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Trafficking in eukaryotic cells is a tightly regulated process to ensure correct cargo delivery

to the proper destination organelle or plasma membrane. In this review, we focus on

how the vesicle fusion machinery, the SNARE complex, is regulated by the interplay of

the multisubunit tethering complexes (MTC) with the SNAREs and Sec1/Munc18 (SM)

proteins. Although these factors are used in different stages of membrane trafficking,

e.g., Golgi to plasma membrane transport vs. vacuolar fusion, and in a variety of

diverse eukaryotic cell types, many commonalities between their functions are being

revealed. We explore the various protein-protein interactions and findings from functional

reconstitution studies in order to highlight both their common features and the differences

in their modes of regulation. These studies serve as a starting point for mechanistic

explorations in other systems.
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SNARE COMPLEXES

Transfer of protein and lipid cargo between distinct cellular compartments in eukaryotes is
achieved through the use of membrane-bound vesicles. These vesicles bud from a donor
compartment, are trafficked to and then fuse with their target membrane. Several conserved
protein families have evolved to control these various processes, with specificity for particular
trafficking pathways. The core of the membrane fusion apparatus is the SNARE complex (Jahn
and Scheller, 2006); to facilitate fusion, each set of membranes has a distinct subset of SNARE
proteins—t-SNARE proteins on the target membrane, and v-SNARE proteins on the vesicle
membrane. Formation of this extremely stable SNARE complex is sufficient to overcome the energy
barrier to membrane fusion, and is sufficient for fusion in simplified in vitro systems (Weber et al.,
1998; Brünger et al., 2015). Additionally, mutations in individual SNARE proteins, changes in
SNARE protein levels, and changes in SNARE complex assembly all result in various cellular and
organismal defects from yeast through humans, indicating the necessity of these proteins in all
stages of trafficking (Johnson et al., 2008; Garcia-Reitböck et al., 2010; Kama et al., 2011).

The regulated fusion of vesicles at proper target membranes requires specific recognition factors
on both membranes. Several lines of evidence indicate that SNAREs alone are not sufficient
for specificity. First, SNAREs can form stable, fusion-competent non-cognate complexes in vitro
(Fasshauer et al., 1999; Yang et al., 1999; McNew et al., 2000; Bethani et al., 2007; Furukawa
and Mima, 2014). Secondly, at least for exocytosis, protein localization is not sufficient to
promote specific SNARE pairing, as many SNAREs are not specifically restricted to sites of

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://www.frontiersin.org/Cell_and_Developmental_Biology/editorialboard
http://dx.doi.org/10.3389/fcell.2016.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2016.00042&domain=pdf&date_stamp=2016-05-09
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mary.munson@umassmed.edu
http://dx.doi.org/10.3389/fcell.2016.00042
http://journal.frontiersin.org/article/10.3389/fcell.2016.00042/abstract
http://loop.frontiersin.org/people/339014/overview
http://loop.frontiersin.org/people/157694/overview


Dubuke and Munson Tethers and SNAREs in Vesicle Fusion

active membrane fusion (Brennwald et al., 1994; Jahn and
Südhof, 1999). Furthermore, SNAREs need to traffic through
the secretory pathway to reach their final destination, and
encounter many cognate and non-cognate SNAREs along the
way. When this process is not properly controlled, e.g., failing to
inhibit SNARE complexes prior to trafficking, the proteins can
form non-fusogenic complexes early in the secretory pathway
(Medine et al., 2007). Therefore, to prevent premature or
inappropriately localized fusion, SNARE proteins must be tightly
controlled. Many syntaxin t-SNARE family members contain
an autoinhibitory domain that prevents premature complex
assembly (Weimbs et al., 1997; Nicholson et al., 1998; Munson
et al., 2000; Dietrich et al., 2003). This and other mechanisms of
inhibition and subsequent activation are likely provided by the
protein families that are properly localized at sites of fusion, such
as the Sec1/Munc18 (SM) proteins and the tethering factors.

