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Predicting the behavioral
intentions of hospice and
palliative care providers from
real-world data using supervised
learning: A cross-sectional
survey study

Tianshu Chu†, Huiwen Zhang†, Yifan Xu, Xiaohan Teng and

Limei Jing*

School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Background: Hospice and palliative care (HPC) aims to improve end-of-life

quality and has received much more attention through the lens of an aging

population in themidst of the coronavirus disease pandemic. However, several

barriers remain in China due to a lack of professional HPC providers with

positive behavioral intentions. Therefore, we conducted an original study

introducing machine learning to explore individual behavioral intentions and

detect factors of enablers of, and barriers to, excavating potential human

resources and improving HPC accessibility.

Methods: A cross-sectional study was designed to investigate healthcare

providers’ behavioral intentions, knowledge, attitudes, and practices in hospice

care (KAPHC) with an indigenized KAPHC scale. Binary Logistic Regression

and Random Forest Classifier (RFC) were performed to model impacting and

predict individual behavioral intentions.

Results: The RFC showed high sensitivity (accuracy = 0.75; F1 score = 0.84;

recall = 0.94). Attitude could directly or indirectly improve work enthusiasm

and is the most e�cient approach to reveal behavioral intentions. Continuous

practice could also improve individual confidence and willingness to provide

HPC. In addition, scientific knowledge and related skills were the foundation

of implementing HPC.

Conclusion: Individual behavioral intention is crucial for improving HPC

accessibility, particularly at the initial stage. A well-trained RFC can help

estimate individual behavioral intentions to organize a productive team and

promote additional policies.

KEYWORDS

hospice and palliative care, behavioral intention, machine learning, random forest

classifier, healthcare providers, cross-sectional study
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Introduction

An aging population is a great challenge for healthcare

systems, especially for hospice and palliative care (HPC) aiming

to improve end-of-life quality. The number of people aged

65 years or over was 703 million globally in 2019 and is

projected to reach 1.5 billion by 2050 (1). Likewise, 176 million

people (12.6%) aged 65 years or over in China, and the rising

burden of non-communicable diseases (NCDs), poses severe

challenges to the elder’s quality of life (2) and the supply

of HPC. Furthermore, living in environments affected by the

coronavirus disease (COVID-19) pandemic and humanitarian

crises are large-scale events that may pressure healthcare systems

greatly. The World Health Organization (WHO) defines HPC

as a crucial part of integrated care providing physical, mental,

spiritual, and social care for older people and terminally ill

patients by treating their discomfort, and is the basic skills

of healthcare providers (3). Research shows that early delivery

of HPC reduces unnecessary hospital admissions and services

and optimizes patient health-related quality of life (4, 5). HPC

should be available at all levels of care (6), but only 14%

of patients currently have access to it worldwide. Policies for

strengthening and expanding human resources are urgently

needed to improve accessibility (7). The situation in China is

more challenging due to the lack of professional HPC providers

with positive behavioral intentions, poor public conception, and

lack of knowledge regarding potential benefits (8). Also, targeted

training is often limited, and HPC providers’ knowledge and

skills vary greatly, leading to unsatisfactory services (9). The

WHO appeals to the local government and healthcare planners

to estimate HPC demands and supplies using accurate data

to combat the challenges (10). Therefore, there is an urgent

need to evaluate the real-world situation of implementing HPC,

particularly that of understanding the individual behavioral

intentions that reflect whether healthcare providers are willing

to engage in HPC. Exploration of the knowledge, attitude, and

practice of hospice care (KAPHC) among doctors, nurses, and

managers may yield useful information (11, 12), contribute

to estimating individual behavioral intentions, and organize a

productive service team to deliver HPC.

Existing studies mostly used traditional statistical methods

to analyze the KAPHC among healthcare providers (13–15).

There is abundant evidence suggesting that KAPHC is crucial

for successful implementation of HPC (16–18). However, there

is limited evidence about the use of combined real-world

data and KAPHC to predict behavioral intentions. The main

challenge of standardized surveys and many statistical models

include limited data with unclear distribution. Thus, advanced

machine learning and artificial intelligence enable the inclusion

of large amounts of data based on correlational studies (19).

