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Abstract

A growing appreciation of the importance of cellular metabolism together with recent revelations 

concerning the extent of cell-cell heterogeneity demand performing metabolic characterization of 

individual cells. We present SpaceM, an open-source method for in situ single-cell metabolomics 

that detects >100 metabolites from >1,000 individual cells/hour together with a fluorescence based 

read-out and morpho-spatial features. We validated SpaceM by predicting the cell types of co-

cultured human epithelial cells and mouse fibroblasts. We used SpaceM to show that stimulating 

human hepatocytes with fatty acids led to the emergence of two co-existing subpopulations 

outlined by distinct cellular metabolic states. Inducing inflammation with the cytokine IL-17A 

perturbs the balance of these states in a process dependent on NF-κB signalling. The metabolic-

state markers were reproduced in a pre-clinical in vivo murine model of non-alcoholic 

steatohepatitis. We anticipate SpaceM to be broadly applicable for investigations of diverse 

cellular models and to democratize single-cell metabolomics.
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Introduction

Organisms are composed of cells of various types, in different states, and functions. A key 

component is the intracellular metabolome, a repertoire of metabolites and lipids involved in 

virtually all cellular processes. Recent discoveries transformed our understanding of 

metabolites and lipids beyond being metabolic building blocks and shed light on their roles 

in signaling, epigenome regulation, immunity, inflammation, and cancer1,2. The importance 

of the metabolome, and the emerging capacities of metabolomics makes metabolome 

profiling an attractive approach to read out the state of the organism, organ, and cells3,4.

In parallel, single-cell technologies have revolutionized biology by highlighting the extent of 

cellular heterogeneity within tissues5 and even among monoclonal cells6–8. However, 

investigating metabolism at the single-cell level in situ was out of reach until recently9. Over 

the past years, pioneered by 10,11, the introduction of single-cell metabolomics methods 

demonstrated the feasibility of characterizing metabolic heterogeneity and discriminating 

cell types9,12–15. Certainly, their relatively low throughput, requirements for custom mass 

spectrometry instrumentation, challenges in analysis of cells cultured at a high density, and 

the lack of computational methods for downstream analyses, altogether led to a limited 

accessibility of single-cell metabolomics.

Here, we aim to democratize single-cell metabolomics for cultured cells by introducing an 

open-source method, SpaceM, along with a toolbox of supplemental methods for metabolite 

intensity normalization and filtering, quality control, downstream data analysis, and 

interpretation. SpaceM is compatible with conventional cell culture practices, and can be 

applied to cells at high confluency. Importantly, our method does not require a custom mass 

spectrometry setup but rather uses commercially-available Matrix Assisted Laser Desorption 

Ionization (MALDI)-imaging mass spectrometry and light microscopy. The cornerstone of 

SpaceM is the precise estimation of which cell parts were locally ablated by the laser, 

achieved by co-registering microscopy images of cells with microscopy images of MALDI 

laser ablation marks with a subcellular precision.

Ultimately, SpaceM generates a spatio-molecular matrix for each cell containing a 

normalized metabolic profile and microscopy-derived phenotypic properties such as cell 

fluorescence intensities and morpho-spatial features. SpaceM detects >100 metabolites and 

lipids from >1,000 cells per hour, demonstrating high sensitivity and throughput. The single-

cell resolution of SpaceM was validated using our proposed model of co-cultured human 

epithelial cells (HeLa) and mouse fibroblast cells (NIH3T3) where the cell types were 

predicted with an accuracy of 91.3% solely based on the single-cell metabolomes.

Using SpaceM, we characterized metabolic states within an isogenic cell population of 

human differentiated hepatocytes, dHepaRGs, an established in vitro model of Non-

Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH)16,17, 

characterized by a profound and heterogeneous lipid metabolism remodelling18. SpaceM 

provided single-cell profiles from 29,738 hepatocytes representing intensities of >700 lipids 

from various classes, including neutral glycerolipids (e.g. triglycerides), 

glycerophospholipids and sphingolipids. Among hepatocytes stimulated with fatty acids, we 
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discovered a subpopulation with distinctly altered lipid profiles. These hepatocytes 

consistently compose 24% of the population and are characterized by an aberrant 

accumulation of lipid droplets and neutral lipids characteristic of a metabolic state called 

steatosis. We explored how inflammation affects hepatocyte heterogeneity by further 

challenging them with the cytokine IL-17A, a known player in NASH-associated 

inflammation19. This shifted almost all hepatocytes (93%) into the steatotic metabolic state 

and impacted metabolic cell-cell heterogeneity. Furthermore, SpaceM revealed that 

inhibiting canonical NF-κB signalling alters the relative cell distribution within metabolic 

states, indicating a potential role for this pathway in regulating hepatocyte metabolic 

heterogeneity under inflammation-induced conditions. Our metabolic state markers are in 

line with previous literature and were structurally and quantitatively validated using bulk 

lipidomics of an in vivo NASH murine model20. This highlights the relevance of the 

dHepaRG in vitro NAFLD/NASH model and the capacity of SpaceM to discover and 

characterize biologically-relevant metabolic states. Overall, considering the demonstrated 

potential of SpaceM to reveal and characterize disease-relevant metabolic states, as well as 

the accessible nature of the method, we expect to democratize single-cell metabolomics of 

diverse cell cultures and co-cultures.

Results

The SpaceM method

A key challenge of MALDI-based single-cell metabolomics is the assignment of metabolite 

intensities to individual cells. To address this, we propose SpaceM as a method for single-

cell metabolomics of cultured cells. SpaceM integrates MALDI-imaging with light 

microscopy followed by image segmentation and registration (Figure 1A, Supp. Fig. 1).

For SpaceM, cells need to be cultured on a microscopy-compatible substrate, followed by 

fixation, fluorescence staining and drying. SpaceM starts with the acquisition of microscopy 

images, called pre-MALDI. Cell segmentation of pre-MALDI images provides a broad 

panel of phenotypic information including fluorescent intensities and spatio-morphological 

properties of individual cells (Figure 1A i). Next, the sample is sprayed with a MALDI 

matrix salt and MALDI-imaging mass spectrometry is performed for untargeted detection of 

molecules, including metabolites and lipids21 (Figure 1A ii).

The next steps of SpaceM aim to detect the sampled cell areas. The MALDI laser leaves 

discernable ablation marks in the overlaying matrix which can be used to identify the areas 

contributing to metabolite intensities. However, the opacity of the MALDI-matrix prevents 

simultaneous inspection of both cells and ablation marks. Therefore, the pre-MALDI image 

is co-registered with a second round of microscopy images, called post-MALDI, from which 

ablation marks are segmented (Extended Data Fig 1). Although methods to integrate 

MALDI-imaging data and microscopy exist, their registration accuracies are worse than 1 

μm. A prominent example includes registration of MALDI-imaging data of tissue sections 

with histological images by detecting ablation marks in autofluorescence microscopy images 

with the reported registration accuracy of 2.2 μm 22. While such accuracy is suitable for 

tissue section analysis, the aim of SpaceM is to precisely evaluate the ablated parts of single 

cells. For this reason we developed a high-precision image registration that employs pen 
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marks drawn at the edges of the cell culture which provided over 400,000 fiducial points 

(Extended Data Fig 2). We estimated that at least 3,000 fiducials are needed to achieve a 

sub-micron registration accuracy (Supp. Fig. 2), a prerequisite for estimating metabolite 

intensities at the single-cell level, given that in our study cell sizes range from 37μm to 59μm 

(25th/75th percentiles, 37μm to 49μm for the dHepaRGs, 39μm to 59μm for the NIH3T3 and 

30μm to 39μm for the HeLa cells) (Supp. Fig. 3). Finally, the ablation marks are re-indexed 

(Extended Data Fig 3) to couple MALDI data with microscopy.

