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Abstract: Sepsis is a sustained systemic inflammatory condition involving multiple organ failures
caused by dysregulated immune response to infections. Sepsis induces substantial changes in energy
demands at the cellular level leading to metabolic reprogramming in immune cells and stromal
cells. Although sepsis-associated organ dysfunction and mortality have been partly attributed to the
initial acute hyperinflammation and immunosuppression precipitated by a dysfunction in innate
and adaptive immune responses, the late mortality due to metabolic dysfunction and immune
paralysis currently represent the major problem in clinics. It is becoming increasingly recognized that
intertissue and/or intercellular metabolic crosstalk via endocrine factors modulates maintenance
of homeostasis, and pathological events in sepsis and other inflammatory diseases. Exosomes have
emerged as a novel means of intercellular communication in the regulation of cellular metabolism,
owing to their capacity to transfer bioactive payloads such as proteins, lipids, and nucleic acids to
their target cells. Recent evidence demonstrates transfer of intact metabolic intermediates from cancer-
associated fibroblasts via exosomes to modify metabolic signaling in recipient cells and promote
cancer progression. Here, we review the metabolic regulation of endothelial cells and immune cells
in sepsis and highlight the role of exosomes as mediators of cellular metabolic signaling in sepsis.
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1. Introduction

Sepsis is a life-threatening organ dysfunction caused by dysregulated host response
to infection [1]. Approximately 11 million people died of sepsis globally in 2017 [2]. The
pathophysiologic feature of organ dysfunction in sepsis is a dysregulated host response
that comprises hyperinflammation and immunosuppression (a.k.a., immune paralysis).
It is notable that hyperinflammation and immunosuppression coexist from the onset
of sepsis [3]. Besides these contrasting immune responses, apoptosis, which is another
pathological process of sepsis, is thought to contribute to eliciting immunosuppression and
relapsed infections [4,5]. We will briefly discuss on this process during sepsis in Section 2.2.

Over the years several clinical trials of anti-inflammatory therapies such as the use of
corticosteroids, activated protein C, tumor necrosis factor receptor Fc (TNFR-Fc) fusion
protein, anti-tumor necrosis factor α (anti-TNF-α), thrombomodulin, and anti-interleukin1
receptor antagonist (IL-1ra) have failed to demonstrate the improvement of mortality [6–9].
With regards to immunomodulatory therapies to reverse immune paralysis, administration
of IL-7 and inhibition of programmed cell death protein 1/programmed death ligand
(PD-1/PD-L) interaction are promising investigational drugs, although their clinical effec-
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tiveness has yet to be shown [10,11]. On the other hand, granulocyte-macrophage colony-
stimulating factor (GM-CSF) therapies have shown an effect to improve symptoms of
adult patients with severe sepsis or cirrhosis by restoring innate immune responses [12,13]
and pediatric patients with multiple organ dysfunction syndrome (MODS) by preventing
nosocomial infection [14].

It is known that sepsis orchestrates profound changes in the metabolic programs of
both immune and non-immune (stromal and parenchymal) cells eventually leading to dys-
function of several organs such as the heart, lung, kidney, liver, and brain [15–18]. In sepsis,
there is a metabolic shift in cellular energy generation pathways, similar to the phenomenon
termed as Warburg effect observed in cancer cells [19], in which energy production is prefer-
entially by glycolysis rather than the more efficient oxidative phosphorylation (OXPHOS)
even in the presence of adequate oxygen levels [18,20,21]. The glycolytic switch that oc-
curs during the initial stages of inflammation may be beneficial because it enhances the
availability of metabolic intermediates to meet cellular biosynthetic and bioenergetic needs
thereby promoting processes like cellular growth, differentiation, and effector function [22].
However, inability of the cellular metabolic machinery to restore OXPHOS and reinstate
metabolic homeostasis at a later stage may result in organ dysfunction [23].

The pathophysiology of sepsis involves complex intercellular interactions, in which
not only soluble mediators but also extracellular vesicles including exosomes play an
important role. Exosomes are biological nanoparticles with a size range of 30–150 nm [24].
They are released by a plethora of cells and are capable of reprogramming response of local
or distant target cells through delivery of bioactive molecules including proteins, nucleic
acids (DNAs, messenger RNAs, microRNAs), and lipids. Thus, exosomes are recognized
as important cargo particles encapsulating mediator payloads in the regulation of cellular
communication [24]. Recent evidence indicates that exosomes significantly affect metabolic
programs of their recipient cells through transfer of their payloads thereby regulating
outcomes such as inflammation in sepsis [25] and metastasis in cancer [26]. In this review,
we describe the metabolic changes occurring in endothelial cells and immune cells during
sepsis, which is followed by the perspective about the potential role of exosomes in
mediating cellular metabolic remodeling in sepsis.

Here, we have cited and discussed only some of those studies that are selected based
on our current research interest. We thus have to express our sincere apology that many
original and/or critical studies were not cited due to limited space of this review.