SM PROTEINS

The SM proteins are a family of SNARE regulators with diverse
and (at times) seemingly contradictory functions (Carr and Rizo,
2010; Archbold et al., 2014). Many different protein-protein
and genetic interactions were identified for each of the
four SM family members (Sec1/Munc-18, Vps45, Sly1, and
Vps33). SM proteins interact with SNAREs using a number of
different binding modes, often utilizing more than one binding
mode simultaneously. The functional consequences of these
interactions include regulating protein levels of partner SNAREs,
promoting SNARE assembly and downstream membrane
fusion, chaperoning/stabilizing the autoinhibited conformation
of syntaxin prior to SNARE complex assembly, and working with
the Sec17/Sec18 (NSF/SNAP) SNARE disassembly machinery to
protect cognate SNARE complexes from disassembly prior to
fusion (Carr et al., 1999; Sato et al., 2000; Bryant and James, 2003;
Kennedy et al., 2004; Deák et al., 2009; Hashizume et al., 2009;
Struthers et al., 2009; Lobingier and Merz, 2012; Lobingier et al.,
2014). Most SM proteins also interact with tethering complexes,
either transiently or as a stoichiometric component of the intact
complex (discussed below). The most compelling mechanistic
details of SM protein function were published recently, for the
vacuolar fusion SM protein Vps33 (a component of the HOPS
tethering complex): a pair of crystal structures suggested that if
Nyv1 (v-SNARE) and Vam3 (t-SNARE) interact simultaneously
with Vps33, these SNARE proteins would be correctly aligned to
initiate zippering of the SNARE complex (Baker et al., 2015).

TETHERING COMPLEXES

SNARE complex assembly and fusion are also regulated by
the multisubunit tethering complexes (MTCs; Bröcker et al.,
2010; Yu and Hughson, 2010; Hong and Lev, 2014). The MTCs
are compartment-specific complexes proposed to promote the
initial interaction between a vesicle and its target membrane
via interactions with lipids and proteins on both membranes.
These interactions are critical to promote specific vesicle fusion
at the proper target destinations. Most steps of membrane

trafficking are associated with an MTC (Figure 1), and while
these complexes differ in subunit composition and number they
each interact with the same families of proteins—Rab GTPases,
SM proteins, coat proteins, and SNAREs (Table 1). Many MTCs
also interact with the specific Guanine nucleotide Exchange
Factor (GEF) for their GTPases. These complexes function
upstream of SNARE assembly and vesicle fusion, resulting in
vesicle accumulation at their sites of fusion upon disruption of
MTCs. Although we focus on the MTCs in this review, the long
coiled-coil tethers have also been implicated in SNARE complex
regulation (Cheung and Pfeffer, 2016).

Despite differences in overall complex architecture, a subset
of tethering complexes was defined based on the structures of the
individual subunits—the Complexes Associated with Tethering
Containing Helical Rods (CATCHR) family (Yu and Hughson,
2010). As the name suggests, the proteins in these complexes
are composed of long rods of stacked helical bundles. The
similar bundle topology of each subunit suggests divergent
evolution from an ancient ancestor (Sivaram et al., 2006; Croteau
et al., 2009; Yu and Hughson, 2010; Klinger et al., 2013).
The remaining “non-CATCHR” complexes have a more diverse
subunit composition; however, they still share many of the same
protein family interactions, suggesting a common mechanism of
action across all of the complexes.