To construct single-cell metabolic profiles from MALDI measurements, we developed an 

approach accounting for the overlap between cells and ablation marks (Figure 1A iii) to 

compensate for differences in cell sampling and filter out ambiguous ablation marks 

sampling multiple cells (Extended Data Fig 4). Ultimately, SpaceM provides a single-cell 

spatio-molecular matrix with a multiplex readout for each individual cell quantified in its 

native spatial context. This readout comprises an untargeted metabolic profile, fluorescence 

intensities and spatio-morphological features (Figure 1B). This information can be used to 

link metabolism and phenotype at the single-cell level.

Validating SpaceM by predicting cell types with single-cell resolution

To validate SpaceM, we predicted the cell types of co-cultured human HeLa cells and mouse 

NIH3T3 fibroblasts, constitutively expressing H2B-mCherry and GFP respectively, solely 

based on their single-cell metabolic profiles (Figure 1C–E). To confirm the prediction, cell 

types were determined using a linear boundary between mCherry and GFP intensities (Supp. 

Fig. 4A). SpaceM provided metabolic profiles of 88 metabolites for 445 HeLa and 400 

NIH3T3 co-cultured cells (Figure 1C). Uniform Manifold Approximation and Projection 

(UMAP) visualization based on metabolite intensities of two replicates reproducibly 

grouped cells by their type (Supp. Fig. 4B). Metabolite intensities were also consistent 

across replicates, indicating low analytical variability (Supp. Fig. 4C). Integration of the 

replicates preserved the relative organisation of cell types in UMAP (Supp. Fig. 4D). The 

linear discriminant analysis performed on the metabolic profiles resulted in the classification 

of HeLa from NIH cells with an accuracy of 91.3% (Figure 1D, Supp. Fig. 4E). The cell 

type markers include phosphatidylinositols PI(34:1) and PI(34:2) for HeLa cells and 

phosphoethanolamine PE(40:6) for NIH3T3 (Figure 1E). Importantly, cells surrounded by 

the other cell type were correctly classified, demonstrating the single-cell precision of 

SpaceM (Supp. Fig. 4F–G). We investigated the impact of co-sampling neighboring cells 

and diffusible metabolites on the cell type classification. For this, we took advantage of the 

unbiased sampling of SpaceM and constructed the diffusion profile of each detected 

metabolite (Supp. Fig. 5). Removing all co-sampling ablation marks and discarding the 

diffused metabolites did not affect the cell type classification accuracy (Supp. Fig. 6A). The 

classification accuracy was optimal when including co-sampling ablation marks that share at 

least 90% of their sampling area with a cell of interest (Supp. Fig. 6B–D). Metabolic 

markers were validated by using individual mono-cultures of each cell type analyzed with 

both SpaceM and LC-MS/MS (Supp. Fig. 7). Overall, the fold change trends of the cell type 

markers were validated for 85.2% of the detected metabolites (Supp. Fig. 7A, Supp. Fig. 7B, 

Supp. Fig. 7D). Using LC-MS/MS, a total of 19 lipids were detected in common with 

SpaceM; of which 15 lipids showed the same trends (Supp. Fig. 7C). We found the relative 

Rappez et al. Page 4

Nat Methods. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



metabolite intensities of cell-type-markers to be highly consistent between culture 

conditions although the NIH3T3 cells had higher intensities when co-cultured with HeLa 

cells, potentially indicating a metabolic adaptation (Supp. Fig. 7E–F).

SpaceM identifies a steatotic subpopulation of human hepatocytes

Beyond characterizing cell types, we used SpaceM to identify metabolic states within an 

isogenic cell line of differentiated human hepatocytes (dHepaRG) upon stimulation with 

fatty acids (Figure 2A). This model is of particular relevance to study the onset of NAFLD, 

in which hepatocytes undergo lipid metabolism remodeling and accumulate intracellular 

lipid droplets (LDs), known as steatosis. NAFLD, in turn, can progress towards NASH, 

characterized by systemic and hepatic inflammation19. The known high heterogeneity of LD 

accumulation in hepatocytes 18 (also illustrated in Figure 2A) reinforces the need for single-

cell methods.

Hepatocytes were stimulated with oleic and palmitic fatty acids (FA) to model NAFLD-

specific lipid metabolism23. The LD accumulation was quantified by the neutral lipid 

fluorescent dye LD54024. SpaceM provided profiles of 740 metabolites from 2,840 single 

dHepaRG cells. UMAP and unsupervised clustering of metabolic profiles revealed two 

distinct subpopulations characterized by statistically different amounts of LDs (Figure 2B, 

Supp. Fig. 8). Correlating LD540 and lipid intensities provided the following markers: 

triglyceride TG(48:0) (Spearman r=0.38***) for a smaller subpopulation, and isomeric 

lipids lysophosphatidylethanolamine LPE(21:1) or lysophosphatidylcholine LPC(18:1) 

(Spearman r=−0.23***) for a bigger subpopulation (Figure 2C). Further marker analysis 

showed neutral lipids, including triglycerides and diglycerides, to be the strongest markers 

confirmed by lipid ontology enrichment analysis25 (Figure 2E). This is expected as these 

lipids are known components of hepatic LDs26,27 (Figure 2D). Interestingly, the analysis of 

lipids anti-correlated with LD540 indicated an enrichment of glycerophospholipids and 

localization to endoplasmic reticulum (ER), a likely manifestation of the ER stress in hepatic 

steatosis28.

Characterisation of metabolic states of lipid stimulated hepatocytes in an inflammatory 
environment

The lipid composition in hepatocytes is tightly regulated under homeostatic conditions. 

However, an excess of free fatty acids, together with additional stressors, including 

inflammatory cytokines, promotes aberrant lipid storage, ultimately leading to NASH.

To investigate the metabolic remodeling of single hepatocytes during NAFLD to NASH 

transition, we considered four conditions (Figure 3A): (i) A control condition (CTRL) 

modelling the homeostatic state; (ii) stimulation with oleic and palmitic fatty acids (+FA) as 

in Figure 2, modelling non-inflammatory NAFLD; (iii) stimulation with FAs and 

inflammatory cytokine IL-17A (+FA+IL17A), modelling NASH and (iv) stimulation with 

FAs, IL-17A and TPCA-1 (+FA+IL17A+TPCA1), an inhibitor of NF-κB signalling, probing 

the metabolic response upon inhibition of IL-17A-induced inflammation.