Random Forest Classifier (RFC) may be more suitable for the

analysis of behavioral intentions of HPC. One of the biggest

advantages of RFC is that it can be used on data exhibiting

highly unusual distribution by not making any distributional

assumptions about underlying data structures. Additionally, it is

a variation of bootstrap aggregating (bagging), which develops

several hundred trees from the same dataset. The results are

averaged from these trees, producing more accurate results to

solve the problems of overfitting and being sensitive to small

changes in the training data for a single Decision Tree (DT) (20).

In addition, RFC allows the determination of feature importance

measures for each parameter by measuring the effect of variable

permutation on the model’s accuracy (measured using out-of-

bag error estimation) and node homogeneity (measured using

the Gini index). In other words, it can tell each variable’s

importance in predicting the outcome (21). We applied the

RFC to model impact and relate the prediction of individual

behavioral intentions based on demographic parameters, career

experience, and KAPHC to identify those that are willing to

engage in HPC. RFC was introduced to predict behavioral

intentions and review the model performance. In particular,

this study aimed to detect correlative enablers and barriers in

providing HPC.

Methods

Questionnaires

We conducted a cross-sectional study using the indigenized

healthcare provider KAPHC scale, which proved to have good

reliability (22). The scale mainly refers to the Palliative Care

Quiz for Nursing by Ross et al. (23) and the Frommelt

Attitudes Toward Care of the Dying Scale by Frommelt

(24), Liu et al. (25) and Shimizu et al. (26). The three

main components of the anonymous questionnaire were:

demographic characteristics (gender and age group), career

experience (location of the medical institution, type of medical

institution), and measured data (score of knowledge, attitude,

confidence, and practice).

Data collection

Shanghai had received continuous support to improve HPC

research and practices and achieve universal coverage of HPC

among community health service centers (CHC) by 2020 (27).

Therefore, we organized all the 228 medical institutions that

registered an HPC department or were willing to provide

HPC in Shanghai, to investigate healthcare providers’ KAPHC

and behavioral intentions from November 1 to December 31,

2019. Overall, 3709 HPC providers with working experience in

HPC were invited to fill in the questionnaire independently,

including doctors, nurses, managers, medical technicians,

and others.
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FIGURE 1

Part of decision tree. It reveals how decision tree works on the basis of Gini Impurity and other parameters. Random Forest is one of Ensemble

Learnings developing from Decision Trees.

Statistical methods

Descriptive statistics

The indicators were divided into two components: the

target vector and the feature matrix. Behavioral intentions, a

binary variable, were selected as the target vector, with the label

(1/yes) suggesting positive behavioral intentions to work in HPC

and the negative label (0/no) without behavioral intentions.

The feature matrix includes demographic characteristics, career

experience, and measure data of KAPHC. A higher score means

better personal performance. Descriptive statistics for the feature

matrix were based on full samples to analyze the situation of

participation. Categorical variables were reported as frequency

distribution and percentage, whereas continuous variables were

reported as average values, standard deviations, median, and

IQR (Inter Quartile Range). IBM SPSS Statistics for Windows,

version 21.0 (IBM Corp., Armonk, NY, USA) software was used

for the statistical analysis.

Logistic regression

Binary Logistic Regression (BLR) was performed to analyze

the correlation between a dependent variable and independent

variables to identify which variables can influence the willingness

of healthcare providers to work in HPC. BLR could provide

several key information points, namely, which explanatory

variables show statistical significance with Wald’s test, which

variables are the risk or protective factors, and how important

they are by odds ratio (OR). The goodness-of-fit is compared

using the likelihood ratio test, the Hosmer–Lemeshow test, and

Pearson’s chi-squared test (28). BLR was used to select the

relative potential features to control confounders and develop

RFC. Moreover, the model fitting method was chosen as the

stepwise way, and the probability for stepwise was reset such

that entry was 0.1 and removal was 0.15 to avoid the type I

error. Statistical analyses of the Logistic Regression model were

performed using SPSS 21.0.