FIGURE 1 | Overview depicting MTC localization in yeast. The various

subcellular locations and trafficking pathways in yeast are depicted, along with

the tethering complexes associated with each pathway. The TRAPPI complex

is involved in ER to cis-Golgi traffic, with the Dsl1 complex required for

retrograde Golgi to ER traffic. The TRAPPII and COG complexes are involved

in retrograde Golgi traffic between the various Golgi compartments. CORVET

functions in both trans-Golgi to early endosome trafficking and early

endosome to MVB/late endosome trafficking. The HOPS complex is required

for MVB/late endosome to vacuole/lysosome vesicle fusion. Early endosome

to Golgi recycling requires the GARP complex, while Golgi to plasma

membrane trafficking requires the exocyst complex. Each of the pathways

depicted have associated SNARE proteins; the tether-SNARE interactions

discussed in this review are outlined in Table 1. The role of TRAPPIII in

autophagosome formation is not shown. ER, endoplasmic reticulum; MVB,

multivesicular body/late endosome.
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TABLE 1 | Summary of MTC-SNARE interactions.

Function Tethering complex SNARE Interaction References

Localization of MTC/SNAREs HOPS Vam7 Wang et al., 2003

Zick and Wickner, 2013

COG Unknown partners Oka et al., 2004

Willett et al., 2013a

Exocyst Snc2 Shen et al., 2013

Protect SNARE complex from disassembly HOPS Pre-fusion SNARE complexes Collins et al., 2005

Collins and Wickner, 2007

Xu et al., 2010

HOPS Properly assembled SNARE complexes Starai et al., 2008

COG* Assembled SNARE complexes Shestakova et al., 2007

Exocyst* Assembled SNARE complexes Dubuke et al., 2015

GARP* Assembled SNARE complexes Siniossoglou and Pelham, 2002

Promote SNARE assembly/Stabilize SNARE proteins COG Unknown partners Fotso et al., 2005

Oka et al., 2004

Shestakova et al., 2007

GARP Unknown partners Siniossoglou and Pelham, 2002

Dsl1 Unknown partners Meiringer et al., 2011

Unknown Function(s) CORVET Pep12 (t-SNARE) Subramanian et al., 2004

Assembled SNARE complexes Balderhaar et al., 2013

Dsl1 Sec22/Sec20 Kraynack et al., 2005

GARP Tlg1 Conibear et al., 2003

Siniossoglou and Pelham, 2001

SNARE domains of Stx6, Stx16 and Vamp4 Pérez-Victoria and Bonifacino, 2009

The functional implications of the various tether-SNARE interactions in yeast and mammalian cells are summarized. The * indicates an extrapolation of the functional consequence of the

interaction for that tethering complex based on similar interactions in other stages of trafficking. For COG, GARP, and Dsl1, functional effects of SNARE interactions were observed, but

the specific SNAREs involved have not been identified. Conversely, other specific interactions with SNAREs were identified for CORVET, Dsl1, and GARP, but the functional consequences

of those interactions are currently unknown.

DSL1 COMPLEX

The CATCHR family Dsl1 complex is localized at the ER and
is required for specific recognition of COPI coated retrograde
Golgi-derived vesicles prior to fusion with the ER (Andag et al.,
2001; Reilly et al., 2001). This complex is the smallest of all
known tethering complexes with only three core subunits—Dsl1,
Tip20, and Dsl3/Sec39 in yeast (Ren et al., 2009; Spang, 2012)
and NAG, RINT1, and ZW10 (NRZ) in mammals (Tagaya et al.,
2014). Although the Dsl1 complex is small, it participates in
many of the same interactions as the other MTCs. Interestingly
the complex does not appear to interact with GTPases on either
membrane. Instead, the Dsl1 subunit interacts with the COPI
coat of the incoming vesicle, while the Dsl3 and Tip20 subunits
interact with SNARE proteins on the target membrane (Zink
et al., 2009). While the switching action of a GTPase may not be
used to modulate the interaction with the vesicle, the un-coating
of the vesicle may provide a similar mechanism for proceeding to
SNARE complex assembly (Zink et al., 2009). The complex also
interacts with the SM protein Sly1, which functions at the Golgi,
although the role of this interaction is unknown (Kraynack et al.,
2005).