SpaceM provided profiles of 740 metabolites from 29,738 hepatocytes with high 

reproducibility between replicates (Supp. Fig. 9). Unsupervised clustering of the metabolic 
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profiles revealed three major clusters representing the homeostatic, intermediate and 

steatotic metabolic states (Figure 3B) with statistically different LD levels (Figure 3B). The 

CTRL condition was separated from FA-stimulated conditions and constitutes its own 

“homeostatic” metabolic state. Among +FA cells, 75.2% and 24.3% reside in the 

intermediate and steatotic states, respectively. Induction of inflammatory signalling with 

IL-17A drastically affected hepatocytes, with 93% of +FA+IL17A hepatocytes residing in 

the steatotic state. Of note, inhibition of NF-κB signalling by TPCA-1 prevents the uniform 

metabolic response seen upon stimulation with IL-17A as 75.2% of hepatocytes remain in 

the intermediate state (Figure 3C).

LD levels exhibit a higher variation in the +FA+IL17A condition (coefficient of variation, 

CV=0.54) compared to the +FA and +FA+IL17A+TPCA1 conditions (CV=0.37 and 0.45, 

respectively) (Supp. Fig. 10A, 10C). Conversely, individual lipids showed a higher 

variability of their single-cell intensities (showing a bimodal distribution) in the +FA and 

+FA+IL17A+TPCA1 conditions compared to the +FA+IL17A condition (showing a 

unimodal distribution) (Supp. Fig. 10B, 10C). Together, these results indicate that inducing 

inflammatory signalling in differentiated human hepatocytes with IL-17A increases cell-cell 

heterogeneity of LD levels but reduces heterogeneity of individual neutral lipids.

Pseudo-time analysis of single-cell metabolic profiles allowed us to characterize the 

progression of hepatocytes from the homeostatic to the steatotic state, (black line in Figure 

3B). Metabolic state markers change gradually along pseudotime, indicating metabolic 

heterogeneity within every state (Figure 3D). Most markers of the homeostatic state are 

phospholipids such as phosphatidylcholines, phosphatidylethanolamines and 

phosphatidylinositols covering housekeeping metabolic functions including membrane 

composition of ER and mitochondria (Figure 3E). On the other hand, metabolic markers of 

the steatotic state are mostly neutral lipids such as triglycerides and diglycerides with a 

functional relevance in lipid storage, LD formation and lipid-mediated signalling.

The metabolic-state-markers were further validated using LC-MS/MS-based lipidomics of 

hepatic tissues from normal diet (ND) and Western diet (WD) mice. This helped perform 

MS/MS structural analysis and compare to the bulk levels of the markers in vivo (Figure 

3F). The differences discovered by SpaceM were highly consistent with the marker levels in 

ND and WD mice. These data demonstrate that the metabolic states and markers discovered 

in vitro recapitulate the metabolic shift observed in vivo in early NASH development.

Discussion

The topic of metabolic heterogeneity has attracted a wealth of attention2. Bottom-up efforts 

on metabolic characterization of cell types29 and neighboring cells30 as well as top-down 

efforts on creating metabolic atlases for major cell types4,31 and finding metabolic subtypes 

in cancer cell lines32 reinforce this interest. However, these efforts lack single-cell 

measurements to complement either bulk metabolomics or metabolic modeling. We aim to 

contribute to bridging this gap and democratize single-cell metabolomics by providing 

SpaceM, a method for single-cell metabolomics of cultured cells. For each cell, SpaceM 

delivers a metabolic profile as well as morphometric properties and fluorescence intensities, 
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can analyse thousands of cells each sampled in situ, is applicable to a broad range of 

adherent cell types cultured according to commonly-used practices and avoids any cell 

perturbation prior to cell fixation.

SpaceM complements other recently proposed single-cell metabolomics methods by 

delivering unique advantages in the context of analysis of cultured adherent cells. SpaceM 

offers higher throughput compared to cell microsampling followed by ultra-high-sensitive 

mass spectrometry33,34. Compared to laser-capture microdissection coupled with mass 

spectrometry e.g. through the liquid vortex capture or open port interface35,36, SpaceM 

focuses on the application to cultured cells (as compared to selected cells within a tissue 

section), offers a higher throughput, and delivers single-cell microscopy readouts.

Using imaging mass spectrometry is emerging as a viable option for single-cell 

metabolomics 9,12,13,37–39. Compared to one prominent example which uses a microarray 

for near-single-cell isolation 38, SpaceM allows cells to be analyzed in their native culturing 

environment thus avoiding any perturbation and delivering microscopy-based morphometric 

properties and cell-cell relationships. Compared to another prominent example, the 

MicroMS method using microscopy-guided cell ablation40,41, SpaceM offers several 

advantages. First, SpaceM can use any modern MALDI-imaging source without the need for 

a custom laser control. This is achieved by registering pre- and post-MALDI microscopy 

images with a reproducible subcellular precision in a fully automated way (Extended Data 

Fig. 2). Second, unlike MicroMS that requires cell dissociation, isolation, or reseeding to 

achieve sufficient spacing between cells11,40, SpaceM can directly analyze cells cultured at a 

high confluency in their native growth context by avoiding perturbations prior to fixation 

which are known to otherwise cause stress responses, metabolome alterations, and cell 

damages. This provides a substantial advantage for various commonly-used cell types such 

as used in our study (e.g. HeLa). Third, estimation of ablated cellular parts with a subcellular 

precision allowed us to develop a novel signal processing pipeline (Extended Data Fig 4) 

which provides a clear improvement of the co-cultured NIH3T3 and HeLa cell type 

classification, used here as a proxy for single-cell resolution (Supp. Fig. 6B). We further 

proposed a model for validating single-cell metabolomics of cell cultures by predicting co-

cultured cell types, following the validation principles established in single-cell RNA-

sequencing42. Addressing the current lack of established validation approaches, we hope this 

can benefit method development and validation in single-cell metabolomics.

Unbiased MALDI-imaging analysis -- as used in SpaceM -- leads to the cases of co-

sampling neighboring cells by the same ablation mark. Although our normalization and 

ablation mark filtering were already designed to minimize the propagation of this effect to 

the intensities of the co-sampled cells, we have systematically investigated possible negative 

effects of the co-sampling. We have found that, with our normalization and filtration, the co-

sampling only minimally affects the accuracy of the cell type prediction in spatially-

heterogeneous co-cultures thus also indirectly confirming no negative effect on the single-

cell resolution (Supp. Fig. 6). Further, we investigated the impact of the co-sampling on the 

metabolic states identified in hepatocytes (Supp. Fig. 11, data presented in Figure 2 and 

Figure 3 were computed with a sampling specificity value of 40%). Although excluding co-

sampling ablation marks heavily reduced the number of cells (21.009 cells, compared 
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29.738 in Figure 3), it led to the identification of the same metabolic states (Supp. Fig. 11A). 

Moreover, it did not change the metabolic state markers although reducing their statistical 

significance, likely due the lower number of cells (Supp. Fig. 11A–B). Finally, excluding co-

sampling ablation marks did not affect the balance of the metabolic states within each 

hepatocyte culture condition (Supp. Fig. 11C). Altogether, we conclude that the presented 

SpaceM processing approach delivers a substantial advantage over systematically excluding 

co-sampling ablation marks as it improves the single cell resolution while retaining more 

cells thus providing stronger statistical power.

Single-cell metabolomics of NAFLD/NASH was long-demanded to answer open questions 

about the associated liver metabolic reprogramming, motivated by the rising incidence of 

NAFLD/NASH, lack of treatment19 and high cell-cell heterogeneity of hepatic LDs18. Our 

results complement existing knowledge about the functional43, transcriptional44 and 

metabolic45 heterogeneity in hepatocytes during NAFLD-NASH progression- in which 

subpopulations emerge showing distinct functional43 and transcriptional44 phenotypes and 

plasticity of metabolic remodeling45.

