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A B S T R A C T   

In the last decade, there's been a rising emphasis on eco-friendly solvents in industry and academia due to 
environmental concerns. Vegetable oils are now recognized as a practical, non-toxic option for extracting phy-
tochemicals from herbs. This study presents a novel, green, and user-friendly method for extracting phenolic 
content from Crocus sativus L. waste using ultrasound. It replaces conventional organic solvents with sustainable 
sunflower oil, making the process eco-friendly and cost-effective. The effects of temperature (18–52 ◦C), ultra-
sonic time (5–55 min), and solid-solvent ratio (5–31 g/100 mL) were assessed by applying response surface 
methodology (RSM) and Central composite design. The combined impact of solid-solvent ratio, temperature, and 
ultrasonic time led to heightened phenolic content and antioxidant activity in the enriched oil. However, when 
these variables were at their maximum levels, there was a decline in these attributes. The specific conditions 
found to be ideal were a solid-to-liquid ratio of 26 g/100 mL, a temperature of 45 ◦C, and a duration of 45 min. 
The optimum extraction condition yielded the expected highest phenolic content (317.15 mg/ Kg), and anti-
oxidant activity (89.34%). The enriched oil with flower saffron enabled the utilization of renewable natural 
ingredients, ensuring the production of a healthy extract or product. Also, enriched oils find diverse applications 
in areas such as food, aquaculture, and cosmetics.   

1. Introduction 

Synthetic preservatives are widely used in the food industry to 
maintain quality and prolong shelf life, but their impact on food 
composition and health is concerning (Mahato et al., 2019; Singh et al., 
2021). Natural antioxidants offer a promising alternative, gaining trac-
tion for their ability to stabilize foods without the drawbacks of their 

synthetic counterparts (Shahid et al., 2022). Scientists are investigating 
natural alternatives from medicinal and aromatic plants to replace 
artificial food preservatives. These plants offer antimicrobial and anti-
oxidant properties that can safely preserve food without harmful 
chemicals (Vijaya Kumar et al., 2009; Yap et al., 2021). 

Crocus sativus L., a medicinal plant renowned for its saffron- 
producing stigmas, has garnered significant attention due to its 
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therapeutic properties, culinary applications, and high economic value. 
Saffron contains 150+ volatile compounds, with crocin, safranal, and 
picrocrocin being key. Despite their diverse origins, these contents lend 
saffron its color, flavor, and aroma (Jarukas et al., 2020; Moraga et al., 
2009; Rahaiee et al., 2015; Rubio et al., 2008; Slimani et al., 2022). 
Studies highlight their potent antioxidant effects both in vitro and in vivo 
(Cerdá-Bernad et al., 2022; Clinton, 2009; Delam et al., 2023; Kun et al., 
2006; Memarzia et al., 2023). Saffron's powerful antioxidants make it a 
key ingredient for new products in food, medicine, and cosmetics (Abu 
Safe et al., 2023; Amatto et al., 2024; Colucci Cante et al., 2022; Rahaiee 
et al., 2015). 

In recent years, there has been a growing focus on utilizing advanced 
technologies like ultrasound assisted extraction alongside environmen-
tally friendly solvents such as sunflower oils to extract phenolic content 
from vegetable waste and by-products. This approach has proven its 
advantages, not only in minimizing health risks but also in promoting 
environmental preservation in a financially viable and sustainable 
manner for our planet (Jaski et al., 2022; Kyriakoudi et al., 2024; Li 
et al., 2013; Younis et al., 2022). Recently, it's common to enrich edible 
fatty acids with antioxidants, enhancing their stability, nutrition, and 
pharmaceutical value (Bouaziz et al., 2008; Irwandi Jaswir, 2011; 
Kaderides et al., 2015; Ninčević Grassino et al., 2020). While previous 
research has explored various extraction methods for C. sativus flowers, 
ultrasonic-assisted extraction with sunflower oil as a solvent remains 
underexplored. 