2. Metabolic Dysfunction and Regulation in Sepsis
2.1. Metabolic Regulation of Hyperinflammation

Innate immune cells, notably macrophages, neutrophils, and dendritic cells, constitute
host frontline defense against invading pathogens and concurrently function as inducers
of adaptive immunity, a pathogen-specific immune response, mediated by B and T cells.
Innate immune cells express receptors known as pattern recognition receptors (PRRs) which
recognize conserved microbial motifs referred to as pathogen-associated molecular patterns
(PAMPs). Additionally, PRRs recognize damage-associated molecular patterns (DAMPs)
released from damaged host cells. The best studied PRRs include the Toll-like receptors
(TLRs), Nuclear-binding oligomerization domain (NOD)-like receptors (NLRs), Retinoic
acid-inducible gene (RIG)-like receptors (RLRs), and the C-type lectin-like receptors (CLRs).
Following infection, immune cells are activated through recognition of PAMPs or DAMPs
by PRRs to initiate an inflammatory response. This represents a natural host defense
response aimed at eliminating invading pathogens. However, aberrant activation of these
innate immune cells, such as that observed in sepsis, leads to a hyperinflammatory state
characterized by increased release of pro-inflammatory mediators [27,28].

Sepsis-induced hyperinflammation is associated with energy deficits, which prompts alter-
ations in cellular metabolism. Thus, there is a shift from OXPHOS to glycolysis in macrophages,
neutrophils, and DCs [29,30]. Extensive studies have unearthed some underlying mechanisms
of this metabolic switch. Activation of macrophages and DCs following LPS and interferon
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gamma (IFN-γ) stimulation upregulates expression of inducible nitric oxide synthase (iNOS)
which produces nitric oxide (NO), a reactive nitrogen species [31,32]. NO suppresses mitochon-
drial respiration through nitrosylation of electron transport chain proteins such as cytochrome
C oxidase and Complex I [33,34], while concomitantly increasing glycolytic flux.

The mammalian target of rapamycin/hypoxia-inducible factor alpha (mTOR/HIF-1α)
pathway also promotes the switch to glycolysis. Treatment of macrophages and DCs with
LPS increases expression of the transcription factor HIF-1α [35,36], possibly by mTOR-
dependent activation of HIF-1α which occurs through interaction of the Raptor component
of mTOR with its signaling motif located in the N terminus of HIF-1α [37]. A surge in
HIF-1α levels consequently upregulate genes encoding inflammatory mediators and gly-
colytic proteins such as glucose transporter 1 (GLUT1), 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase (PFKFB3), hexokinase (HK2), pyruvate kinase (PKM2), and lactate
dehydrogenase (LDH) [25,38]. Additionally, the transcription factor Zinc fingers and home-
oboxes 2 (Zhx2) is also upregulated in macrophages after LPS stimulation and binds to
the promotor region of PFKFB3 to increase its expression thereby driving glycolysis [39].
The inflammasome NLRP3 also augments glycolysis in macrophages after exposure to LPS
and amyloid β through release of IL-1β [40]. IL-1β binds to IL-1 receptor type 1 (IL1R1)
in an autocrine manner and promotes the expression of PFKFB3 [40]. IL-1β is a metabolic
hormone which facilitates glycolysis in rat ovarian cells [41], and its induction of glycolysis
may also involve HIF-1α [38]. Adenosine monophosphate-activated protein kinase (AMPK)
antagonizes glycolysis and is known to promote β-oxidation of fatty acids by upregulating
intermediates such as peroxisome proliferator-activated receptor γ (PPAR-γ) and carnitine
palmitoyl transferase 1 (CPT1). Consequently, LPS stimulation of macrophages and DCs
downregulate AMPK thereby impairing OXPHOS and promoting glycolysis [18].

In neutrophils, increased glycolysis augments the formation of neutrophil extracellular
traps (NETs) [30], by which neutrophils trap and eliminate invading pathogens [42]. In-
creased glycolysis in neutrophils may, however, inhibit their migration to sites of infection
thereby perpetuating inflammation in sepsis due to limited bacterial clearance [43].

2.2. Metabolic Regulation of Immunosuppression

The induction of anti-inflammatory response aims at diminishing inflammation and
initiating tissue repair. However, excessive inhibition of leukocytes, as observed in sepsis,
may lead to immune paralysis. In this state, immune cells are unable to mount appropriate
responses to inflammatory stimuli thereby making the host vulnerable to infections. Defects
in cellular metabolic pathways underlie this feature. Cheng et al. observed defective
glycolysis, β-fatty acid oxidation, and OXPHOS in monocytes rendered immunotolerant
in vitro [44]. These metabolic defects were evidenced by decreased lactate production,
downregulated expression of fatty acid transporters CD36 and CPT1, and decreased oxygen
consumption [45]. Human leukocyte antigen-DR (HLA-DR) or major histocompatibility
complex (MHC) class II molecule expression is key to the activation of adaptive immunity
by antigen-presenting cells (APCs) such as dendritic cells, macrophages, and B cells [46,47].
Immunotolerant APCs, however, show repressed expression of HLA-DR, suggesting that
the cellular metabolic defects contribute to immune paralysis in sepsis.