We used a differentiated human hepatocyte cell line, dHepaRG which, unlike 2D in vitro 
cultured primary hepatocytes, exhibit a stable gene expression pattern, and is broadly used 

for investigating hepatic lipid metabolism and drug development16,17. The considered 

conditions model the stages of NAFLD-NASH progression: from homeostasis (condition 

CTRL) towards NAFLD (condition +FA), and further towards NASH (condition +FA

+IL17A)19.

SpaceM helped characterize cell-cell metabolic heterogeneity of hepatocytes also within 

conditions. The clear separation of steatotic hepatocytes (Figure 2) from the rest of the 

population indicates a switch rather than a gradual change from the intermediate to the 

steatotic state. Previously, a steatotic subpopulation was associated with a protective 

function by accumulating LD-induced lipotoxicity that is advantageous for the whole 

population18.

Although lipid droplets can greatly vary in composition46, this heterogeneity cannot be 

resolved by lipophilic stainings as LD540. We explored the heterogeneity of levels of some 

neutral lipids in stimulated hepatocytes (Supp. Fig. 10). The intensities of selected steatotic 

markers showed a bimodal distribution not observed for LD540. This suggests that 

hepatocytes can be divided into two distinct populations, with low and high levels of 

steatotic markers (Supp. Fig. 10A–B). The bimodality of intermediate cells indicates that the 

overall bimodality cannot be explained by the presence of two states alone (Supp. Fig. 10B). 

This could either reflect a clustering artifact or biological heterogeneity of LD compositions 

for intermediate-state cells. Together, these results illustrate the importance of studying 

metabolism at single-cell resolution in combination with microscopy.

In line with previous reports, a number of steatotic markers were reproduced in our in vivo 
mouse model of NASH (Figure 3F). All but one validated triglyceride marker of the steatotic 

state are composed of palmitic acid (16:0), palmitoleic acid (16:1), and oleic acids (18:1) 

which were reported to increase in the liver of patients with NAFLD/NASH47. The steatotic-
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state-markers TG(50:1) and TG(48:1) were reported among the three most associated lipids 

with the fatty liver index (FLI, in the Fenland and NSHD studies) and with fat accumulation 

upon NASH48. Together, this demonstrates the in vivo relevance of our single-cell 

metabolomics analysis of dHepaRG hepatocytes.

SpaceM can differentiate cells within a state. The +FA steatotic cells (“benign” steatotic 

hepatocytes) and the +FA+IL17A steatotic cells (“inflammatory” steatotic hepatocytes) have 

little overlap in the PAGA plot (Figure 3B–C) suggesting a difference in their metabolic 

profiles. Differential analysis revealed that ceramide phosphocholines (sphingomyelins) 

were highly enriched in the “inflammatory” steatotic hepatocytes (Supp. Fig. 12). This is 

consistent with studies reporting an increase in sphingolipids including ceramides and 

sphingomyelins upon NASH compared to “benign” NAFLD in both mice and humans49,50. 

Although increased sphingolipids can be explained by the oxidative stress and systemic 

inflammation50, a mechanistic explanation is still lacking. Reproducing this effect in 

dHepaRG cells suggests the potential of in vitro single-cell metabolomics in deciphering the 

function of these bioactive lipids in NAFLD/NASH.

Overall, the open source SpaceM method not only fills a large yet empty niche in the 

booming field of single-cell metabolomics but already helped characterizing metabolic 

heterogeneity and states of stimulated dHepaRG hepatocytes, with the results validated in 
vivo and in line with previous reports. The simple design, low requirements, and 

compatibility with cell biology practices will likely pave a way towards democratizing 

single-cell metabolomics of cell cultures.

Methods

Co-culturing of HeLa and NIH3T3 cells

HeLa Kyoto H2B-mCherry and NIH3T3-GFP cells were cultured at 37 °C with 5% CO2, 

and were maintained in high glucose DMEM (1X Pen/Strep) (Gibco/ThermoFisher 

Scientific, Bremen, Germany) supplemented with 10% Fetal Bovine Serum (FBS), 100 U/ml 

penicillin, 100 μg/ml streptomycin (Gibco) and 1 mM sodium pyruvate (Gibco). Cells were 

trypsinized with 0.25% trypsin-EDTA (Gibco) and split 1:10 twice a week. Two technical 

replicates for the co-cultures and one replicate for monoculture were used. Trypsinized cells 

were counted and cells were seeded on 4-well-glass labtek chamber slides (Lab-Tek II, CC2) 

(ThermoFisher Scientific). In the co-culture experiment, an equal number of cells of each 

cell type was added into each well (4x105 cells/well). After 48h of incubation cells were 

washed with Phosphate Buffer Saline (PBS). After washing, the cells were fixed for 15 min 

with 4% paraformaldehyde (Sigma Aldrich, Darmstadt, Germany) at room temperature. 

Then the cells were stained with 4′,6-diamidino-2-phenylindole (DAPI) (1μg/ml) 

(ThermoFisher Scientific) in PBS for 20 min at room temperature.

Hepatocytes culturing and stimulation

HepaRG cell culture and differentiation was performed as described earlier 51. Differentiated 

HepaRG (dHepaRG) cells were cultured on 4-well-glass chamber slides (Lab-Tek II, CC2, 

ThermoFisher Scientific, Bremen, Germany) (5.5x104 cells/well). The cells were stimulated 

Rappez et al. Page 9

Nat Methods. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



with the fatty acids (opFAs): oleic acid (66 μM) and palmitic acid (33 μM), opFAs opFAs 

and the interleukin17-alpha (50 ng/ml) (Recombinant Human IL-17-alpha, RnD Systems), 

or opFAs and [5-(p-Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA1) (5nM) 

(Sigma Aldrich) in Williams E Medium (William’s Medium E, with stab. glutamine, without 

Phenol Red, with 2,24 g/l NaHCO3) (PAN Biotech) for 24 h. Cells grown in Williams E 

Medium without supplement for 24 h were considered as a negative control (CTRL). For 

each of those conditions, cells were seeded in three different wells which were considered as 

technical replicates (Table S1). After washing, cells were fixed for 15 min with 4% 

paraformaldehyde (Sigma Aldrich) at room temperature. Then the cells were washed and 

stained with Hoechst (1μg/ml) (Hoechst 33342) (ThermoFisher Scientific) and LD540 (0.1 

μg/ml) 24 in PBS for 30 min at room temperature. After washing, cells were stored in dH2O 

at 4 °C for one night maximum.

Cell culture and LD540 staining of hepatocytes

Cell culture—2.2x105 HepaRG cells were cultured on 4-well-glass chamber slides (Lab-

Tek II, CC2, Fisher Scientific) (5.5x104 cells/well) with or without fatty acids, oleic acid 

(66uM) and palmitic acid (33uM), IL-17A (final conc. 50ng/ml) (Recombinant 

HumanIL-17A, rnd Systems) and TPCA-1 (5nM) in Williams E Medium (William’s 

Medium E, with stab. Glutamine, without Phenol red, with 2,24 g/l NaHCO3, PAN Biotech) 

for 24h.