This study addresses this gap by developing an ultrasonic-assisted 
extraction technique to efficiently extract phenolic content from 
C. sativus by-products using sunflower oil. This study also investigates 
the influence of various parameters, including temperature, time, and 
solid-to-liquid ratio, on the extraction efficiency of phenolic content and 
the antioxidant activity of C. sativus flower. Thus, the response surface 
methodology was chosen to optimize the extraction parameters using 
the Central composite design. 

2. Materiel and methods 

2.1. Phenolic content extraction 

Plant material used in this study was composed of C. sativus flower 
from Taliouine region (province of Taroudant, Morocco). The flowers 
were obtained from the Fogoug Agricultural Cooperative in Octo-
ber–November 2019. Taliouine region is situated at an elevation of 
1586 m, with coordinates of approximately 30.53 latitude and − 7.92 
longitude. Phenolic content was extracted from C. sativus flower, uti-
lizing ultrasound at a frequency of 35 kHz, employing sunflower oil as 
alternative solvent. The mixture was then centrifuged at 1411 relative 
centrifugal force (RCF) for 10 min, and the supernatant was recovered. 
The oil we used is characterized by its low phenolic content, almost 
negligible, and a reduced percentage of 2,2-Diphenyl− 1-picrylhydrazyl 
(DPPH). These characteristics allowed us to consider enriching it with 
saffron bioproducts. 

2.2. Experimental design and optimization 

Optimization strategies offer a structured approach to identifying the 
optimal conditions for extracting bioactive content from plants through 
the analysis of interactions within different mixtures (Fadil et al., 2024, 

2022; Garcia et al., 2010). In this study, a central composite design was 
used to determine the effect of variables; temperature (X1, expressed as 
◦C), sonication time (X2, indicated in min) and material/solvent (X3, 
measured in g/100 mL). These three factors were thoughtfully selected 
to guarantee precise adjustment during the extraction procedure 
(Table 1). The experimental procedure's diagram is illustrated in Fig. 1. 

2.3. Preparation of hydrophilic fraction 

The hydrophilic fraction of the enriched oil was prepared. Initially, 
10 g of each sample were mixed with 20 mL of water-methanol (2:8) at 
room temperature (24 ± 2 ◦C) for 20 min (Arranz et al., 2008). Then, the 
mixture was centrifuged at 1411 RCF, and the supernatant was recov-
ered. The latter is evaluated for its phenolic content as well as its anti-
oxidant capacity. 

2.4. Total phenolic content determination 

The quantification of total phenolic content (TPC) was conducted 
through a colorimetric assay that relies on the oxidation of phenols by 
the Folin-Ciocalteu reagent. The blue product generated, measured at 
725 nm, corresponds proportionally to the phenol concentration 
(Singleton & Rossi, 1965). To convert absorbance values to milligrams 
of gallic acid equivalents per kilogram of dry matter (mg GAE/ Kg DM), 
a calibration curve with gallic acid was utilized. 

2.5. Radical-scavenging activity 

In order to assess the antioxidant capacity of saffron, samples were 
exposed to a DPPH solution. The degree of DPPH reduction, determined 
by the reduction in absorbance, indicates the sample's capability to 
neutralize free radicals (Brand-Williams et al., 1995). 

Antioxidant activity (%) = (Abs DPPH–Abs final)/(Abs DPPH) x100
(1)  

2.6. Mathematical model 

The model fit was evaluated by the coefficient of determination (R2) 
and by the p-values. The following polynomial equation of the Xi func-
tion was fitted for each factor evaluated at each experimental point: 

Y=β0+β1X1+β2X2+β3X3+β12X1X2+β13X1X3+β23X2X3+β123X1X2X3+ε
(2) 

Where Y is the predicted response; β0 represents the mean response 
value; β1, β2, and β3 are the coefficients of the main terms; β11, β22, and 
β33 are the coefficients of the quadratic terms; β12, β13, and β23 are the 
coefficients of the interaction terms; and ε is the error term. 

The R-squared coefficient, which indicates the proportion of varia-
tion in the mean response explained by the regression and represents the 
correlation between the observed and predicted responses, highlights 
the model's lack-of-fit (Fadil et al., 2022). 