As mentioned earlier, lymphocyte apoptosis represents another cause of immunosuppres-
sion in sepsis and correlates with poor prognosis. PPAR-γ suppresses pro-inflammatory re-
sponse in immune cells such as macrophages by fostering the β-fatty acid oxidation metabolic
pathway [11]. PPAR-γ has been shown to induce T-cell apoptosis in both human and murine
sepsis [48,49]. PPAR-γ induced T-cell apoptosis through inhibition of the PI3K/Akt sig-
naling [48], which is associated with its downstream target, mTOR, that mediates glycoly-
sis. Indeed, Akt signaling mitigates lymphocyte apoptosis and improves survival in septic
mice [50]. Moreover, autophagy, a cytoprotective and energy-conserving cellular recycling
process, induced by AMPK under nutrient poor conditions, exerts an influence on T cells.
Accordingly, it has been shown that inhibition of autophagy contributes to T-cell apoptosis in
sepsis, suppresses T cell effector functions, and increases mortality [51,52].
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The immunosuppressive role of MDSCs in sepsis is well documented. Darcy et al.
reported the suppression of T cell proliferation and function by arginase-expressing MDSCs,
in which metabolism of the amino acid, L-arginine, by MDSCs suppressed expression of
T cell zeta chain [53]. Recently, Ohl et al. have described a nuclear factor (erythroid-
derived 2)-like (Nrf2) mediated expansion of MDSCs in sepsis. These MDSCs were highly
immunosuppressive and increased T cell apoptosis in vitro [54]. Transcriptomic analysis
identified upregulation of glycolytic and pentose phosphate pathway related genes in
the MDSCs. Moreover, the MDSCs showed increased glucose uptake required for their
generation in vitro, thereby showing elevated glycolysis following LPS stimulation [54].

Because the complexity of metabolic relationships between hyperinflammation and
immunosuppression hinders the development of clinically effective therapeutics for sep-
sis [11], further investigations are required to identify metabolic and immunologic path-
ways and their molecular mechanisms by which host immune system is either impaired or
rescued during sepsis.

3. Metabolic Reprogramming in Tissue Tolerance during Sepsis

Tolerance to infection does not alter pathogen burden and inflammatory response; it
improves host endurance and survival [55,56] and thus is emerging as a key determinant
of sepsis survival. Maintenance of tissue tolerance may, therefore, be indispensable in the
management of sepsis. To ensure survival amidst the numerous complications engendered
by septic inflammation, adaptive responses through systemic metabolic changes have
evolved to support tissue function and maintain normal physiological processes. Glucose
and triglycerides are two important substrates utilized for cellular energy production. Their
regulation is essential in establishing disease tolerance (Figure 1). Therefore, we discuss
the impact of glucose and triglyceride metabolism on tissue tolerance in sepsis.

3.1. Glucose Metabolism

Deregulation in glucose metabolism correlates with sepsis severity. A hyperglycemic
response, which results from pronounced insulin resistance and altered glycogen metabolism,
is often observed at the early stages of sepsis. Induced hyperglycemia may be beneficial
in that it ensures availability of glucose to cells to satisfy their immediate bioenergetic
demands under inflammatory conditions where energy production through mitochondrial
respiration is severely impaired [57]. In some instance in sepsis, hypoglycemia may also
occur, which may derive from infection-associated anorexia, depletion of glycogen stores,
glucose malabsorption, and increased peripheral glucose utilization [58–60].

Tolerance mechanisms that maintain a fine balance in glucose metabolism (glucose
output and peripheral utilization) counteract these potentially lethal perturbations. One of
such mechanisms is restoring insulin sensitivity and hepatic levels of the rate limiting gluco-
neogenic and glycogenolytic enzyme, glucose-6-phosphatase (G6Pase) [61]. Da Silva et al.
show that drug-induced suppression of endoplasmic reticulum (ER) stress and Toll-like
receptor (TLR) downstream signaling (including JNK and NF-κB activation) prevented
both hyperglycemia and hypoglycemia in septic rats by improving insulin signaling and
restoring hepatic G6Pase level, respectively [62]. These correlated with better disease
tolerance and improved survival. Upregulation of ferritin, a hetero-polymeric protein,
during septic insult has been shown to antagonize lethal hypoglycemia in polymicrobial
sepsis by mitigating the suppression of G6Pase. This G6Pase suppression was mediated
by either heme-TLR4 signaling or the generation of reactive radicals from heme following
hemolysis. Ferritin executes this role by chelating free iron ions, and additionally oxidizing
toxic divalent Fe2+ ion to the inert trivalent Fe3+ ion through its ferroxidase activity lead-
ing to maintenance of the minimum glucose levels required for generating tolerance [59].
Neutrophil gelatinase-associated lipocalin (NGAL) is an acute-phase molecule whose ex-
pression is increased during inflammation [63]. Upon infection, NGAL deprives bacteria
of iron and thereby functions as a bactericidal protein due to its capability as a potent
iron-chelator [64].
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Figure 1. Glucose and triglyceride metabolism in the maintenance of tissue tolerance in sepsis. Maintaining normal blood
glucose levels is important for survival in sepsis. To correct hyperglycemia in the early stages of sepsis, glucose uptake in
liver and other tissues such as muscles is enhanced. At a later stage in sepsis, lethal hypoglycemia may develop. Tolerance
mechanisms such as the sequestration of iron (Fe) ions by ferritin, and inhibition of ER stress and inflammatory pathways
sustain G6Pase levels ensuring hepatic glucose production and output for peripheral utilization. Additionally, infection-
induced anorexic response causes a switch in energy substrate from glucose to triglyceride. Endocrine communication via
the brain–liver axis results in hepatic triglyceride production which maintains the function of cardiac and adipose tissue.