LD540 staining—After washing, cells were fixed for 15 min. with 4% paraformaldehyde 

at room temperature. Then the cells were washed and stained with Hoechst (1μg/ml) 

(Hoechst 33342, Thermo Fisher) and LD540 (0.1μg/ml) in PBS for 30 min. at room 

temperature. After washing, cells were imaged.

Microscopy acquisition—Cells were observed with the camera Nikon DS-Qi2 (Nikon 

Instruments) with the Plan Fluor 10x (NA 0.30) objective (Nikon Instruments) mounted on 

the Nikon Ti-E inverted microscope (Nikon Instruments) in bright-field and fluorescence 

(620 nm and 460 nm). The pixel size was 0.73 μm. The microscope was controlled using the 

Nikon NIS Elements software.

Mice and diets—4-6 weeks old male C57BL/6J mice were purchased from Charles River. 

Mice were housed at the at German Cancer Research Center (DKFZ) at a constant 

temperature of 20–24°C and 45–65% humidity with a 12-hour light/ 12-hour-dark cycle. 6-8 

week-old male mice were fed ad libitum: normal diet (ND), western diet with trans-fat (WD-

HTF) (Research Diets; D09100301 -40 kcal % fat (Primex shortening), 20 kcal % fructose, 

2% cholesterol). Animals were maintained under specific-pathogen-free conditions and 

experiments were performed in accordance with German law and the governmental bodies, 

and with an approval from the Regierungspräsidium Karlsruhe ethical committee (G129/16, 

G7/17).

Cell image analysis

Cell segmentation and fluorescence quantification—Cells were segmented using a 

custom CellProfiler (v3.0.0) pipeline. Both morphological features and fluorescence 
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intensities were quantified using CellProfiler and exported in .csv format for later 

interpretation.

Preparing cells for imaging

The plastic walls of the labtek were removed and the cells were dried in a Lab Companion™ 

Cabinet Vacuum Desiccator for 30min at room temperature and -0.08 MPa. After complete 

desiccation of the cells, pen marks are manually drawn on the glass slide using a black 

alcohol pen model 140s black (Edding, Ahrensburg, Germany) to keep track of the glass 

slide orientation and for image registration. The marks were drawn on the same side as the 

cells. Cells are kept at 4 °C until analysis. For the following experiments, the samples were 

analyzed by the microscopy and MALDI-imaging mass spectrometry following a 

randomized experimental design (Table S1).

Pre-MALDI bright-field and fluorescence microscopy of cells

Fixed cells were sequentially observed with the camera Nikon DS-Qi2 (Nikon Instruments) 

with the Plan Fluor 10x (NA 0.30) objective (Nikon Instruments) mounted on the Nikon Ti-

E inverted microscope (Nikon Instruments) in bright-field and fluorescence (620 nm and 460 

nm). The pixel size was 0.73 μm. The microscope was controlled using the Nikon NIS 

Elements software. The tiled acquisition of each cell culture area was performed using the 

JOB functionality of the NIS software. Stitching of tiled frames was performed using the 

FIJI stitching plugin 52.

MALDI imaging mass spectrometry

Relative humidity and temperature levels in the mass spectrometry room were monitored 

and controlled during the whole experiment and were within 44%-63% and 21.1-23.7 °C 

(Table S1). For the analysis of hepatocytes samples reported in Figure 2, Figure 3, Supp. 

Fig. 8, Supp. Fig. 9, Supp. Fig. 10, Supp. Fig. 11 and Supp. Fig. 12 (Conditions: Control, 

+FA, +FA+IL17a, +FA+IL17a+TPCA1), the 2,5-dihydroxybenzoic acid (DHB) matrix 

(Sigma Aldrich) 15mg/ml dissolved in 70% acetonitrile was applied onto the dried cells on 

the labtek slides by using a TM-Sprayer robotic sprayer (HTX Technologies, Carrboro, NC, 

USA). Spraying parameters were as following: temperature=100 °C, number of passes=8, 

flow rate=0.07 ml/min, velocity=1350 mm/min, track spacing=2 mm/min, pattern=CC, 

pressure=10 psi, gas flow rate=5 l/min, drying time=15 sec, nozzle height=41 mm. The 

estimated matrix density was 0.00311 mg/mm2. For the analysis of co-cultured cells in 

Figure 1, Supp. Fig. 4, Supp. Fig. 5, Supp. Fig. 6 and Supp. Fig. 7 the matrix 1,5-

diaminonaphthalene (DAN) (Sigma Aldrich) 10mg/ml dissolved in 70% acetonitrile was 

applied onto the dried cells on the labtek slides by using the same TM-Sprayer robotic 

sprayer. Spraying parameters were as following: temperature=90 C°, number of passes=8, 

flow rate=0.07 ml/min, velocity=1350 mm/min, track spacing=3 mm/min, pattern=CC, 

pressure=10 psi, gas flow rate=2 l/min, drying time=15 sec, nozzle height=41 mm. The 

estimated matrix density was 0.001383 mg/mm2. For MALDI imaging mass spectrometry, 

the glass slides with the dried cells on them were mounted onto a custom slide adaptor and 

loaded into the AP-SMALDI source (Transmit, Giessen, Germany). The MALDI laser focus 

was optimized manually using the source cameras with the focused beam diameter estimated 

to be between 15.0 and 43.0 μm (mean equal to 29.9 μm, standard deviation equal to 8 μm). 
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The x-y step size (distance between the centers of ablation marks) was set to 50 μM. For 

each pixel, the spectrum was accumulated from 30 laser shots at 60 Hz. Both the positive 

and negative mode MS analysis were performed using an QExactive Plus mass spectrometer 

(ThermoFisher Scientific) in the full scan mode in the mass range of 200-1100 m/z 

(resolving power R=140000 at m/z 200). MS parameters in the Tune software (version 2.5 

Build 2042, ThermoFisher Scientific) were set to the spray voltage of 4.10 kV, S-Lens 80 

eV, capillary temperature 250 C. The data was converted from the RAW format into the 

imzML format containing only centroided data using the ImageQuest software, v.1.1.0 

(ThermoFisher Scientific). Metabolite annotation was performed using the METASPACE 

cloud software (https://metaspace2020.eu) implementing the bioinformatics methods for 

False Discovery Rate-controlled annotation published by us earlier 53 with the m/z tolerance 

of 3 ppm and FDR of 10%, 20%, and 50% against the HMDB metabolite database v2.5.

Post-MALDI microscopy to detect MALDI ablation marks

The cells were imaged in bright-field microscopy after MALDI-imaging using the same 

microscopy setup and parameters as described earlier in the pre-MALDI microscopy section 

to define the positions of the ablation marks with respect to the fiducial marks.

Association of laser ablation marks with single cells

This step is the key part of the method as it solves the challenge that single cells are not 

visible in the post-MALDI microscopy images due to the opaque layer of MALDI matrix 

covering cells. Here, ablation marks left by the MALDI laser were associated with single 

cells in three steps: a) cells segmentation in the pre-MALDI microscopy images, b) detection 

of laser ablation marks in post-MALDI microscopy images, c) matching between ablation 

marks and MALDI mass spectra and d) co-registration of pre- and post-MALDI microscopy 

images to overlay the ablation marks with the segmented single cells.