GARP COMPLEX

The Golgi Associated Retrograde Protein (GARP) complex
is a CATCHR family MTC (Bonifacino and Hierro, 2011)
required for protein sorting at the late Golgi (Conibear and
Stevens, 2000). This complex functions in mammalian cells in
two forms—GARP containing Vps54, and EARP containing
syndetin. EARP is involved in the recycling endocytic pathway
(Schindler et al., 2015).

GARP is another small tethering complex, containing only
4 core subunits. As observed for most MTCs, GARP interacts
with a Golgi-localized GTPase, and GARP subunits interact
with vesicles through interactions with an as yet unidentified
protein (Siniossoglou and Pelham, 2001; Siniossoglou, 2005).
Similarly, no physical interaction has been identified between
GARP subunits and an SM protein, although a synthetic genetic
interaction was identified between the Vps53 subunit and Sly1
(VanRheenen et al., 2001). GARP also has not been shown to
physically interact with any GEFs, but several studies identified
synthetic genetic interactions between components of GARP and
the Ric1/Rgp1 dimeric GEF (Tong, 2004; Costanzo et al., 2010;
Hoppins et al., 2011).
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COG COMPLEX

The Conserved Oligomeric Golgi (COG) complex is necessary
for retrograde transport between Golgi compartments, and is one
of the best studied CATCHR complexes. It is composed of 8
subunits that form two separate “lobes” connected through the
COG1 and COG8 subunits (Willett et al., 2013b). Additionally,
depletion of various COG subunits results in an accumulation
of vesicles at the Golgi (Wuestehube et al., 1996; Zolov and
Lupashin, 2005). Results from cell-free systems suggested that
COG can tether vesicles prior to fusion, supporting a direct role
in tethering (Cottam et al., 2013).

To provide its tethering function, both the yeast and
mammalian COG complexes interact with small GTPases on
both the vesicle and target membranes (Suvorova et al., 2002;
Fukuda et al., 2008; Yu et al., 2008; Miller et al., 2013). The COG4
subunit also interacts with the SM protein Sly1 (Laufman et al.,
2009), and several COG subunits genetically interact with the
GEF Ric1 (Tong, 2004; Schuldiner et al., 2005; Costanzo et al.,
2011; Hoppins et al., 2011).

EXOCYST COMPLEX

The exocyst complex is the CATCHR-family MTC proposed to
recognize and tether secretory vesicles to the plasma membrane
(Heider and Munson, 2012; Wu and Guo, 2015). Similar
to COG, the exocyst is composed of 8 subunits that form
two separate “modules” connected by multiple protein-protein
interactions (Heider et al., 2016). Temperature-sensitive yeast
exocyst mutants result in vesicle accumulation in the bud,
supporting a tethering role upstream of vesicle fusion with the
plasma membrane (Novick et al., 1980; Grote et al., 2000).

The exocyst shares many similar interactions with other
MTCs, including interactions with lipids and Rab/Rho family
GTPases on the vesicle and plasma membranes, although
tethering has not yet been directly demonstrated (Adamo et al.,
1999; Guo et al., 1999; Zhang et al., 2001, 2008; He et al., 2007;
Baek et al., 2010; Wu et al., 2010; Yamashita et al., 2010; Brunet
and Sacher, 2014). The exocyst also interacts with the SM protein
Sec1 through its Sec6 subunit (Wiederkehr et al., 2004; Morgera
et al., 2012). Furthermore, the exocyst interacts with Sec2, the
GEF for the vesicle-specific GTPase Sec4, through its Sec15
subunit (Medkova et al., 2006).