The adaptive response in glucose metabolism may, however, be pathogen-specific
because recovery from the mild hypoglycemia induced by treatment with TLR3 agonist
poly(I:C), in a model of viral sepsis was independent from G6Pase activity [59]. Indeed,
glucose requirements in viral and bacterial sepsis have been noted to be different with
glucose utilization in the host being protective in the former but detrimental in the latter.
In viral inflammation, glucose supplementation and utilization maintain neuronal function
and promotes survival through inhibition of type I IFN-induced ER stress, and subsequently
prevents CHOP-mediated neuronal apoptosis.

It is noteworthy to probe the mechanism by which viral sepsis affects host immune
responses, of either hyperinflammation or immunosuppression. Intriguingly, the patients
with severe coronavirus disease 2019 (COVID-19) exhibited a tendency to have both hyper-
inflammation (e.g., increased cytokines) and immunosuppression (e.g., lymphopenia) [65].
Therefore, characterization of immunologic and metabolic features of pathogenesis in
patients with SARS-CoV-2-induced sepsis, compared to those with bacterial or protozoan
sepsis as well as with nonseptic but severe COVID-19 remains to be examined.

Glucose supplementation in endotoxemic or polymicrobial sepsis mice impaired both
glucose disposal and insulin sensitivity, and induced pancreatic insufficiency leading to
hyperglycemia and death [66]. In a mouse model of protozoan infection-induced sepsis,



Int. J. Mol. Sci. 2021, 22, 8295 6 of 17

inhibition of glycolysis conferred protection against development of cerebral malaria
through decreased formation of microthrombi, RBC sequestration, and hemorrhagic lesions
in the brain of Plasmodium berghei ANKA-infected mice [67]. Thus, different pathogen
classes may elicit divergent cellular stress responses requiring specific metabolic programs
to maintain tissue tolerance. Moreover, these animal studies and a large randomized
control trial involving critically ill patients in the intensive care units (ICUs) [68] suggests
that maintaining blood glucose within optimal ranges may be essential to much favorable
outcomes in sepsis.

Salmonella typhimurium (S. typhimurium) effector, Salmonella leucin-rich repeat pro-
tein (SlrP), inhibits anorexic response in its host through NOD-, LRR-and pyrin domain-
containing protein 3 (NLRP3) inflammasome inactivation and mitigation of lamina propria
myeloid cell-derived IL-1β signaling to the hypothalamus via the vagus nerve. The host
and pathogens communicate to ensure availability of nutrients to the pathogen and cul-
minate into attenuation of its virulence which protects the host [69]. In addition, iron-fed
infected mice showed that iron indirectly suppressed virulence of Citrobacter rodentium
(C. rodentium) by inducing systemic insulin resistance, which increased glucose availabil-
ity to the pathogen through decreased absorption from the lumen of the intestines [70].
These models for host-pathogen communications at the interface for adaptive metabolic
responses promoting host defense and survival are illustrated in Figure 2A.
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breakdown of the endothelial barrier, and increased extravasation of leukocytes into surrounding tissues. These pathologic
events may lead to tissue damage. Upward and downward open arrows indicate increase and decrease, respectively.
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3.2. Triglyceride Metabolism

Another pathway for energy production in cardiac and adipose tissues is the break-
down of triglycerides to release free fatty acids (FFAs) from which energy is derived
through β-oxidation. This is especially necessary during infections where starvation
responses are triggered due to sickness behaviors such as anorexia [71]. Triglycerides
are required to confer protection against organ dysfunction, as fuel for brown adipose
tissue thermogenesis for the timely exit from the hypometabolic-hypothermic state in-
duced by energy trade-offs between immunity and other maintenance programs such
as homeothermy during immune activation [72]. Defective hepatic triglyceride produc-
tion in endotoxemic or Escherichia coli-infected mice lacking the MAP kinase regulatory
protein, MKP1, causes endothelial damage, pronounced dysfunction of multiple organs,
and increased mortality [73,74]. Aside from being efficient energy sources under septic
conditions, triglyceride-rich lipids can dampen inflammatory response by sequestering
LPS and facilitating its degradation in the liver [75]. Thus, hepatic triglyceride production
may be an essential adaptive response for proper tissue function especially in the fasted
state during sepsis [76–78]. Hence, perturbations in lipid metabolism in sepsis may likely
be detrimental to tissue tolerance, and survival. To summarize current observations on glu-
cose and triglyceride metabolism during sepsis: (i) metabolic programs that support tissue
tolerance in sepsis are important and sufficient for survival regardless of pathogen bur-
den, or degree of inflammation; (ii) maintaining metabolic substrates within homeostatic
ranges is necessary for maintenance of disease or tissue tolerance in sepsis; (iii) specific
septic insults require specific metabolic programs to ensure disease or tissue tolerance
and survival.