Random forest

Random Forest (RF) lowers the variance of a single

regression tree by averaging the prediction of multiple DTs. The

DT is a non-parametric supervised learning method used for

classification and regression analysis. The DT predicts the value

of a target variable by learning simple decision rules inferred

from the data features, which can be seen as a piecewise constant

approximation (29). Each DT consists of edge conjunctions on

a single variable greater than or less than some value. Each

tree node divides the data into two subsets, thus making each

subset more homogeneous (Figure 1). The terminal node (leaf)

of the tree that a certain data point falls into determines the

predictions by the majority selection of the training data (30).

RF is a meta-estimator that fits several DT classifiers on various

subsamples of the dataset and uses averaging to improve the

predictive accuracy and control overfitting (31). It is a method

by which several DTs (tree-like graphs of decisions and their

possible consequences, including event outcomes) are built

from the variable set. They divide participants into similar
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subgroups using the most significant variables. The prediction is

subsequently generated using a “voting” scheme across all DTs.

Gradient descent boosting also picks variables across DTs that

best predict correct outcomes in their training sets (32).

In our study, the variable types of latent factors include

nominal variables and skewed continuous variables. Related

studies have proven the applicability of RF in assembling

learning algorithms and machine learning methods with the

advantages of no restrictions on variable conditions and higher

accuracy, sensitivity, and specificity. In addition, RF could be

utilized to predict continuous variables and obtain predictions

without obvious deviations (33). Therefore, RFC (one of typical

RF models) is considered a suitable prediction method for the

data in this study. RFC was performed using the program

Python, version 3.9.0 (Python Software Foundation., Beaverton,

OR, USA) with packages including Sklearn, Numpy, and Pandas.

Model development

We selected the potential features with statistical significance

using BLR to develop our models. The data were normalized

for having a zero mean and unit standard deviation, and

randomly split into the 80% training dataset (n = 2,804) and

the 20% test dataset (n = 701) (34). Considering the target

vector was the binary variable, each feature was standardized

between 0 and 1. Categorical features were encoded as the

one-hot numeric array. This has created a binary column for

each category and returned a sparse matrix or dense array

(depending on the sparse parameter) (35). Model validation

was performed using a 10-fold cross-validation approach

on all the training data to avoid overfitting before RFC

performance (36). Once preferable validation and reliability

were confirmed, we trained the model on the complete training

dataset, and the test dataset was used for the final validation.

Meanwhile, RFC was compared with several widely used

machine learning models to assess its advantage. Furthermore,

the feature importance indicated the value of each feature in the

RFC (37).

The predictive abilities of RFC were assessed using the

following measures:

Accuracy: The proportion of the correctly classified samples.

In multilabel classification, this function computes subset

accuracy, meaning the set of labels predicted for a sample must

match the corresponding set of labels in positive (38).

Precision: The ratio of “tp/(tp + fp)” where “tp” is the

number of true positives and “fp” the number of false positives.

The precision is intuitively the ability of the classifier not to label

as positive a sample that is negative.

Recall: The ratio of “tp/(tp + fn)” where “tp” is the

same as above and “fn” is the number of false negatives. The

recall is intuitively the ability of the classifier to find all the

positive samples.

F1 score: The weighted average of the precision and recall.

The relative contribution of precision and recall to the F1 score

are equal. F1 score = 2 ∗ (precision ∗ recall) / (precision +

recall) (39).

AUC: The area under the Receiver Operating Characteristic

curve (40).

Average Precision (AP): The Precision-Recall curve shows the

tradeoff between precision and recalls for different thresholds.

A high area under the curve represents high recall and high

precision. The AP summarizes a Precision-Recall curve as the

weighted mean of precisions achieved at each threshold (41).

Results

Participants characteristics

Overall, 3,505 valid questionnaires were gathered with an

effective response rate of 94.5%. There were 63.4% participants

aged 30–50 years, the majority (75.7%) were women, and 76.3%

were married. Additionally, 68.8% held a bachelor’s degree (or

above), and 16.1% had religious beliefs. For career experience,

approximately half (49.6%) worked downtown and the others

(50.45%) in the countryside. The majority were employed in

CHC (64.5%), and most participants were doctors (36.7%)

and nurses (39.25%). The government funded most medical

institutions (82.7%). Among all the participants with certain

working experience in HPC, only half (56.1%) still work in

HPC positions at the time of the investigation. Details are given

in Table 1.