The model coefficients were considered significant for p-values 

Table 1 
Coded and real levels of independent variables.  

Variables Levels 

-α -1 0 +1 +α 

Temperature X1 (◦C) 18 25 35 45 52 
Time X2 (min) 5 15 30 45 55 
Solid/Liquid X3 (g/100 mL) 5 10 18 26 31  

Fig. 1. Diagram of the experimental procedure.  
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<0.05 and they were determined using the t-test (only significant co-
efficients with a p-value <0.05 are included). 

A contour plot with isoresponse curves pinpointed compromise 
zones for the desired outcome. Using the “desirability” technique, an 
optimal setup balancing opposing factors was determined. This 
approach accounted for trade-offs among parameters to enhance the 
response. Pareto charts were then used to showcase the importance of 
various combinations (Fadil et al., 2022). 

2.7. Statistical analysis 

The experiments of the chosen experimental design were designed 
and analyzed using the JMP Pro software version 15 (SAS Institute, 
Cary, NC, USA). A total of 19 combinations were used (Table 2). Ana-
lyses were conducted in triplicate to provide degrees of freedom for pure 
error and lack-of-fit calculations. Results were presented as mean ± SD 
and analyzed using ANOVA at a 95% confidence level. Mean compari-
sons were assessed using Tukey's test. Model validation was done via 
ANOVA with a significance level of 95%, comparing predicted responses 
from different models for statistical significance. 

3. Results 

3.1. Effect of extraction parameters on oil enriched with C. sativus flowers 

Phenolic content in the 19 combinations varies from 80.33 to 378 
mg/kg of C. sativus flowers. Experiment 18 (26 g/100 mL ratio, 45 ◦C, 
and 45 min of extraction time) yielded the greatest amount of phenolic 
content. On the other hand, experiment 2 (10 g/100 mL ratio, 25 ◦C, and 
15 min as extraction time) provided the lowest concentration (Table 3). 
The DPPH free radical content ranged from 57.25 to 93.64%. The peak 
value was documented in experiment 19, conducted with a ratio of 52 g/ 
100 mL, at 30 ◦C, and an extraction duration of 18 min. Conversely, the 
lowest value was noted in experiment 7, where a ratio of 5 g/ 100 mL 
was used, along with a temperature of 35 ◦C, and an extraction time of 
30 min. 

3.2. Central composite design 

The model's high coefficients of determination (R2), standing at 0.8 

Table 2 
: Experimental matrix of the central composite design based on temperature 
(X1), time (X2), and S/L ratio (X3).  

N Variables 

Temperature X1 (◦C) Time X2 (min) S/L Ratio X3 (g/ 100 mL) 

1 18 30 18 
2 25 15 10 
3 25 15 26 
4 25 45 10 
5 25 45 26 
6 35 5 18 
7 35 30 5 
8 35 30 18 
9 35 30 18 
10 35 30 18 
11 35 30 18 
12 35 30 18 
13 35 30 31 
14 35 55 18 
15 45 15 10 
16 45 15 26 
17 45 45 10 
18 45 45 26 
19 52 30 18  

Table 3 
: Experimental results of the Central Composite design.  

N◦ Variables Responses 

X1 

Temperature (◦C) 
X2 

Time 
(min) 

X3 

S/L Ratio (g/100 mL) 
Phenolic content 
(mg /kg) 

DPPH (%) 