3.3. Endothelial Cell Metabolism in Sepsis

Endothelial cells (ECs) are highly plastic and exhibit diverse phenotypes under both
physiological and pathological conditions. Over a decade’s research has led to the dis-
covery that metabolic programs are cardinal to phenotypic switch, and function of ECs.
Although ECs also exhibit metabolic plasticity [79], glycolysis has been identified as the
main source of energy generation through glycolytic breakdown of glucose to lactate [19].
This evolutionary adaptation facilitates angiogenesis especially in avascular and hypoxic
regions, protects ECs against ROS (generated through mitochondrial respiration) damage
while also making available to perivascular cells adequate oxygen to meet their metabolic
needs [80]. Thus, basal level of glycolysis is maintained in quiescent ECs, and further
upregulated in activated ECs.

A major regulator of glycolysis in ECs is the enzyme 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase isoform 3 (PFKFB3). Hence, alteration of endothelial PFKFB3 signifi-
cantly impairs ECs function (Figure 2B). Accordingly, endothelial-specific PFKFB3 knockout
mice show defective lactate-mediated M2 macrophage polarization and skeletal muscle
regeneration following ischemic injury [81]. Strikingly, endothelial PFKFB3-driven gly-
colysis contributes substantially to tumor growth [82], vessel sprouting and pathological
angiogenesis [83,84]. Of particular importance to sepsis, aberrant PFKFB3-directed EC
glycolysis foments EC dysfunction, which is a major pathologic feature that drives MODS.
Pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) or
endothelial-specific genetic ablation of PFKFB3 inactivates NF-κB signaling in ECs and
as a consequence limits leukocyte infiltration through inhibition of ICAM-1 and VCAM-1
expression culminating in attenuation of LPS-induced acute lung injury [85]. In vitro,
siRNA knockdown of PFKFB3 inactivates NF-κB signaling in EA.hy926 human endothelial
cell line [86]. Consequently, TNF-α-induced cytokine and ICAM-1 protein expression
are suppressed. This provides further evidence of the involvement of PFKFB3-mediated
EC glycolysis in vascular inflammation [86]. Endothelial PFKFB3 may therefore be a
viable metabolic node that can be targeted for the treatment of inflammatory diseases.
In cancer, inhibition of endothelial PFKFB3 with optimum dose of 3PO, induced tumor



Int. J. Mol. Sci. 2021, 22, 8295 8 of 17

vessel normalization accompanied by decreased metastasis and improved response to
chemotherapy [82].

Sepsis-induced endothelial dysfunction associates with impaired outcomes for co-
agulation, permeability, and leukocyte diapedesis, and further leads to multiple organ
failure [87]. The ECs are thus considered to be the player pivotal to trigger sepsis patho-
genesis; hence, it is imperative to characterize molecular mechanisms by which endothelial
dysfunction is elicited during sepsis. Undoubtedly, better understanding of sepsis-induced
alterations in metabolic pathways of EC dysfunction is important for improving treatment
of sepsis through EC-targeted therapeutics.

4. Exosome Involvement in Sepsis-Induced Metabolic Changes

Accumulated evidence has established the seminal roles of exosomes in intercellular
communication. In sepsis, exosomal transfer of bioactive molecules (proteins, microR-
NAs, mRNAs, etc.) between cells has been reported to associate with variable and often
contrasting consequences (protective or harmful) observed between different studies [88].
Thus, research interest on exosomes as diagnostic, prognostic, or therapeutic agents in
sepsis has piqued over the past decade [89]. Alterations in metabolic programs underlie
the pathologic features of sepsis. However, compared to other inflammatory diseases
like cancer, studies on the role of exosomes in metabolic reprogramming in sepsis have
only begun gaining momentum. In this section, we consider the biogenesis of exosomes
and present a hypothetical association between exosomes and metabolic reprogramming
in sepsis.