The individual scores for attitude, practice, and requirement

of training were more dispersed than those of knowledge and

confidence. The average attitude was 91.7 points, and the

standard deviation and IQR of attitude score were the highest

among the five items. The average knowledge score was 8.9

points, with the lowest standard deviation and IQR.More details

are reported in Table 2.

Feature selection

Figure 2 presents the result of the last step in BLR. The

Wald test indicated that marital status (P = 0.031), location

of medical institution (P = 0.050), type of medical institution

(P < 0.001), fund or supply of medical institution (P =

0.014), occupation (P < 0.001), profession title (P = 0.021),

“Working in hospice care now” (P < 0.001), attitude (P

< 0.001), knowledge (P = 0.001), confidence (P < 0.001),

and practice (P = 0.059) showed statistical significance; these

factors were selected as potential features fitting in RFC

analysis. Meanwhile, it should be noted that KAPHC showed a

positive impact on behavioral intentions, especially knowledge

(OR = 1.054; 95% CI: 1.021–1.089), which is higher than
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TABLE 1 Characteristics of study participants (n = 3505).

Characteristics N %

Gender

Male 850 24.3

Female 2,655 75.7

Age group

≤30 1,022 29.2

30-−50 2,221 63.4

>50 262 7.5

Educational background

Secondary specialized school (or below) 221 6.3

Junior college 873 24.9

Bachelor (or above) 2,411 68.8

Nationality

Han nationality 3,347 95.5

Minority nationality 158 4.5

Religious belief

Yes 563 16.1

No 2,942 83.9

Marital status

Unmarried 681 19.4

Married 2,674 76.3

Divorce or widow 150 4.3

Location of medical institution

Downtown 1,737 49.6

Countryside 1,768 50.4

Type of medical institution

Nursing home and beadhouse 583 16.6

Hospital 663 18.9

Community health service center 2,259 64.5

Fund or supply of medical institution

Government 2,900 82.7

Social or personal 605 17.3

Occupation

Medical technician or others 346 9.9

Manager 500 14.3

Doctor 1,286 36.7

Nurse 1,373 39.2

Profession title

None 259 7.4

Junior 1,215 34.7

Middle 1,626 46.4

Senior 405 11.6

Experience of witness death

Yes 3,080 87.9

No 425 12.1

Working in HPC now

Yes 1,967 56.1

No 1,538 43.9

TABLE 2 Measure data of studied participants (n = 3,505).

Item (full score) x̄ ± s Median IQR n

Attitude (125 points) 91.7± 12.6 92.0 17.0 3,505

Knowledge (15 points) 8.9± 2.7 9.0 4.0 3,505

Confidence (55 points) 41.0± 8.4 43.0 9.0 3,505

Practice (70 points) 50.6± 10.9 52.0 14.0 3,505

Requirement of training (30 points) 23.9± 7.0 27.0 11.0 3,505

others. Meanwhile, profession title, marital status 2 (Divorced

or widow), medical institution 2 (CHCs), and occupation 2

(doctor) showed a negative impact on behavioral intentions,

especially the medical institution of CHCs (OR = 0.312; 95%

CI: 0.185–0.526).

Cross-validation

Overall, most measures were over 0.75. The recall

performance (average of 0.92) was the best, followed by AP

and F1-score of about 0.85. Additionally, the average accuracy,

precision, and AUC values were between 0.75 and 0.80. Details

are given in Table 3.

Model testing

RFC was compared with three widely used machine learning

models, including DT, K-Nearest Neighbor (KNN), and Support

Vector Machine (SVM), to prove its superiority. Generally,

RFC performed better for most measures, while the recall of

SVM was higher than that of RFC. More details are given in

Table 4. The result of RFC prediction on the testing dataset

is illustrated in a confusion matrix (Figure 3). In the testing

dataset, 592 observations were classified as a positive label and

109 as negative. The true positive and false negative rates were

0.94 and 0.64, respectively. The recall of the RFC model was

0.94, and the F1-score was 0.84; the accuracy was similar to

the precision (0.75). Also, the AUC of the RFC model was

0.65. The AP of the model was 0.84, which is similar to the

average value of cross-validation. More details are shown in

Figure 4.