In step a), cells were segmented using a custom pipeline in the CellProfiler software 54 

where the DAPI staining channel was used to generate seeds for a region growing algorithm 

detecting cells boundaries in the LD540-staining channel. In step b), we first denoised the 

bright-field microscopy images by applying a low-pass filter in the 2D Fourier frequency 

domain, in particular to exploit both the regular distances between ablation marks as well as 

the repeated shape of the ablation mark itself. Then, we applied a contrast-enhancing filter 

(using the clip function from the Python module numpy) and Otsu’s thresholding method to 

binarize the image. Then, we applied morphological image analysis operations of closing 

and then opening to fill in the holes in the image and to remove individual noisy pixels. This 

provided estimations of the centers of mass of each ablation mark (Extended Data Fig 1). In 

step c), we fit a theoretical rectangular grid to the ablation marks. The numbers of X- and Y-

grid steps were defined as set up during the MALDI acquisition. The center of the 

acquisition region was considered as the center of the grid. The orientation of the grid with 

respect to the post-MALDI microscopy image was optimized by finding an angle which 

resulted in the best overlap between the grid lines and the detected ablation marks. The X- 

and Y-spacing of the grid were optimized by minimizing the distance between the grid nodes 

and the center of mass of the nearest neighbor ablation mark. Then, only ablation marks 

which were the nearest neighbors to the grid nodes were taken and re-indexed (Extended 

Rappez et al. Page 12

Nat Methods. Author manuscript; available in PMC 2022 January 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://metaspace2020.eu


Data Fig 3). This provided X- and Y-coordinates for each ablation mark associated with a 

collected MALDI spectrum. In order to improve estimations of the ablations marks areas 

used later for normalization, their segmentation was further improved by applying a custom 

region-growing algorithm implemented in Python. In step d), co-registration of pre- and 

post-MALDI microscopy images was done based on the pen marks drawn on the edge of the 

wells used as fiducials. We first segmented the pen marks in both pre- and post-MALDI 

bright-field microscopy images using Otsu’s intensity thresholding method. Then, we used 

the basin-hopping optimization algorithm (Python implementation from the scipy package 

v0.18.1) to find the best linear transformation matching the coordinates of the edges of the 

pen marks between the pre- and post-MALDI images (Extended Data Fig 2). The optimal 

linear transformation was applied to the post-MALDI microscopy images to map the 

ablation marks to the pre-MALDI microscopy images.

SpaceM processing

A normalized intensity of each metabolite in a single cell was constructed as follows. For 

each cell, we only considered the ablation marks which were overlapping with cells by at 

least 45% of their ablation area. This overlap is called sampling area. Additionally, the 

ablation marks that share less than 90% of their sampling area with the cell of interest are 

discarded. The metabolite intensities coming from an ablation mark were normalized by 

dividing them by the ratio of the sampling area to the area of the ablation mark. Finally, for 

each cell its normalized metabolite intensities were calculated as the weighted average 

normalized intensities of the associated ablation marks where the weights are defined as the 

ratio of the shared pixels (Extended Data Fig 4).

Selecting intracellular metabolites

We selected metabolite annotations corresponding to intracellular metabolites as follows. 

First, for each ablation mark we assigned to it the inside-cells label having values either of 

zero or one based on whether the mark has any overlap with any cell. Then, for each 

metabolite ion image, its intensities were binarized to zero-one values by selecting a 

threshold leading to the highest Spearman correlation with the inside-cells labels. The 

threshold value was found using the basin-hopping optimization algorithm. In order to 

consider only intracellular metabolites for further analysis, we selected those metabolite 

annotations whose binarized ion images were correlated with the inside-cells labels with the 

spearman correlation higher than 0.25. For the co-culture study we considered the metabolite 

annotations which were detected by METASPACE in at least 2 samples (out of 6 overall: 2 

replicates of co-culture, 2 mono-cultures of NIH3T3 cells and 2 mono-cultures of HeLa 

cells) that led to 88 annotations. For each metabolite annotation, we pulled the ion images 

with the m/z tolerance of 3ppm from the imzML files.

Classification of ion images of METASPACE annotations into on- and off-sample classes

In the study of hepatocytes (Figure 2–3), we employed an advanced strategy to filter out 

background ions which might correspond either to matrix or contamination. First, we 

considered all ions annotated by METASPACE with 50% FDR. Then, two experts in 

MALDI-imaging performed manual tagging of these annotations (on-sample or off-sample) 

by loading every annotation in METASPACE and browsing the first 20 annotations from 
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public METASPACE datasets. Based on the annotation ion images, the decision was made 

for each annotation whether it is more likely to be on- or off-sample. These taggings were 

then corrected using machine learning trained on the hepatocytes data following a molecular 

co-localization method we recently developed55. For every MALDI-imaging dataset, we 

have performed the following machine learning-based procedure to classify all its 

METASPACE annotations into on- and off-sample classes. First, for the ion image of each 

annotation we calculated its cosine co-localization with images of other annotations. As a 

result, every annotation was represented in a Euclidean space of the dimensions equal to the 

number of all considered annotations in this dataset. In this space, we have performed 

Support Vector Machine classification of on- and off-sample annotations by using the tags 

provided by experts as labels (using Python package scikit-learn 0.22.1). Overall 740 ions 

were classified as on-sample and were annotated by METASPACE.

Single cell data analysis

Single cell data from SpaceM were analyzed using Scanpy (v1.4.5)56. First cells with less 

than 5 metabolites were filtered out. The intensities were normalized per cell such that each 

cell has a total intensity equal to the median of total intensity per cell before normalization. 

The metabolite intensities are log10 transformed. Datasets from the same conditions are 

batch corrected. For the co-culture datasets, the batch balanced kNN integration (BBkNN) is 

performed 56. For the hepatocytes datasets, the scanpy implementation of the combat batch 

correction has been used condition-wise (Supp. Fig. 9). The Principal Component Analysis 

(PCA) is then computed followed by scaling the metabolite intensities to unit variance and 

zero mean. A neighborhood graph of observations is computed as described in the UMAP 

implementation of 56 with the parameters n_neighbors=25 and metric=‘cosine’, the rest is 

set as default.

Cell type classification for the co-culture study

The spatio-molecular matrices from HeLa and NIH3T3 cells were generated using the 

SpaceM processing with the following ablation marks filter parameters: sampling proportion 

45%, upper area limit 95th percentile, sampling specificity 90%. The assignment of the cell 

type based on the constitutive fluorescence of the cells (mCherry for HeLa, GFP for 

NIH3T3) was done by finding a separating linear boundary between the two populations 

(Supp. Fig. 4A). The resulting cell types provided the ground truth labels. The cells were 

classified with accuracy of 91.3% based on their metabolic profiles (88 metabolite 

intensities) using the Linear Discriminant Analysis (LDA) (Supp. Fig. 4D). The 

classification accuracy has been estimated by performing a 10 times-repeated stratified 10-

fold cross validation with different randomization in each repetition (100 repetitions in 

total).