4.1. Exosome Biogenesis

Exosomes are small membranous vesicles (often with a size range of 30–150 nm)
produced through the endosomal pathway and shed into the extracellular milieu through
fusion of multivesicular bodies/endosomes (MVBs/MVEs) with the plasma membrane of
the releasing cell [90,91]. The formation and release of exosomes begin with cell membrane
invaginations known as endosomes. Endosomes represent cellular compartments encapsu-
lating various extracellular and cytosolic components. [90,92,93]. During the maturation
process of endosomes from early to late endosomes, there is a concomitant formation of
intraluminal vesicles (ILVs; later released as exosomes) within the lumen of the endosome.
ILVs are formed by the inward budding and scission of cargo-rich microdomains of the
limiting membrane of the early endosome culminating into the formation of MVEs. At this
stage, depending on their composition, MVEs may undergo degradation through fusion
with lysosomes or move towards the cytoplasmic side of the plasma membrane where they
fuse to release exosomes into the extracellular environment [94–96].

A class of lipids, sphingolipid (including ceramide and sphingosine-1-phosphate),
plays multiple roles in regulating cellular physiological and pathological pathways [97].
Emerging evidence demonstrates that sphingolipids and their generating enzymes (e.g.,
sphingomyelinases) alter biogenesis and the function of exosomes in response to mem-
branous stress [98]. Ceramide-containing vesicles were shown to deteriorate sepsis, and
functional blocking of ceramide revealed to mitigate this syndrome in the studies with
a mouse model of sepsis [99]. Further examinations into sepsis-induced alterations of
sphingolipid metabolism would be helpful for elucidating the underlying mechanisms by
which exosome production is altered with sepsis.

4.2. Exosomal Cargo and Sepsis Metabolic Reprogramming

Exosomal transfer of cargo between tumor and cells in its microenvironment have
been shown to promote metastasis [17]. In a recent study probing the role of trigger-
ing receptor expressed in myeloid cells 2 (TREM2)-expressing Kupffer cells (KCs; liver
resident macrophages) in regulating lipid dysmetabolism in non-alcoholic fatty liver dis-
ease (NAFLD), Hou et al. showed that loss of TREM2 triggered release of KC exosomes
which induced mitochondrial dysfunction in hepatocytes through transfer of miRNAs and
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worsened sepsis mortality in an NAFLD mice model [100]. These studies, among others,
bespeak the relevance of exosomes in cellular metabolism.

Although direct evidence on exosome-mediated metabolic reprogramming remains
sparse in the context of sepsis, we focus on the cargos of exosomes and their molecular
targets and pathways. Exosomes modulate several signaling pathways, including the
NF-κB, MAPK (JNK, p38, and ERK), and PI3K (Akt, mTOR) signaling pathways. These
pathways are intricately linked to cellular metabolic programs [73,101–103]. Here, we
discuss the molecular cargo, specifically proteins and miRNAs, of exosomes and the
mechanisms by which they potentially reprogram cellular metabolic responses in sepsis
(Figure 3).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 3. Potential roles of exosomes in the regulation of cellular metabolism in sepsis. Exosomes mediate both patholog-

ical and protective events in sepsis. Depending on their cargo/payloads and pathways modulated in target cells, metabolic 

roles of exosomes in sepsis pathophysiology may differ. During sepsis platelets release exosomes carrying bioactive mol-

ecules that promote inflammatory events and pathways associated with glycolysis in both parenchymal and immune cells. 

Exosomes originating from mesenchymal stem cells and endothelial progenitor cells (and in some cases, parenchymal 

cells) downregulate inflammatory pathways and preserve function of several tissues in sepsis; a disease phenotype akin 

to restoration of metabolic homeostasis. Upward and downward wide-tail arrows indicate increase and decrease, respec-

tively. 

4.3. Exosomal Proteins 

Exosomes in sepsis have been demonstrated to contain enzymes such as iNOS and 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. iNOS catalyzes the pro-

duction of reactive nitrogen species (RNS), predominantly NO, from amino acid sub-

strates such as arginine, citrulline, and glutamine [104,105], whereas NADPH oxidase-

mediated electron transfer from NADPH to molecular oxygen provides an alternative 

pathway for superoxide generation [106]. Although moderate levels of RNS and ROS have 

been demonstrated to be essential for physiological processes, their accumulation, for in-

stance under cellular stress conditions (e.g., septic inflammation), may impair mitochon-

drial respiration through the inhibition of respiratory complexes involved in the electron 

transport chain [33,34]. Under such conditions, mitochondrial dysfunction happens in 

tandem with a metabolic switch to the glycolytic pathway which may contribute to organ 

dysfunction when these metabolic anomalies are perpetuated. 

In mice models of endotoxemia and polymicrobial sepsis, circulating exosomes 

showed the carriage of hydrogen peroxide transferable to cardiac endothelial cells both in 

vitro and in vivo where it induced the formation of podosome clusters, fragmentation of 

the tight junction protein, zonula occludens-1 (ZO-1), and consequently endothelial hy-

perpermeability [107]. Cardiac and endothelial dysfunction are associated with increased 

glycolysis in sepsis [21,85,86,108]. Again, increased glycolysis and ROS production induce 

apoptosis of alveolar epithelial cells in septic mice [109]. In cancer cells, ROS upregulates 

Figure 3. Potential roles of exosomes in the regulation of cellular metabolism in sepsis. Exosomes mediate both pathological
and protective events in sepsis. Depending on their cargo/payloads and pathways modulated in target cells, metabolic
roles of exosomes in sepsis pathophysiology may differ. During sepsis platelets release exosomes carrying bioactive
molecules that promote inflammatory events and pathways associated with glycolysis in both parenchymal and immune
cells. Exosomes originating from mesenchymal stem cells and endothelial progenitor cells (and in some cases, parenchymal
cells) downregulate inflammatory pathways and preserve function of several tissues in sepsis; a disease phenotype akin to
restoration of metabolic homeostasis. Upward and downward wide-tail arrows indicate increase and decrease, respectively.