Observeda Predictedb Observeda predictedb 

1 18 30 18 270 ± 2 197.21 88.58 ± 0.28 85.51 
2 25 15 10 80.33 ± 1.18 144.53 71.48 ± 0.27 69.64 
3 25 15 26 95.33 ± 0.33 107.72 71.99 ± 0.23 73.27 
4 25 45 10 106.33 ± 0.36 125.87 72.01 ± 0.17 73.14 
5 25 45 26 109.67 ± 0.57 144.23 77.00 ± 0.63 81.40 
6 35 5 18 81.67 ± 0.63 62.12 65.78 ± 0.06 69.65 
7 35 30 5 101.33 ± 0.71 72.32 53.0 ± 0.3 57.25 
8 35 30 18 106.0 ± 0.3 122.84 69.90 ± 0.71 73.52 
9 35 30 18 127.67 ± 1.49 122.84 74.83 ± 0.15 73.52 
10 35 30 18 124.67 ± 1.04 122.84 74.27 ± 0.19 73.52 
11 35 30 18 125.67 ± 0.49 122.84 74.21 ± 0.09 73.52 
12 35 30 18 127.33 ± 1.34 122.84 74.49 ± 0.23 73.52 
13 35 30 31 166.33 ± 0.21 182.59 81.90 ± 0.17 78.20 
14 35 55 18 136.6 ± 0.1 144.09 80.12 ± 0.63 76.69 
15 45 15 10 114.67 ± 0.74 88.52 73.77 ± 0.52 69.06 
16 45 15 26 217.00 ± 1.86 205.88 88.03 ± 0.15 86.59 
17 45 45 10 154.33 ± 0.61 150.37 70.98 ± 0.14 69.39 
18 45 45 26 378.67 ± 0.18 322.90 90.00 ± 0.73 91.54 
19 52 30 18 240.33 ± 0.25 301.47 90.14 ± 0.23 93.64 

a: The predicted value. 
b: The observed value is given with the standard deviation of the response in our experimentation. 

Table 4 
: Regression equation and model fitting for total phenolic content and free radical scavenging activity (DPPH) of enriched oils.  

Responses Equations p-value LF R2 

Polyphenols Y1 = 913.08 − 40.27 X1 − 3.23 X2 − 17.05 X3 + 0.44 X2
1 − 0.03 X2

2 + 0.04 X2
3 + 0.13 X1X2 + 0.48 X1X3 + 0.11 X2X3 (3) 0.0254 0.0591 0.80 

DPPH % Y2 = 129.87 − 4.27 X1 + 0.19 X2 + 0.23 X3 + 0.07 X2
1 − 0.01 X2

2 − 0.03 X2
3 − 0.01 X1X2 + 0.43 X1X3 + 0.01 X2X3 (4) 0.0016 0.0583 0.90 

LF: lack of fit; R: regression. 
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for phenolic content and 0.9 for DPPH, highlight its capability to 
effectively elucidate a substantial proportion of the variation within the 
dataset. The model demonstrated significant p-values for both phenolic 
content (0.059), and DPPH (0.058), indicating its suitability for the data. 
The significant lack-of-fit suggests that the pure error of the model serves 
as an independent measure of the dispersion within the experimental 
design. Essentially, the lack-of-fit test confirms that the variability in the 
data arises primarily from the model rather than other factors like 
experimental error (Myers et al., 2009) (Table 4). 

3.3. Effect of extraction parameters 

The response TPC is notably influenced by significant terms (p-values 
<0.05), including the constant term, quadratic term of temperature, 
quadratic term of material/solvent ratio and the interaction terms of 
X1X2, X1X3 and X2X3 (Eq. 3, Table 4). Similar relationships were 
observed for IC50 of stigmas (Eq. 4, Table 4). 

3.4. Parameters optimization and desirability 

3.4.1. Appropriacy of the extraction parameters on phenols compounds 
Phenolic content surpassing 322.89 mg/kg can be reached by setting 

the sonication time to its maximum of 45 min and ensuring the highest 
temperature and material/solvent ratio (Fig. 2). Moreover, according to 
the desirability function, there is an 85% chance of reaching TPC values 
of 322.89 mg/Kg by keeping the temperature at 45 ◦C, maintaining the 
material/solvent ratio at 26 g/100 mL, and adjusting the sonication time 
to 45 min (Fig. 4). 

3.4.2. Appropriacy of the extraction parameters on DPPH 
By adjusting the sonication duration to its maximum of 45 min and 

optimizing the temperature and the ratio of material to solvent, it is 
possible to attain antioxidant activity exceeding 91.53%, as depicted in 
Fig. 3. Furthermore, according to the desirability function, there is an 
85% probability of reaching DPPH values of 91.53% by maintaining the 
temperature at 45 ◦C, the material/solvent ratio at 26 g/100 mL, and the 
sonication time at 45 min (Fig. 4). 