HOPS AND CORVET COMPLEXES

The non-CATCHR Homotypic Fusion and Vacuolar Protein
Sorting (HOPS) Complex and Class C Core Vacuolar/Endosomal
Tethering (CORVET) complexes are required for early
endosomal homotypic fusion, early to late endosomal fusion, and
vacuolar/lysosomal fusion. These subcellular compartments and
tethering complexes can be purified; therefore, these trafficking
steps can be reconstituted in vitro and are well-characterized
(Conradt et al., 1992; Haas, 1995; Stroupe et al., 2006, 2009;
Hickey and Wickner, 2010; Ostrowski et al., 2010; Plemel et al.,
2011; Balderhaar et al., 2013). They are also the only tethering
factors shown to be bona fide tethers (Brunet and Sacher, 2014).

The architectures of HOPS and CORVET are composed of a
shared core of four subunits; the two additional subunits promote
binding to specific Rab GTPases (Price et al., 2000; Seals et al.,
2000; Peplowska et al., 2007). Unlike other tethering factors,
HOPS/CORVET incorporate the SM protein (Vps33) into the
complex rather than recruiting it as needed (Seals et al., 2000).
It is through this subunit that many of the SNARE interactions
occur. One of the HOPS-specific subunits appears to function as
a GEF for Ypt7 in yeast, and the HOPS complex interacts with the
Ccz1/Mon1 GEF (Wurmser et al., 2000; Nordmann et al., 2010);
however, in mammalian systems no evidence of GEF activity has
been detected (Peralta et al., 2010). These interaction similarities
suggest that HOPS and CORVET, although distinct in structure
from other MTCs, share conserved functions (Bröcker et al.,
2012).

TRAPP COMPLEXES

The Transport Protein Particle (TRAPP) complexes, of which
there are three identified in yeast, are putative tethering
factors that function in ER to Golgi transport (TRAPPI),
intra-Golgi trafficking (TRAPPII), and autophagosome
formation (TRAPPIII; Barrowman et al., 2010; Kim et al.,
2016). The TRAPP complexes share the least sequence and
structural similarity with the other tethering complexes (Cai
et al., 2008). They interact with coat proteins, and specific
subunits appear to differentiate ER-derived COPII coated
vesicles from the Golgi-derived COPI coated vesicles (Sacher
et al., 2001). Additionally, TRAPPI and TRAPPII can function
as a GEF for Ypt1, a small Rab GTPase found on ER-derived
vesicles and required for fusion with the Golgi (Wang et al.,
2000). However, no interactions have been identified between
TRAPP and either an SM protein or SNARE proteins/complexes,
suggesting that it may function differently than other MTCs.

MTC-SNARE COMPLEX INTERACTIONS

Interactions between tethering factors and SNARE complexes
have been observed for almost all trafficking steps (Table 1),
and generally serve to promote formation of proper and stable
SNARE complexes (Hong and Lev, 2014; Kuhlee et al., 2015).
However, detailed mechanistic studies are needed to understand
how these interactions regulate SNARE complex assembly, and
the functional roles these interactions play in intracellular
trafficking. Furthermore, the relationships between tethers and
SM proteins in SNARE regulation remain to be elucidated.

One role for the MTC:SNARE interaction is in promoting
MTC localization, SNARE protein localization, or both. For
example, HOPS recruitment by the SNARE Vam7 maintains
proper HOPS localization at sites of vacuole fusion, and loss of
Vam7 membrane binding results in reduced HOPS enrichment
(Wang et al., 2003). Secondly, HOPS is required to recruit
the SNARE Vam7 to sites of fusion after disassembly of
post-fusion SNARE complexes; these two interactions together
result in a positive feedback of recruitment of the various fusion
machinery (Zick and Wickner, 2013). For intra-Golgi trafficking,
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knockdown of individual COG subunits in mammalian cells
leads to changes in SNARE localization (Oka et al., 2004).
Similarly, relocalization of the COG complex results in a
redistribution of Golgi-destined vesicles, suggesting that COG
recruits proper vesicles to their sites of fusion (Willett et al.,
2013a). In polarized yeast exocytosis, a cluster of point mutations
in the v-SNARE protein Snc2 (Snc2-M2) disrupts an interaction
between the exocyst subunit Sec6 and Snc2, resulting in a mild
exocyst polarization defect (Shen et al., 2013).