4.3. Exosomal Proteins

Exosomes in sepsis have been demonstrated to contain enzymes such as iNOS and
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. iNOS catalyzes the pro-
duction of reactive nitrogen species (RNS), predominantly NO, from amino acid substrates
such as arginine, citrulline, and glutamine [104,105], whereas NADPH oxidase-mediated
electron transfer from NADPH to molecular oxygen provides an alternative pathway
for superoxide generation [106]. Although moderate levels of RNS and ROS have been
demonstrated to be essential for physiological processes, their accumulation, for instance
under cellular stress conditions (e.g., septic inflammation), may impair mitochondrial res-
piration through the inhibition of respiratory complexes involved in the electron transport
chain [33,34]. Under such conditions, mitochondrial dysfunction happens in tandem with
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a metabolic switch to the glycolytic pathway which may contribute to organ dysfunction
when these metabolic anomalies are perpetuated.

In mice models of endotoxemia and polymicrobial sepsis, circulating exosomes
showed the carriage of hydrogen peroxide transferable to cardiac endothelial cells both
in vitro and in vivo where it induced the formation of podosome clusters, fragmentation
of the tight junction protein, zonula occludens-1 (ZO-1), and consequently endothelial hy-
perpermeability [107]. Cardiac and endothelial dysfunction are associated with increased
glycolysis in sepsis [21,85,86,108]. Again, increased glycolysis and ROS production induce
apoptosis of alveolar epithelial cells in septic mice [109]. In cancer cells, ROS upregulates
glycolysis, although this feature is largely an adaptive response to counteract ROS and
augment survival [110]. The foregoing evidence suggests that exosomes may serve as bio-
logical agents capable of mediating redox and glucose metabolic alterations that eventually
contribute to vascular, endothelial, and myocardial dysfunctions in sepsis.

Ex-vivo culture of LPS-treated platelets released exosomes containing high mobility
group box 1 (HMGB1) which caused the formation of neutrophil extracellular traps (NETs)
in polymorphonuclear neutrophils (PMNs) through the repression of Akt/mTOR metabolic
pathway and the induction of autophagy [111]. The ability of mesenteric lymph (ML)
exosomes of gut epithelial cell origin obtained following trauma and hemorrhagic shock,
to elicit pro-inflammatory response in alveolar macrophages, was partly dependent on the
integrity of their surface proteins although the specific exosomal protein was not delineated.
The ML exosomes promoted the M1 phenotypic switch by inducing NF-κB and iNOS
expression in alveolar macrophages through TLR4 signaling leading to acute lung injury
(ALI) [112]. Endothelial exosomes enriched in heat shock protein A12B (HSPA12B) mitigate
pro-inflammatory responses in macrophages leading to the amelioration of cardiomyopathy
in polymicrobial sepsis mice [113]. HSPA12B reportedly exerts this effect by upregulating
the PI3K/Akt pathway [114].

4.4. Exosomal miRNAs

MicroRNAs (miRNAs) are important short single-stranded, noncoding RNA molecules
that regulate gene expression by binding to the 3′-untranslated region of target mRNA to
either inhibit translation or degrade the mRNA. miRNAs, together with other RNA species,
are released in large quantities into circulation during sepsis and may modulate inflamma-
tory response through known metabolic pathways as stated previously. Intriguingly, most
of these miRNAs are packaged and transported via exosomes [102,115].