3.5. Pareto diagrams 

The Pareto diagrams provided a visual representation of the signif-
icance of various combinations in a hierarchical manner (Fig. 5). These 
illustrations demonstrated that the level of antioxidants extracted 
increased with greater solvent concentration and temperature, but 

Fig. 2. : Response surfaces showing the combined effect of parameters (S/L ratio, temperature, and extraction time) on the response in phenolic compounds (TPC). 
(A) estimated S/L ratio and extraction time response surface; (B) estimated S/L ratio and temperature response surface; (C) estimated extraction time and tem-
perature response surface. 
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decreased with longer extraction periods and larger quantities of plant 
material for both phenolic content (Fig. 5(1)) and DPPH % (Fig. 5(2)). 
This implies that there exists an optimal combination of these parame-
ters to enhance antioxidant extraction. 

3.6. Experimental validation of optimal conditions 

The empirical values closely matched the predicted values derived 
from the final selected model, with no notable difference between 
experimental and predicted responses (Table 5). Hence, we can infer 
that the three extraction factors optimized through response surface 
methodology reliably predict phenolic content yield and antioxidant 
activity in our extracts. 

4. Discussion 

Response surface methodology (RSM) employs designed experi-
ments to model how independent variables affect system performance, 
facilitating optimization of process conditions. Efficient design gathers 

ample information with fewer experiments, maximizing resource utili-
zation (Bezerra et al., 2008; Du et al., 2021; Khataee et al., 2011; Slimani 
et al., 2022; Venkata Rao & Murthy, 2018; Witek-Krowiak et al., 2014). 
Central composite design is a top choice for optimizing extraction pa-
rameters, accurately predicting key variables like yield or purity (Rah-
man et al., 2021; Vishnumulaka et al., 2008). 

This study employed the central composite design to investigate the 
influence of various factors on the extraction of bioactive content from 
C. sativus flowers. Sunflower oil, replacing traditional solvents, was used 
in ultrasound-assisted extraction, showing promise as a method for 
extracting bioactive content like carotenoids. Several studies have 
demonstrated its effectiveness in this regard (Lara-Abia et al., 2022; Nie 
et al., 2021; Veillet et al., 2010). 

Sunflower oil was identified as an eco-friendly solvent due to its high 
extraction effectiveness, minimal toxicity, sustainable sourcing, and 
higher boiling point compared to traditional organic solvents. In 
extraction yield experiments, it demonstrated superior performance 
compared to other vegetable oils (Chemat & Vian, 2014; Goula et al., 
2017; Razi Parjikolaei et al., 2015; Sachindra & Mahendrakar, 2005). 

Fig. 3. : Response surfaces showing the combined effect of parameters (S/L ratio, temperature, and extraction time) on the response in RSA (DPPH %). (A) estimated 
S/L ratio and temperature response surface; (B) estimated S/L ratio and time response surface; (C) estimated extraction time and temperature response surface. 

C. Slimani et al.                                                                                                                                                                                                                                 



Food Chemistry: X 23 (2024) 101579

6

According to the tendency observed in the response surface plot 
(Figs. 2 & 3), the highest phenol content could be achieved with a higher 
extraction temperature which concurs with the obtained data in Table 3. 
Increasing the temperature from 25 ◦C to 45 ◦C led to increase in the 
phenolic content yield of sunflower oil, but exceeding 45 ◦C resulted in a 
decrease, influenced our decision to use 45 ◦C as the optimal tempera-
ture for extracting antioxidants from saffron flower. Higher tempera-
tures enhance extraction efficiency by improving solubility, diffusion, 
and penetration into cellular tissues (Boonkird et al., 2008; Goula et al., 
2017; Purohit & Gogate, 2015; Tiwari et al., 2010). However, temper-
atures beyond a certain threshold can denature thermolabile antioxi-
dants (Dong et al., 2010; Rostagno et al., 2007; Spigno et al., 2007). 

