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Abstract: Monitoring and assessing ecological quality (EQ) can help to understand the status and
dynamics of the local ecosystem. Moreover, land use and climate change increase uncertainty in
the ecosystem. The Luanhe River Basin (LHRB) is critical to the ecological security of the Beijing–
Tianjin–Hebei region. To support ecosystem protection in the LHRB, we evaluated the EQ from
2001 to 2020 based on the Remote Sensing Ecological Index (RSEI) with the Google Earth Engine
(GEE). Then, we introduced the coefficient of variation, Theil–Sen analysis, and Mann–Kendall
test to quantify the variation and trend of the EQ. The results showed that the EQ in LHRB was
relatively good, with 61.08% of the basin rated as ‘good’ or ‘excellent’. The spatial distribution of
EQ was low in the north and high in the middle, with strong improvement in the north and serious
degradation in the south. The average EQ ranged from 0.58 to 0.64, showing a significant increasing
trend. Furthermore, we found that the expansion of construction land has caused degradation of the
EQ, whereas climate change likely improved the EQ in the upper and middle reaches of the LHRB.
The results could help in understanding the state and trend of the eco-environment in the LHRB and
support decision-making in land-use management and climate change.

Keywords: ecological quality; time series; remote sensing ecological index; Google Earth Engine;
climate change; land use

1. Introduction

Natural ecosystems have been disturbed by rapid global climate change and modern
industrialization. Climate change increases the frequency of extreme weather events [1,2],
causing huge losses. Meanwhile, escalating human activities make climate change more
severe and put more pressure on ecosystems and human well-being [3]. Climate change
and human activities are changing ecosystem structure and functions [4,5] and making
the eco-environment more vulnerable [6]. The expansion of the impervious surface area
invades ecological land, which affects the original carbon cycle [7]. Greenhouse gasses
from industrial production also aggravate global warming [8]. Deforestation and climate
change have reduced resilience in the Amazon rainforest [9]. In the Qinghai–Tibet plateau,
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the expansion of built-up land contributed to the degradation of the ecological quality in
some regions [10]. In the Yangtze River basin, climate change and ecological restoration
projects improved the environmental condition [11]. A variety of signs show that climate
change and human activities are affecting the eco-environment. Recently, the impacts of
climate change and human activities has attracted more attention from the international
community. In the 2030 Agenda for Sustainable Development, the United Nations adopted
17 Sustainable Development Goals (SDGs). Most of them are closely related with ecological
quality. For instance, SDG15 is aimed at protecting terrestrial biodiversity. As ecological
quality affects sustainable development and human well-being, the assessment of ecological
quality is a key step for us to decide how to protect it.

Previous research has established excellent methods to evaluate ecological quality.
These include single indexes such as the normalized difference vegetation index (NDVI) [12]
and fractional vegetation coverage (FVC) [13] that are usually used to assess the condition
of vegetation, and synthetic models like the eco-environmental quality (EEQ) [14] and
the Ecological Index (EI) [15], which have shown great potential in assessing ecological
environmental quality precisely and comprehensively. However, there are still some
limitations. EEQ uses an analytic hierarchy process (AHP) for weight determination, which
is easily affected by subjective factors. EI is unable to obtain a fine-scaled spatial distribution
as the statistical data might be at an administrative division scale [16]. In addition, it is
difficult to collect large amounts of data to evaluate the Ecological Footprint of a large-scale
natural ecosystem for a long period of time [17]. The Remote Sensing Ecological Index
(RSEI) is an ingenious method for ecological quality assessment. It is fully based on remote
sensing data, which are convenient to obtain. It uses principal component analysis (PCA)
instead of AHP for weight regulation, which is determined by the data rather than by a
subjective factor. It also provides a result with high spatial and temporal resolution [18,19].
Since RSEI was developed, it has been applied in ecological quality assessment of cities [20],
basins [21], nature reserves [22], and various regions around the world. Some research
even improves the model to make it more suitable for specific regions [23]. Generally,
applications proved the feasibility and efficiency of RSEI.