Feature importance

The feature importance was computed as the (normalized)

total reduction of the criterion brought by that feature, also

known as the Gini importance (42). It was indicated that features

from measure data were much more important than others.
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FIGURE 2

Forest plot of binary logistic regression. Only the variables with statistical significance were displayed in the plot.

TABLE 3 Result of cross-validation on training dataset (n = 2,804).

Split Accuracy Precision Recall F1-score AUC AP

1 0.75 0.80 0.91 0.86 0.72 0.87

2 0.77 0.80 0.95 0.87 0.77 0.88

3 0.77 0.79 0.91 0.87 0.74 0.88

4 0.75 0.80 0.90 0.83 0.71 0.87

5 0.75 0.80 0.91 0.85 0.71 0.85

6 0.76 0.78 0.92 0.85 0.75 0.87

7 0.78 0.79 0.91 0.84 0.75 0.87

8 0.79 0.82 0.91 0.85 0.75 0.87

9 0.74 0.78 0.91 0.84 0.76 0.88

10 0.76 0.78 0.93 0.86 0.75 0.89

Avg. 0.76 0.79 0.92 0.85 0.74 0.87

Attitude (0.219) was the most significant factor, followed by

practice (0.1840), confidence (0.182), and knowledge (0.131).

Feature importance of profession title, “Working in hospice

care now,” location of the medical institution, and occupation

2 (Doctor) were 0.030 and over. All details are given in

Figure 5.

TABLE 4 Model performance on testing dataset.

Model Accuracy Precision Recall F1-score AUC

RFC 0.75 0.75 0.94 0.84 0.65

DT 0.66 0.73 0.77 0.75 0.59

KNN 0.73 0.74 0.92 0.82 0.62

SVM 0.73 0.72 0.99 0.83 0.59

Discussion

Model performance

The result of RFC showed high sensitivity, suggesting that

a majority of the samples were correctly classified into a positive

label. However, the AUC (0.65) was still far from that of a perfect

classification. It is considered that the class imbalance of the

target variable caused the capacity of the discrimination to be

poor, suggesting that we could not evaluate our classification

models completely based on the accuracy and AUC. The

Precision-Recall curve is a widely used measure of prediction

for imbalanced classes (43). The AP was 0.84, which satisfied
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FIGURE 3

Confusion matrix of RFC on testing dataset.

our expectations. Meanwhile, according to the study target of

developing a productive HPC team, we paid more attention

to whether the model contributed to identifying healthcare

providers with positive behavioral intentions, focusing on the

recall and the true positive rate of the model. Finally, the RFC

was considered to have practical application value and could

be a reasonable method for estimating individual behavioral

intentions of HPC, organizing a productive team, and evaluating

the ability to implement HPC.

Attitude was the most significant enabler

According to the outcome of RFC and BLR, attitude

was the most significant enabler. A positive attitude was a

crucial facilitator to improving the quality of HPC services and

important for building teamwork and interpersonal relationship

(44, 45). It was remarkable that healthcare providers who

were divorced or widowed showed a negative attitude to

work in HPC, owing to painful experiences that trigger

negative emotions, nervousness, and other barriers. The

correlative survey also highlighted that attitude toward caring

for dying patients was mainly influenced by death anxiety

of the healthcare provider (46). One would develop negative

emotions, and death avoidance was the typical performance

(47). Nurses, being the main providers of HPC, were the

most probable participants experiencing death anxiety with

a direct effect on their attitude toward caring for the

dying (48). Further, death anxiety was also induced by high

levels of burnout and occupational stress among healthcare

providers. They may struggle to realize work value and career

satisfaction (49). Therefore, healthcare providers must develop

a positive attitude toward death to optimize the quality

of HPC.

In our further analysis, aside from its own influence,

attitude was associated with other features that affect behavioral

intentions (50). Confidence was closely correlated with attitude.

Healthcare providers with negative attitudes had insufficient

confidence and rejected or escaped from caring for dying

patients, which constituted a serious barrier to improving the

quality of HPC (48). Also, it was noteworthy that healthcare

providers still working in HPC showed a positive attitude. This

shows that long-term practice or constant work in HPC could

help service providers develop positive attitudes, which might

release their death anxiety and discomfort for the death or dying

patients (51).