Another possible role for these interactions is in the
protection of pre-fusion cognate SNARE complexes. HOPS
competes with the disassembly machinery (Sec17/Sec18) for
binding to the assembled SNARE complex and preferentially
binds to trans-SNARE complexes that bridge the membranes;
this protects the pre-fusion SNARE complex from premature
disassembly (Collins et al., 2005; Collins and Wickner, 2007;
Xu et al., 2010). Other evidence for this protective role is
that HOPS prevents fusion between vacuolar compartments
with non-cognate SNARE complexes, suggesting that it may
“proofread” the SNARE complex prior to fusion (Starai et al.,
2008). Similarly, COG binds more tightly to the assembled
SNARE complex than the individual SNAREs, although a direct
protective role remains to be shown (Shestakova et al., 2007).
Recently, we showed that the exocyst subunit Sec6 has a
tighter affinity for the Sec9:Sso1:Snc2 ternary complex than
the Sec9:Sso1 binary complex (Dubuke et al., 2015); it will be
interesting to see if exocyst can also proofread exocytic SNARE
complexes.

In some cases, the MTCs were shown to be important for
SNARE function, although the specificMTC:SNARE interactions
are currently unknown. Knockdown of individual COG subunits
in mammalian cells leads to an increase in uncomplexed
SNAREs, and a decrease in overall SNARE protein stability
(Oka et al., 2004; Fotso et al., 2005; Shestakova et al., 2007).
Also in mammalian cells, SNARE assembly is reduced when
GARP is depleted (Siniossoglou and Pelham, 2002). Similarly,
in yeast, functional Dsl1 subunits are required for formation of
the assembled t-SNARE complex, and stimulate SNARE complex
assembly in vitro (Ren et al., 2009; Meiringer et al., 2011). These
functional consequences leave open the major question of the
mechanism(s) by which the various MTCs are regulating their
cognate SNARE proteins.

Finally, for many of these complexes, the individual
interactions were identified but not the function of
these interactions in trafficking. CORVET interacts with

endosomal/vacuolar SNARE proteins and SNARE complexes
through the Vps33 subunit (Subramanian et al., 2004; Balderhaar
et al., 2013). The Dsl1 complex interacts with t-SNARE proteins
on the ER, potentially in lieu of interactions with small GTPases,
and its mammalian counterpart NZR interacts with various
ER-localized SNARE proteins (Kraynack et al., 2005; Meiringer
et al., 2011; Tagaya et al., 2014). The GARP complex interacts
with the N-terminal regulatory domain of the syntaxin homolog
Tlg1, as well as the SNARE domains of several mammalian
Golgi SNAREs. The mammalian GARP homolog also interacts
with the assembled SNARE complex (Siniossoglou and Pelham,

2001, 2002; Conibear et al., 2003; Pérez-Victoria and Bonifacino,
2009).

Each of the “modes” of SNARE regulation by the MTCs
suggests a common theme—the MTCs generally have a positive
influence on cognate SNARE complex assembly. However, each
mode is characterized in only a few trafficking pathways, and
often only part of the information is known (e.g., binding
interactions vs. functional consequences) without elucidation of
the full story. Are these specific modes common across all of
the trafficking pathways? Are there additional modes, waiting
to be identified? How do the MTCs collaborate with the SM
proteins to control the SNAREs? In many cases, experimental
groundwork exists in terms of purified complexes and binding
partners, indicating that quantitative in vitro functional assays
are likely possible. Similarly, powerful genetic tools are becoming
commonplace enough to begin teasing apart mechanisms in
mammalian cells and other organisms that were previously
characterized only in yeast. The function of the MTCs and
SNAREs is an intriguing question, and by combining results from
different pathways and organisms we can begin to understand the
complicated interplay between these protein families in all stages
of trafficking.
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