Current research usually constructs RSEI with a few Landsat images at a few year
intervals around specific dates [24–26]. The interval may cause the changes in some
years to be ignored. Moreover, the differences–including but not limited to the different
sensors on the Landsat satellites (Landsat 5, 7, and 8, etc.)–could reduce the consistency
of the observation [27,28]. The Moderate-resolution Imaging Spectroradiometer (MODIS)
provides a stable and long-term dataset, which has a higher temporal resolution (2-day
revisit period) than Landsat. In addition, cloud cover has a major influence on the accuracy
of surface reflectance, especially in the growing season [29]. The Google Earth Engine (GEE)
is a cloud-based platform that integrates enormous remote sensing datasets and has a
superior image processing capability [30]. GEE greatly reduces the hardware requirements
for remote sensing computation. As a result, we can use the cloud-free function and mean
value composition in GEE to reduce some error [31].

The Luanhe River is part of the Haihe River Basin and the largest river in Hebei
province, China. The LHRB ecosystem plays a vital role in northern China. It is one
of the major water sources as well as an ecological barrier for the Beijing–Tianjin–Hebei
area [32]. However, climate change and human activity have been increasingly severe in
the recent decades, bringing about more ecological and environmental issues [33,34]. The
long span in latitude makes LHRB cross different climatic zones with great variant climate
conditions [35], therefore, climate could be one of the main factors affecting ecological
quality. Related research usually applied RSEI on a smaller scale [19,36] without such
characteristics. In addition, current studies rarely discuss the impact of climate change
intensively [37,38], and the eco-environment monitoring of LHRB is limited to single
indicators [9,39,40]; thus, a long-term and comprehensive eco-environment evaluation is
lacking. Our study provided a comprehensive ecological quality assessment based on
remote sensing ecological index from 2001 to 2020 with GEE and discussed the impacts of
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land use and climate change, which could help to better understand the eco-environment
of the LHRB and support decision-making about land use management and climate change.
To support ecology protection and help SDGs’ achievement in the LHRB, this research aims
to: (1) monitor and quantify the ecological quality condition by RSEI, (2) investigate the
changing trend of the ecological quality, (3) analyze how land use and climate change affect
the ecological quality. First, we constructed time-series RSEI from 2001 to 2020 on GEE
to quantify the condition and investigate the spatial distribution of ecological quality in
the LHRB. Then, we introduced the coefficient of variation, Theil–Sen trend analysis, and
Mann–Kendall test to evaluate the variation degree and changing trend of ecological quality.
Finally, we discussed the feasibility of the RSEI model and the response of ecological quality
to land use and climate change.

2. Materials and Methods
2.1. Study Area

The Luanhe River Basin is between 115.2~119.4◦ E and 39.2~43.4◦ N and crosses
the junction of semi-humid and semi-arid regions [41], covering an area of more than
45,000 km2 that takes up nearly 20% of Hebei province.

The length of the river is approximately 888 km [32]. It crosses the Inner Mongolia
Plateau, the mountainous area of North China, and the North China Plain–flowing through
27 cities and counties [33]–and has rich mineral resources [42,43]. The climate in the
northwest is temperate continental, while that in the southeast is temperate monsoon,
with low temperature and rare precipitation in winter and elevated temperature and
sufficient precipitation in summer. The annual precipitation and average temperature are
approximately 488.4 mm and 7.0 ◦C [32]. The current main land use types are grasslands
(45.29%), forestlands (25.93%), cultivated lands (23.60%), construction lands (3.07%), water
bodies (0.69%), bare lands (0.64%), shrublands (0.45%), and wetlands (0.33%). The elevation
ranges from 0 to 2220 m.

According to local records, the LHRB is divided into three parts: the upper reaches
(UR) above Zhangbaiwan, the lower reaches (LR) below Luanzhou, and the middle reaches
(MR) between them (Figure 1).

Figure 1. Geographic location of the study area.

2.2. Data
2.2.1. MODIS Data

The NDVI was extracted from the 16-day 1 km Vegetation Index product (MOD13A2
V6, DOI: 10.5067/MODIS/MOD13A2.006), which is corrected for atmospheric conditions
and chooses the best available pixel value in the 16-day period [44]. The land surface
temperature (LST) was extracted from the 8-day 1 km L3 LST product (MOD11A2 V6, DOI:
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10.5067/MODIS/MOD11A2.006), which is the average pixel value of daily LST in the 8-day
period [45]. The tasseled cap wetness (WET) and normalized difference built-up and soil
index (NDBSI) were calculated based on the 8-day 500 m Land Surface Reflectance product
(MOD09A1 V6, DOI: 10.5067/MODIS/MOD09A1.006), which selects the best value from
an 8-day composition based on cloud cover, view angle, etc. [46].

