
on other parameters, including those used to detect posi-
tive selection.

Fig. 1   Distribution of maximum likelihood � parameter values 
obtained from analyzing simulated alignments with M0 model from 
CodeML. Simulated alignments were generated under realistic con-
ditions, corresponding to posterior distribution of M0 obtained from 
analyzing a mammalian alignment of the WDR91 gene, with different 
�0 values (black-dashed lines) and CpG transition rates (blue: � = 1 , 
orange: � = 4 , red: � = 8 ). There were 100 replicates per condition. 
Details of the simulation grid are presented in supplementary mate-
rials. a All simulations are generated under �0 = 0.2 (black-dashed 
line): 51%, 97%, and 100% of simulations had � greater than the 
true value when � = 1 , � = 4 , and � = 8 , respectively. b All simula-
tions are generated under � = 0.5 (black-dashed line): 50%, 90%, and 
100% of simulations had � greater than the true value when � = 1 , 
� = 4 , and � = 8 , respectively. c All simulations are generated under 

� = 0.8 (black-dashed line): 49%, 73%, and 95% of simulations had 
� greater than the true value when � = 1 , � = 4 , and � = 8 , respec-
tively. d–f Proportion of simulations (y-axis) rejecting the M7 model 
upon likelihood ratio test conducted with both M7 and M8 models (2 
degrees of freedom). Simulated data where generated under 5 differ-
ent mixtures of � values with equally distributed values among sites 
from each mixture component, along with 4 levels of CpG transition 
rates. For realism, simulations were conducted using posterior aver-
age parameter values under M0 obtained by analyzing mammalian 
alignments of STRIP1, GPAM, and WDR91 genes for panels d, e, and 
f, respectively. Circle, star, asterisk, triangle, and square markers cor-
respond to �-mixture 1 (0.1, 0.2, 0.3), mixture 2 (0.4, 0.5, 0.6), mix-
ture 3 (0.7, 0.8, 0.9), mixture 4 (0.2, 0.5, 0.7), and mixture 5 (0.5, 0.7, 
0.9), respectively (Color figure online)

Fig. 2   Posterior distribution of � recovered using CABC methodol-
ogy when analyzing three simulated alignments (see Supplement 
Materials) generated with a CpG transition rate of � = 8 . For one of 
the simulations (blue histogram), � has posterior mean of 6.38 with 
95% credibility interval of 4.64–8.39. For a second simulation (red 
histogram), � has posterior mean of 9.78 with 95% credibility interval 
of 7.74–11.99. For a third simulation (orange histogram), � , and has 
a posterior mean of 7.99 with 95% credibility interval of 6.62–9.40 
(Color figure online)
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Altogether, we hope these short demonstrations will 
encourage other developers to explore the jump-chain simu-
lation method within their work, either to study the robust-
ness of their inferences to potential model violations or as a 
means of accounting for more of the complexities governing 
molecular evolution.
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