High temperatures can damage antioxidants by breaking chemical 
bonds within them, leading to loss of function. This process also oxidizes 
the antioxidants themselves, rendering them inactive. Isomerization 
reactions can occur at high temperatures, converting antioxidants into 
less effective forms. Antioxidants are often stabilized with carrier mol-
ecules, but high temperatures can denature these carriers, releasing or 
deactivating the antioxidants (Blokhina et al., 2003; Mollica et al., 
2020). 

Optimizing extraction time is crucial for cost reduction and energy 
efficiency, considering the potential degradation of bioactive com-
pounds under prolonged ultrasonic exposure (Mehmood et al., 2019; 
Shen et al., 2023). Some researchers aimed to enhance the nutritional 
properties of olive oil through the infusion of olive leaves using ultra-
sound waves. Their research revealed that soaking olive oil for 45 min 
significantly boosted its nutritional content (Achat et al., 2012). 

Boosting the solid-liquid ratio (S/L) from 0.1:1 to 0.26:1 initially 
increased the phenol concentration and DPPH activity of sunflower oil. 
However, pushing it to 0.31:1 led to a drop in both, suggesting reduced 
solubility due to heightened oil saturation. This finding resonates with 
previous research (Kaderides et al., 2015; Sachindra & Mahendrakar, 
2005; Zou et al., 2013). 

Employing vegetable oils as solvents provides a more efficient 
method for extracting desired molecules from plants (Handayani et al., 
2008; Kang & Sim, 2008; Ordóñez-Santos et al., 2015; Portillo-López 
et al., 2021). Enriched oils, derived through this process, find diverse 
applications in areas such as food, aquaculture, and cosmetics. Enriched 
oils refer to oils that have been enhanced with extra nutrients, like 

vitamins, minerals, or antioxidants (Oubannin et al., 2024; Sandhya 
et al., 2023; Szabó et al., 2023; Vidal et al., 2022). 

Vegetable oils play a protective role by acting as a barrier during 
extraction, preventing the oxidation and degradation of target mole-
cules. This protective function is crucial as it helps maintain the quality 
and effectiveness of these target molecules over time (Achat et al., 2012; 
Sachindra & Mahendrakar, 2005). 

Conclusion 

The study examined how different ultrasound-assisted extraction 
conditions impact phenol content and antioxidant activity extraction 
from saffron flower. It employed central composite design and response 
surface methodology for experimental design and optimization. Three 
variables were evaluated: temperature (◦C), time (min), and S/L ratio 
(g/100 mL). Sunflower oil served as the green extraction solvent. 
Optimal conditions were found to be a solid-to-liquid ratio of 26 g/100 
mL, a temperature of 45 ◦C, and a duration of 45 min. These conditions 
resulted in an effective extraction of phenol at a concentration of 317.15 
mg/Kg and achieving an antioxidant activity level of 89.34%. 

Using vegetable oils in ultrasound-assisted plant extraction enhances 
solvation and shields against phenol degradation. This eco-friendly 
approach yields potent phenolic content and nutraceuticals. Evalu-
ating the oil's oxidative stability is advised. From a perspective, the 
analysis of the stability of enriched oils revolves around examining how 
effectively natural extracts act as antioxidants to inhibit oxidation. This, 
in turn, enhances the overall quality and extends the shelf life of the oils. 
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Fig. 5. Pareto diagrams of standardized effects of the two responses, those values exceeding the line, represent the elements that have a significant contribution to 
the model. (1): Phenolic content; (2): DPPH %. 

Table 5 
Predicted and observed values for optimal extraction conditions.   

Independent variables Phenolic content (mg/ Kg) DPPH %  

Temperature (◦C) Time (min) S/L Ratio (g/mL) Predicted valuea Observed valueb Predicted valuea Observed valueb 

Flowers 45 45 26/100 mL 322.90 317.15 ± 1.63 91.54 89.34 ± 0.73 

a: The predicted value; 
b: The observed value is given with the standard deviation of the response in our experimentation. 
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Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). 
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