To avoid the influence of cloud cover, we used the cloud-masking function to compos-
ite cloud-free images [47]. Then, to ensure vigorous plant growth and avoid the influence
of the uncertainties of time on some indicators, we filtered all the images over the growing
season (from June to September) of every year from 2001 to 2020 and used mean value
composition to construct the yearly continuous time-series data [48]. The NDVI and LST
were resampled with surface reflectance to the same 500 m resolution.

2.2.2. Other Data

The land-use data in 2000, 2010, and 2020 were from GlobeLand30, a free and open
30-m resolution land-use dataset developed by China, and includes 10 land cover classes.
The dataset is based on multispectral images; the total accuracy of GlobeLand30 2020 is
85.72% and provided by the online portal of GlobeLand30 of the National Geomatics Center
of China (DOI: 10.11769).

The monthly precipitation and temperature from 2001 to 2020 were extracted from the
1-km monthly precipitation and mean temperature datasets for China (1901–2020) [49,50],
which were evaluated to be dependable by 496 national weather stations across China and
were provided by the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed
on 26 January 2022). Mean annual precipitation (MAP) and mean annual temperature (MAT)
were calculated based on the monthly precipitation and temperature.

The 90-m Shuttle Radar Topography Mission (SRTM) DEM was acquired from Geospa-
tial Data Cloud (https://www.gscloud.cn/, accessed on 1 April 2021) to extract the bound-
ary of LHRB. We divided the LHRB into three parts according to local records, terrain, and
the boundary of sub-basins.

2.3. Quantification of Ecological Quality

Remote sensing provides an efficient and convenient way to monitor the ecosystem. The
RSEI can comprehensively quantify ecological quality based on the Pressure–State–Response
(P–S–R) model. The RSEI contains four indices—greenness, wetness, dryness, and heat–which
are represented by the NDVI, WET, NDBSI, and LST, respectively, and uses the principal
component analysis to regulate the weights. Using the cloud platform GEE, RSEI can be
quickly constructed.

NDVI is a common index for monitoring vegetation health. The NDVI and the day LST
from MOD13A2 V6 and MOD11A2 V6 products were selected to represent the greenness
and heat in the RSEI. The NDVI and surface reflectance were converted into real values
with a scaling factor of 0.0001. The LST was first converted into Kelvin degrees with a
scaling factor of 0.02 and then converted into Celsius degrees by subtracting 273.15 [19].
WET indicates the moisture of soil and vegetation and can be calculated as follows [51]:

WET = c1 · B1 + c2 · B2 + c3 · B3 + c4 · B4 + c5 · B5 + c6 · B6 + c7 · B7 (1)

where B1–7 indicates the surface reflectance of the top seven bands of MOD09A1 V6 product
and c1–7 indicates the tasseled cap transformation coefficient [51]; NDBSI is the mean value
of soil index (SI) and index-based built-up index (IBI), which represents dryness with the
brightness of bare soil and buildings, respectively. The equations for calculating NDBSI are
as follows [52]:

BI =
(B6 + B1)− (B2 + B3)
(B6 + B1) + (B2 + B3)

(2)

IBI =
2·B6

B6+B2 −
B2

B2+B1 + B4
B4+B6

2·B6
B6+B2 + B2

B2+B1 + B4
B4+B6

(3)

http://data.tpdc.ac.cn
https://www.gscloud.cn/
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NDBSI =
BI + IBI

2
(4)

A water mask is required during the computation as RSEI is not suitable for regions
covered by a large area of water. Therefore, the modified normalized difference water index
(MNDWI) was used to create the water mask, which can be calculated with MODIS surface
reflectance images using the equation below [53]:

MNDWI =
B7− B4
B7 + B4

(5)

While the units or dimensions of each index are different, there must be a normal-
ization for all the indexes before RSEI is constructed. After normalization, a principal
component analysis (PCA) was utilized to determine the weights of each index by the
data’s characteristics instead of the researcher’s subjective perspective. Finally, the RSEI
was constructed by normalizing the first principal component (PC1):

RSEI0 = PCA1( f [NDVI, LST, WET, NDBSI]) (6)

RSEI =
RSEI0 − RSEImin

RSEImax − RSEImin
(7)

where RSEI0 is the first principal component of the NDVI, LST, WET, and NDBSI. RSEImin
and RSEImax are the minimum and maximum values of RSEI0.