Analysis of hepatocytes single-cell data

The spatio-molecular matrices from hepatocytes were generated using the SpaceM 

processing with the following ablation marks filter parameters: sampling proportion 45%, 

upper area limit 95th percentile, sampling specicity 40%. After computation of the neighbor 

graph, Leiden unsupervised clustering was performed to define metabolic states. UMAP 

visualization was computed to initialize the partition-based graph abstraction (PAGA) 
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layout56. The Leiden clusters defined the groups for the PAGA algorithm implemented in 

Scanpy 1.4.5. The ForceAtlas2 layout has been used for computing the positions of each cell 

using the PAGA layout as coordinates for initialization (Supp. Fig. 9). To define the 

metabolite markers of a cluster, a t-test was performed between that cluster and the rest of 

the cells. Metabolites with a t-statistic superior to 60 were considered as markers. The 

pseudotime trajectory was computed using the coordinates of the PAGA graph, where the 

pseudotime value of a cell was equal to its normalized sorted index along the axis which 

shows the largest variation.

LC-MS/MS analysis on bulk cell cultures

Sample preparation—Lipids and fatty acids were extracted using the Folch method with 

chloroform:methanol (2.5:1). For lipidomics analysis, the dried samples were reconstituted 

in isopropanol:methanol (1:1) and injected 10uL into the LC-MS system. For metabolomics 

analysis, metabolites were extracted in 80% methanol and directly injected 20uL into the 

LC-MS system.

LC-MS/MS methods for lipidomics—LC-MS/MS analyses were performed on a 

Vanquish Ultra-High Performance Liquid Chromatography (UHPLC) system coupled to a 

Q-Exactive Plus High Resolution Mass Spectrometry (HRMS) (ThermoFisher Scientific) 

with an electrospray ionization (ESI) source operated in either positive or negative mode. 

The separation of lipids and fatty acids was carried out using an Agilent Poroshell EC-C18 

column (3 x 50 mm; 2.7 μM) maintained at 40 °C at the flow rate of 0.26 ml/min. The 

mobile phase consisted of solvent A (acetonitrile−water (4:6)) and solvent B (isopropyl 

alcohol−acetonitrile (9:1)), which were buffered with either 10 mM ammonium acetate (for 

negative mode) or 10mM ammonium formate acidified with 0.1% formic acid (for positive 

mode). The UHPLC gradient was set at 20%, 20%, 45%, 52%, 66%, 70%, 75%, 97%, 97%, 

20%, 20% of solvent B at the time points 0, 1.5, 4, 5, 7, 8, 10, 12, 15, 16, 19 min, 

respectively. Fatty acids and lipids were detected with the HRMS full scan at the mass 

resolving power R=35000 in the mass range of 100-1500 m/z. The data-dependent tandem 

(MS/MS) mass scans for five most intense ions (TOP5) were obtained along with full scans 

using higher energy collisional dissociation (HCD) with normalized collision energies of 20, 

30 and 40 units at the mass resolving power R=17500. The MS parameters in the Tune 

software (ThermoFisher Scientific) were set as: spray voltage of 4 kV, sheath gas 30 and 

auxiliary gas 5 units, S-Lens 65 eV, capillary temperature 320 °C and vaporization 

temperature of auxiliary gas was 300 °C.

LC-MS/MS methods for metabolomics—LC-MS/MS metabolomics analysis was 

carried out using an Xbridge BEH Amide column (100X 2.1 mm; 2.5 μM) maintained at 40 

°C at the flow rate of 0.3 ml/min. The mobile phase consisted of solvent A (7.5 mM 

ammonium acetate with 0.05% NH4OH) and solvent B (acetonitrile). The UHPLC gradient 

was set at 85%, 85%, 10%, 10%, 85%, 85% of solvent B at the time points 0, 2, 12, 14, 14.1, 

6 min, respectively. Metabolites were detected with HRMS full scan at the mass resolving 

power R=70000 in mass range of 60-900 m/z. The data-dependent MS/MS mass scans were 

obtained along with full scans using HCD of normalized collision energies of 10, 20 and 30 

units which were at the mass resolving power R=17500. The MS parameters in the Tune 
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software (ThermoFisher Scientific) were set as: spray voltage of 4 kV (for negative mode 3.5 

kV), sheath gas 30 and auxiliary gas 5 units, S-Lens 65 eV, capillary temperature 320 °C and 

vaporization temperature of auxiliary gas was 300 °C. Data was acquired in the full scan 

mode and MS/MS mass spectra for TOP5 precursor ions.

LC-MS/MS validation of METASPACE annotations—LC-MS/MS validation of lipid 

and metabolite METASPACE annotations was performed either by comparing retention 

times, exact m/z (MS) and fragmentation pattern (MS/MS) spectra with authentic standards 

or by matching MS/MS spectra with the EMBL Metabolomics Core Facility (MCF) spectral 

library (available at http://curatr.mcf.embl.de/) and public spectral libraries (LipidBlast, 

LIPID MAPS and mzCloud). The details of annotation validation are summarized in 

Supplementary Data S1. The structural annotation procedure for head groups (HD) and fatty 

acid side chains (SD) is described in detail in 53.

LC-MS/MS analysis of mouse liver tissue

Lipid extraction—Frozen tissue was first ground to a powder (to homogenize the tissue) 

using a hand-held mortar and pestle and the ground tissue was then weighed. Before Lipid 

Extraction, 10 uL of the Splash Lipidomix Mass Spec standard (Avanti Polar Lipids, 

Alabama, U.S.A) was added to the ground tissue. 500 ul of chloroform was then added 

followed by 20 s of vortexing. For phase separation, 200 uL of water was added to each 

sample followed by 20 s vortexing. Samples were then kept in the cold for 10 minutes 

followed by then added to induce phase separation. The mixture was then centrifuging for 5 

minutes at 600 rpm. The lipid layer (bottom layer) was then pipetted out and the solvent 

dried down under a stream of Nitrogen. Prior to LC-MS analysis, the lipid extract was 

reconstituted using 50:50 isopropanol: methanol. All samples were normalized to a w/v of 1 

mg/ml.

LC-MS/MS analysis—Lipid extracts were separated on a Kinetex C18 2.1 x 100 mm, 2.6 

μm column (Phenomenex, Aschaffenburg, De). Separation was achieved by gradient elution 

on a binary solvent Vanquish UHPLC (Thermo Fisher Scientific, Bremen, DE). Mobile 

Phase A consisted of ACN: H2O (60:40) while mobile phase B consisted of IPA: ACN 

(90:10). For positive ionization, the mobile phases were modified with 10 mM ammonium 

formate and 0.1% formic acid while for the negative ionization mode, the mobile phases 

were modified with 5 mM ammonium acetate and 0.1% acetic acid. A flow rate of 260 

μL/min was used for the separation and the column and sample tray were held constant at 30 

°C and 4 °C respectively.

MS Instrumentation—MS analysis was performed on a Q-Exactive plus Mass 

Spectrometer (Thermo Fisher Scientific, Bremen, DE) equipped with a heated electrospray 

ionization probe. In both the positive and negative ionization modes, the S-Lens RF level 

was set to 65, the capillary temperature was set to 320 °C, the sheath gas flow was set to 30 

units and the auxiliary gas was set to 5 units. The spray voltage was set to 3.5 kV in the 

negative ionization mode and 4.5 kV in the positive ionization mode. In both modes, full 

scan mass spectra (Scan Range m/z 100 -1500, R=35K) were acquired along with data-

dependent (DDA) MS/MS spectra of the 10 most abundant ions. DDA MS/MS spectra were 
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acquired using normalized collision energies of 30, 40, and 50 units (R= 17.5K and an 

isolation width = 1 m/z). The instrument was controlled using Xcalibur version 4.0.