Exosomal miRNAs play heterogenous roles in disease pathogenesis by either foster-
ing or mitigating pathological pathways potentially through the regulation of metabolic
programs. In cancer, exosomes have been demonstrated to transfer miRNAs between
tumor and stromal cells in the tumor microenvironment leading to the modulation of
metastasis through alterations in key metabolic programs such as glycolysis, fatty acid
oxidation, and OXPHOS [26,116]. In a pilot study, Real et al. identified altered levels in
30 and 65 exosome-associated miRNAs in ICU patients with septic shock on days 0 and
7 respectively after onset of septic shock. Through pathway analysis, mRNAs involved
in IL-6, NF-κB, and PPAR signaling were observed among key targets of the differentially
expressed miRNAs at both time points [117]. miR-15b-5p and miR-378a-3p contained
in platelet-derived exosomes from septic patients could inhibit Akt/mTOR signaling by
suppressing phosphoinositide-dependent protein kinase 1 (PDK1) leading to autophagy
and NET formation in PMNs [111]. Serum exosomes expressing high levels of miR-155 fol-
lowing LPS-induced ALI could promote M1 polarization and pro-inflammatory responses
in macrophages by suppressing Src homology 2 domain containing inositol polyphosphate
5-phosphatase 1 (SHIP1) and suppressor of cytokine signaling 1 (SOCS1) [118]. SOCS1
negatively regulates TLR and NF-κB signaling and thus its inhibition upregulates glycolysis
and pro-inflammatory response in myeloid cells in septic mice through the STAT3/HIF-1α
axis [119].
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Exosomes may also modulate metabolic pathways to improve survival in sepsis. In
this context, exosomes of mesenchymal stem cell (MSC) and endothelial progenitor cell
(EPC) origins have been widely explored. Wang et al. shows that bone marrow MSC-
derived exosomes confer protection against cardiac dysfunction in septic mice and attenu-
ates systemic inflammatory response through exosomal miR-223-mediated suppression of
inflammatory genes sema3A and stat3 in macrophages and cardiomyocytes [120]. Umbili-
cal cord MSC-derived exosomes enriched in miR-146b ameliorated sepsis-related ALI [121]
and dampened kidney injury in polymicrobial septic mice through the suppression of IL-1
receptor associated kinase (IRAK) and NF-κB signaling [122]. miR-27b contained in bone
marrow MSC-derived exosomes maintained hepatic, renal, and pulmonary function in sep-
tic mice. Upon internalization by macrophages in vitro, the exosomes were demonstrated
to transfer miR-27b that targets and downregulates the H3K27 demethylase, Jumonji D3
(JMJD3), thereby preventing the transcription of pro-inflammatory genes in synergy with
NF-κB p65. This was revealed by the decreased enrichment of both transcription factors in
the promoter regions of TNF-α, IL-1β, and IL-6 [123].

In vitro, bone marrow MSC-exosome-associated miR-30b-3p inhibited secretion of the
acute phase reactant, serum amyloid A3 (SAA3) from type II alveolar epithelial cells. When
administered intravenously in LPS-treated mice, exosomal miR-30b-3p downregulated
phosphorylated forms of NF-κB p65, IκB, ERK, MEK1/2, p38, and JNK thus alleviating
lung injury [124]. MSCs pretreated with inflammatory agonists have been shown to
release exosomes superior in preserving organ function in sepsis. IL-1β-treated MSCs
release exosomes that safeguard hepatic and pulmonary function by fostering an M1 to
M2 macrophage transition through miR-146a-mediated suppression of key regulators of
inflammation namely IRAK1, TRAF6, and IRF5 [125]. Similarly, exosomes from LPS-treated
bone marrow MSCs downregulated NF-κB p65, Akt2 thereby promoting M2 polarization
of macrophages. These exosomes decreased cardiomyocyte apoptosis and maintained
cardiac function in a myocardial infarction mouse model, in vivo [126].

Zhou et al. report that exosomes derived from endothelial progenitor cells encap-
sulated elevated levels of miR-126-3p and miR-126-5p which targeted and suppressed
HMGB1, VEGF-α, and phosphoinositide-3-kinase regulatory subunit 2 (PI3KR2) thereby sal-
vaging lung function in animal models of endotoxemia and polymicrobial sepsis [127,128].
Indeed, it has been shown that endothelial HSPA12B upregulates miR-126 in circulating
exosomes and that exosomal miR-126 suppresses expression of ICAM-1 and VCAM-1, as
well as leukocyte infiltration into the myocardium of septic mice culminating in the mainte-
nance of cardiac function [129]. Adipose tissue MSC-derived exosomes revealed to dampen
septic inflammation and preserve kidney function by suppressing NF-κB p65, HIF-1α, and
NADPH oxidase activity while upregulating SIRT1 and VEGF expressions [130,131]. In line
with finding of regulatory function of exosomes, we have recently demonstrated the release
of exosomes with altered miRNA composition into the intestinal lumen of septic mice [132].
These luminal exosomes showed a downregulation in messages of TNF-α and IL-17A in
the inflamed intestinal tissues [132]. Hence, exosomes luminally released from gut epithelia
are thought as regional mediators capable of dampening intestinal inflammation during
sepsis potentially through delivery of their miRNAs.

5. Conclusions

Recent advances have led to the understanding that flaws in metabolic programs in
immune and parenchymal cells are instrumental in the pathophysiology of sepsis. These
metabolic changes involve intertissue and/or intercellular communication through release
of secretory factors such as cytokines, chemokines, growth factors, and exosomes. Exo-
somes are of particular importance since they are capable of packaging, preserving, and
shuttling most of these bioactive molecules to target cells. How exosomal biomolecules
modulate catabolic and anabolic processes, and the impact on inflammatory response
and/or immunosuppression in immune and parenchymal cells leading to organ dysfunc-
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tion in sepsis remains scanty. Further studies are required to elucidate the mechanistic
basis of exosome-mediated metabolic remodeling in sepsis.
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