The value of RSEI ranges from 0 to 1; the higher the value, the better the ecological
quality. To evaluate the ecological quality more efficiently, the RSEI is divided into five
levels based on previous research [19]: poor (0–0.2), fair (0.2–0.4), moderate (0.4–0.6), good
(0.6–0.8), and excellent (0.8–1).

2.4. Coefficient of Variation

Coefficient of variation (CV) can measure the variation degree of time series data,
which reflects the time-dependent variation of spatial data, and assesses the stability of
time series [54]. CV can be calculated using the equation below [54]:

CV =
σ

µ
(8)

where σ is the standard deviation and µ is the average EQ value of every single pixel.
A higher CV indicates the EQ in this region fluctuated more dramatically than in other

regions during the period. According to previous research, when CV > 0.20, we consider
the time-series EQ to be at “High variation”, followed by “Relatively high variation”
(0.15–0.20), “Medium variation” (0.10–0.15), “Relatively low variation” (0.05–0.10), and
“Low variation” (0.00–0.05) [55].

2.5. Theil–Sen Median Trend Analysis and Mann–Kendall Test

Theil–Sen Median trend analysis (Sen’s slope) is a robust trend estimator for long
time series, which is a non-parametric statistic method that is not sensitive to outliers [56].
Therefore, we used Sen’s slope to calculate the trend of EQ. The statistic that Sen’s slope
provides is β, which is the median value of the slopes in different periods. β can be
calculated as follows [57]:

β = median
( xj − xi

j− i

)
, ∀j > i (9)

where xj and xi represent the EQ value of each pixel in year j and year i. When β > 0, there
is an increasing trend. When β < 0, there is a decreasing trend.

Sen’s slope is usually combined with the Mann–Kendall (M–K) test and is popular
in vegetation study [58,59], meteorology [60], etc. While Sen’s slope is for trend analysis,
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Mann–Kendall is used to assess the significance of the trend. M–K test is also a non-
parametric method that can resist influence from outliers and doesn’t require the data to
obey any certain distribution [61]. M–K test defines the Z value, which can be calculated as
follows [62,63]:

Z =


S√

Var(S)
(S > 0)

0 (S = 0)
S+1√
Var(S)

(S < 0)

(10)

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(
xj − xi

)
(11)

sign(θ) =


1 (θ > 0)
0 (θ = 0)
−1 (θ < 0)

(12)

Var(S) =
n(n− 1)(2n + 5)

18
(13)

where xj and xi represent the EQ value of each pixel in year j and year i, and n is the length
of the time series, which is 20 in this research. S is an intermediate variable. When n ≥ 0, Z
approximately obeys normal distribution. Given a significance level of 95%, if |Z| > 1.96,
we consider the trend to be significant, else it is not significant. Moreover, the M–K test can
also express the trend. A positive Z means an increasing trend and a negative Z means a
decreasing trend.

3. Results
3.1. Spatiotemporal Distribution of Ecological Quality in LHRB

The areas with lower EQ were mainly located in the north of LHRB, which is part
of the Inner Mongolia plateau, where an arid climate and sparse vegetation could lead to
lower EQ. In the middle and lower reaches around the urban and mining area of Chengde
and Qianan, the EQ was also low. In contrast, the regions with higher EQ were distributed
in the south of the upper reaches and in the north of the middle reaches, which belong
to the mountainous area of North China and are covered by more forestlands. In general,
the EQ was low in the north and high in the middle. The average EQ of the whole basin
ranged from 0.58 to 0.64 (Figures 2 and 3), with a mean value of 0.60 over the last 20 years,
indicating the ecological quality in the LHRB was relatively good.

In addition, there appeared to be a trend toward improvement in EQ, as indicated
by the time series (Figure 3) and spatial distribution (Figure 2). In the upper reaches, the
average EQ kept increasing from 0.49 to 0.59, with fluctuations between 2006 and 2010
and a low peak in 2009, which was similar to the characteristics of the whole LHRB. The
increasing trend of LHRB and middle reaches is probably due to the wetter climate and
the restoration of vegetation. In the middle reaches, the average EQ rose from 0.71 to 0.72,
with an increasing trend from 2001 to 2013 and a decreasing trend from 2013 to 2020, which
stayed relatively stable. In the lower reaches, the average EQ declined from 0.55 to 0.53.
The average EQ of lower reaches reached the highest value (0.58) in 2007 and decreased to
a low peak (0.49) in 2014, then steadily increased after 2014. These fluctuations probably
resulted from climate change, and the urban expansion and mining activity could be the
reason for degradation.
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Figure 2. Spatial distribution of ecological quality of LHRB from 2001 to 2020.