Data analysis and initial lipid annotation—Progenesis Q1, version 2.3 (NonLinear 

Dynamics, a Waters Company, Newcastle upon Tyne, UK) was used for peak picking and 

for chromatographic alignment of all samples). Lipids were initially annotated from 

Progenesis Metascope and LipidBlast databases. Putative identification of lipids was done 

for ions that had MS/MS data.

Confirmation of lipid identification—A pooled sample was used for the lipid 

identification of statistically significant lipids. An inclusion list was created to acquire 

MS/MS spectra of the TGs lipids and spectra were acquired as described above. Full scan 

spectra of the pooled sample were also acquired by polarity switching between the positive 

and the negative ionization modes. Separate polarity switching experiments were acquired 

using mobile phases used in the positive ionization mode (containing ammonium formate 

and formic acid) analysis and those used for negative ionization mode (containing 

ammonium acetate and acetic acid analysis. For the polarity switching experiments, DDA 

MS/MS spectra were also collected in the negative mode. LC-MS/MS spectra of some of the 

significant lipids can be found in the Supplementary Data S1.

Statistics and Reproducibility

The reported p-values of the Pearson and Spearman correlations were calculated using the 

‘scipy.stats.pearsonr’ and ‘scipy.stats.spearmanr’ functions from the Scipy 1.4.1 Python 

package. In both cases, the p-values were computed from a two-tailed test using the exact 

distribution of the correlation coefficient under the assumption that the values are drawn 

from independent normal distributions.

Data visualization

All plots were generated in Python, version 3.6.2, by using the packages matplotlib 3.1.3 

and seaborn 0.8.1. The single cell analysis and visualizations were carried on using the 

Scanpy 1.4.5 module.
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Extended Data

Extended Data Fig. 1. 

Extended Data Fig. 2. 
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Extended Data Fig. 3. 

Extended Data Fig. 4. 

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Google Collaboratory (https://colab.research.google.com/drive/

1CKdHDUkGIpAcBzrSfuCodMF_l2xbVAKT).
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Figure 1. The SpaceM workflow and validation.
SpaceM integrates light microscopy and MALDI-imaging mass spectrometry to provide a 

metabolic profile obtained in situ for each cell. Segmented microscopy images help delineate 

cells and quantify their morphometric properties, spatial organization, and fluorescence. The 

cells are further subjected to MALDI-imaging mass spectrometry and metabolite annotation 

which reveals their metabolomes, followed by normalization. B: SpaceM provides a single-

cell spatio-molecular matrix that integrates the metabolic profiles and other information 

obtained using microscopy. C: We validated SpaceM by predicting cell types of co-cultured 

human HeLa epithelial cells (H1B-mCherry, magenta) and mouse NIH3T3 fibroblasts (GFP, 

cyan). Representative image from 2 independent experiments. D: UMAP visualization of 
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846 co-cultured cells (HeLa, magenta; NIH3T3, cyan) using intensities of 88 metabolites. 

Unsupervised Leiden clustering applied to the metabolic profiles classified both cell types 

with an accuracy of 91.3% (see also Figure S7). E: Volcano plot (log2 of the fold change 

HeLa/NIH3T3 vs. -log10 of the two-tailed independent t-test p-value) showing differential 

properties of the 88 detected metabolites.
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Figure 2. SpaceM identifies a steatotic subpopulation in lipid stimulated human hepatocytes.
A: Microscopy images of the human dHepaRG hepatocytes stimulated with oleic and 

palmitic fatty acids illustrating their heterogeneity in lipid droplets accumulation; red: 

LD540 staining for lipid droplets; blue: Hoechst staining for cell nuclei. Representative 

image from 4 independent experiments. B: UMAP visualization of single-cell metabolic 

profiles (740 metabolites) of 2,840 single cells revealed two co-existing subpopulations with 

statistically different lipid droplet levels (see also Figure S9). C: UMAP plots showing 

single-cell intensities of metabolites most associated with the lipid droplet accumulation: 

triglyceride TG(48:0), Spearman correlation r=0.38 (two-tailed test p-value=2.04e-100, 

***), and an ion corresponding either to lysophosphatidylethanolamine LPE(21:1) or 

isomeric lysophosphatidylcholine LPC(18:1), negative Spearman r=−0.23 (two-tailed test p-

value=1.09e-34, ***). D: Correlation values between LD540 and lipid intensities across 

2,840 single-cells, grouped by the lipid class. Tri-(TG) and di-glycerides (DG) are the most 

correlated which is in line with their reported function to compose the hepatic LDs core. 

Tukey box plots for each lipid class: center line: median; box limits: upper and lower 

quartiles; whiskers: 1.5x interquartile range. E: Enriched lipid ontology terms (LO) for 
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lipids with an LD540-correlation >0.1 and <−0.1. Enriched LO terms from lipids with a high 

correlation with LD540 show enrichment of the neutral lipid metabolism, TGs, DGs, and 

lipid droplet biology, which is expected and therefore serves as a supportive argument for 

the capacity of SpaceM to detect and quantify biologically relevant molecules.
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Figure 3. SpaceM discovers and characterizes metabolic states of stimulated hepatocytes, cross-
validated by preclinical NASH models.
A: Microscopy images of the human dHepaRG hepatocytes (CTRL), also stimulated with: 

fatty acids (+FA), further with IL-17A (+FA+IL17A), and further with an NF-kB inhibitor 

TPCA1 (+FA+IL17A+TPCA1); red: LD540 staining for lipid droplets; blue: Hoechst for 

nuclei; white: cells outlines. Representative images from 4 independent experiments per 

culture condition. B: PAGA visualization and unsupervised Leiden clustering of single-cell 

metabolic profiles (740 metabolites) reveal homeostatic, intermediate, and steatotic 

metabolic states of 29,738 hepatocytes. LD540 levels per metabolic states (homeostatic vs 

steatotic, two-tailed independent t-test p-value=0, ***; intermediate vs steatotic, two-tailed 

independent t-test p-value=1.4e-299, ***). Tukey box plots with center line: median; box 

limits: upper and lower quartiles; whiskers: 1.5x interquartile range. Black line shows a 

pseudotime trajectory from the homeostatic to steatotic states. C: Each condition separately, 

with cell values of LD540 in red, highlighting the gradient of the lipid droplet accumulation 

from the homeostatic to steatotic state. Pie charts show the proportions of the metabolic 

states in each condition. D: Normalized intensities of metabolic-state markers (t-statistic 
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>60) for all cells along the pseudotime. E: Heatmap for the metabolic-state markers from C. 

Red star indicates validation by LC-MS/MS in the considered mouse model. For each state, 

the enriched lipid ontology (LO) terms are displayed. F: Semi-quantitative validation of 

selected metabolic markers of the homeostatic and steatotic states in an in vivo NASH 

mouse model with the normal diet (ND) vs Western diet (WD). For HepaRG, intensities of 

2,500 randomly-selected cells are shown for each state. For the mouse model, average LC-

MS intensity (n=3 replicates) per diet group is shown. Molecular names, left: putative MS1 

annotations; right: structurally-validated by LC-MS/MS. ***denotes p-value<0.001.
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