Practice experience enhances the
development of behavioral intentions

BLR and RFC provided similar evidence suggesting

that practice experience would enhance the development of

behavioral intentions. It has been illustrated that healthcare

providers at CHCs show a lack of behavioral intentions, partly

due to assigned work tasks by the government instead of by

active participation, without sufficient financial support and

an effective incentive mechanism. Worse still, in many CHCs,

there are rare opportunities to practice since the public are

unaware of HPC (52). Furthermore, confidence (self-efficacy)

toward HPC would be influenced by the practice experience.

Therefore, providing opportunities for practices could improve

self-efficacy in providing HPC, suggesting the need for

sustained government funding and long-term incentives, such

as a reasonable payment system, to inspire the providers’

enthusiasm now and in the long-term, and to strengthen public

education of HPC. In addition, there should be a standardized

training design, communication platform, or academic salon

to encourage healthcare providers to discuss practice, personal

involvement, and further research on HPC (53).

Knowledge is an undeniable facilitator

BLR and RFC highlighted that knowledge was an undeniable

facilitator of behavioral intentions. The impact of knowledge

includes two aspects: whether healthcare providers understand

the concept of HPC and whether they have a good knowledge

of the essential skills and apply them to HPC practice.

For the former, we noticed that doctors showed negative

behavioral intentions compared with other professionals.

Most doctors would rarely consider HPC when cancer

patients first visited; however, they agreed with the value

of HPC (54). Doctors aim to cure patients or recover

them from diseases to maintain life; however, some doctors

still consider that HPC implies abandoning treatment. They

tend to struggle to maintain life-prolonging treatment and
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FIGURE 4

Discriminatory ability of Random Forest Classifier. (A) Receiver operating characteristic curve. (B) Two-class Precision-Recall curve.
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FIGURE 5

Feature importance. It shows how important the value was in the model.

gain poor satisfaction from HPC services (55). Therefore,

it is urgent to disseminate the concept and benefits of

HPC among healthcare providers and the public to help

establish the concept of integrated life-cycle care and HPC for

terminal patients.

For the latter, we found that healthcare providers working

in the countryside showed negative behavioral intentions due to

a lack of knowledge and essential skills of HPC. As previously

reported, most providers lack the professional training, skills,

and principles in HPC practice, particularly pain control,

symptom management, and psychological care (56). Also, one-

third of physicians had little knowledge of the HPC guidelines,

and two-thirds did not know the Advance Care Planning

manual (57). This might cause insufficient confidence, poor

behavioral intentions, and impede practices and implementation

of HPC.

Limitations

RFC outperformed other machine learning models and

avoided the overfitting phenomenon; however, it is not a

perfect classification. Therefore, we will keep working to develop

more excellent methods. Additionally, evidence from Shanghai

could not represent the situation of other provinces in China.

Therefore, we will try to expand our samples to other areas to

get stable evidence.

Conclusion

HPC has become a topic of interest owing to the rising

burden of NCDs, population aging, and the COVID-19

pandemic. However, due to several barriers to implementing
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HPC, most patients cannot access the needed professional

services. Therefore, it is significant to understand the real-

world situation at the initial stage of the HPC movement

in China, particularly the individual behavioral intentions to

improve the accessibility of HPC. Our study was designed to

predict the behavioral intentions of HPC providers using RF,

which presented a first attempt in this area to automatically

identify the relationship between behavioral intentions and

other parameters of KAPHC. RFC showed high sensitivity,

which suggested a well-trained RFC could help to estimate

individual behavioral intentions to organize a productive team.

Moreover, attitude is considered the most significant facilitator,

implying the most efficient approach to encourage behavioral

intentions. Reasonable HPC knowledge and practices in caring

for terminal patients are of potential interest and stimulate the

behavioral intentions of healthcare providers. Ultimately, the

study has provided evidence that the government and HPC

organizations should scale up standardized training, sustained

financial support, and long-term incentives to attract providers

to engage actively and enthusiastically in HPC. This will ensure

its long-term sustainable development in China.
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