Figure 3. Time-series mean EQ of LHRB from 2001 to 2020.

3.2. Ecological Quality Assessment in LHRB

The average EQ of LHRB was assessed as ‘good’. The proportions of various levels
ranging from ‘poor’ to ‘excellent’ were 2.13%, 15.38%, 21.62%, 50.95%, and 9.92%, respec-
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tively. The average EQ of the upper, middle, and lower reaches were rated as ‘moderate’,
‘good’, and ‘moderate’, respectively. In the upper reaches, the proportions were 3.65%,
25.88%, 25.17%, 37.70%, and 7.60% in sequence. In the middle reaches, there were no pixels
rated as ‘poor’. The percentages of other levels ranging from ‘fair’ to ‘excellent’ were, in
order, 0.47%, 13.90%, 71.88%, and 13.41%. In the lower reaches, the proportions varying
from ‘fair’ to ‘good’ accounted for 3.96%, 82.63%, and 13.41%, respectively (Figure 4). This
result shows that the EQ in the middle reaches was much better than that in the upper and
lower reaches, while the EQ in the top of the upper reaches was much worse than that in
other regions, which is probably related to different land use and climate conditions.

Figure 4. Ecological quality assessment of LHRB (a) spatial distribution, (b) area ratio bar chart.

Figure 5 reveals that in LHRB, there has been an 80.49%, 33.62%, and 5.42% decline in
the ‘poor’, ‘fair’, and ‘good’ areas, respectively, and a 28.74% and 93.09% rise in ‘moderate’
and ‘excellent’, respectively. In the upper reaches, the ‘poor’ and ‘fair’ areas exhibited a
downward trend. On the other hand, the ‘moderate’, ‘good’, and ‘excellent’ areas have
increased (Figure 5b). There are very few ‘poor’ and ‘fair’ areas in the middle reaches, with
a slight upward trend. There has been an increase in ‘moderate’ and ‘excellent’ areas, but a
decrease in ‘good’ (Figure 5c). In lower reaches, the areas with ‘poor’ and ‘excellent’ EQ
are very small and have decreased, as with the ‘fair’ and ‘good’ areas. Nonetheless, there
has been an increase in the ‘moderate’ areas (Figure 5d). The change in area proportions
of different levels seemed to be stable, with sharper changes in the lower reaches. The
‘good’ area presented a downward trend till 2014 and an upward trend after 2014, with
fluctuations in 2007 and 2012, having the same characteristics as the average EQ. Climate
change and human activity probably caused these changes. These results suggest that
the EQ has improved in the upper reaches, has degraded in the lower reaches, and was
relatively stable in the middle reaches. The fluctuations also indicated that the EQ in the
upper and lower reaches could be sensitive and vulnerable to external factors such as land
use and climate change.

We generated a Sankey diagram (Figure 6) to illustrate how the different levels changed
over these years. From 2001 to 2020, the transitions from lower to higher levels covered an
area of 15,569.94 km2, whereas the reverse transitions covered 2512.72 km2, showing obvi-
ous transitions of lower levels outward and higher levels inward (Figure 6a). 2094.62 km2

of ‘poor’ were turned to ‘fair’, accounting for 69.55% of the total area of the ‘poor’ level
in 2001. The conversion of 4623.88 km2 of ‘fair’ to ‘moderate’ accounted for 62.91% of the
former. 52.86% of ‘moderate’ (4168.80 km2) were transformed into ‘good’. 18.53% of ‘good’
(4332.25 km2) were converted to ‘excellent’.

In the upper reaches, the transition from lower levels to higher levels and higher levels
to lower levels comprised 12,827.93 km2 and 482.98 km2, accounting for 49.68% and 1.87%
of the total area, respectively. In the middle reaches, the ratio was 13.43% (2473.67 km2) and
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9.84% (1812.04 km2). In the lower reaches, the ratio was 15.17% (119.94 km2) and 23.00%
(181.82 km2).

In general, the LHRB, as well as the upper and middle reaches, had more areas that
transitioned to higher levels, whereas the lower reaches had more areas that converted to
lower levels. The transitions also indicated that the EQ has improved in the upper and
middle reaches, while it degraded in lower reaches.

Figure 5. Proportions of different levels in time series (a) LHRB, (b) upper reaches, (c) middle reaches,
(d) lower reaches.
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Figure 6. Area transitions (km2) of various levels from 2001 to 2020 in (a) LHRB, (b) upper reaches,
(c) middle reaches, (d) lower reaches.

3.3. Coefficient of Variation

CV describes the variation degree of the time-series EQ. The spatial distribution
was high in the north and low in the center (Figure 7), which is similar to the opposite
distribution pattern of EQ (Figure 2). The average CV of LHRB was 0.09, with an 8.92%
area of high variation. The average CV in the upper, middle, and lower reaches was 0.12,
0.05, and 0.09, respectively. The area of high variation accounted for 14.95% in the upper
reaches, whereas in the middle and lower reaches, high variation only accounted for 0.16%
and 4.56%, respectively (Table 1). The EQ of LHRB was relatively stable, with only 8.92%
in high variation, notably in the upper reaches. This indicates that the EQ in the upper
reaches has fluctuated more significantly than other regions and the ecosystem in the upper
reaches is more sensitive. The main land use type in the upper reaches is grassland, which
is sensitive to external influence. We consider that climate change and human activity
probably made the grasslands undergo degradation and restoration, which resulted in
fluctuating EQ.
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Figure 7. Spatial distribution of CV of EQ from 2001 to 2020.

Table 1. Variation degree of EQ in different regions from 2001 to 2020.

CV Variation Degree
Percentage

LHRB UR MR LR

≤0.05 Low variation 29.32% 16.66% 45.60% 10.02%
0.05–0.10 Relatively low variation 42.80% 38.15% 48.76% 64.84%
0.10–0.15 Medium variation 10.10% 15.48% 2.05% 15.77%
0.15–0.20 Relatively high variation 8.85% 14.76% 0.43% 4.82%

>0.20 High variation 8.92% 14.95% 0.16% 4.56%

3.4. Trend Analysis of Ecological Quality

To further determine the time-dependent trend of ecological quality, the Mann–Kendall
(M–K) test was analyzed (Table 2). The Z value confirmed our hypothesis that the EQ of
the upper and middle reaches, as well as the entire basin, increased over the 20-year period.
However, the EQ of lower reaches decreased.

Table 2. Results of Mann–Kendall test of EQ in different regions from 2001 to 2020.

Test
Regions

LHRB UR MR LR

Z 2.89 3.70 0.72 −1.24

Theil–Sen trend analysis and Mann–Kendall test were introduced (Sen + M–K test) to
assess the trend and dynamic of ecological quality variation in LHRB (Figure 8b), Table 3).
The Sen + M–K test results indicate that area of improvement was much larger than the
area of degradation. The area of strong improvement accounted for 42.52% of the basin,
while serious degradation made up 7.35%. The majority of LHRB showed signs of EQ
improvement, particularly in the upper reaches. Regions with EQ degradation were mainly
found in the south of the middle and lower reaches, especially among the urban areas
(Figure 8c). Area of strong improvement accounted for 52.67%, 29.21%, and 11.28% in the
upper, middle, and lower reaches, respectively. The EQ in the lower reaches deteriorated
considerably, with serious degradation accounting for 38.82%. In conclusion, EQ has
improved dramatically over the last 20 years.
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Figure 8. Trends of EQ change from 2001 to 2020 (a) result of trend analysis, (b) imagery comparison
of a mining area in Chengde, (c) imagery comparison of an urban area in Qianan.

Table 3. Trends of EQ change in different regions from 2001 to 2020.

β (Theil-Sen) Z (Mann-Kendall) Trend
Percentage

LHRB UR MR LR

β < 0 Z < −1.96 Serious degradation 7.35% 1.98% 13.77% 38.82%
β < 0 −1.96 < Z < 1.96 Light degradation 15.74% 11.31% 21.49% 30.50%
β > 0 −1.96 < Z < 1.96 Light improvement 34.39% 34.05% 35.53% 19.40%
β > 0 Z > 1.96 Strong improvement 42.52% 52.67% 29.21% 11.28%

4. Discussion
4.1. Feasibility of Ecological Quality Assessment with RSEI

In the LHRB, current research for eco-environment monitoring is limited to vegetation
index [39], water quality [64], meteorology [40], hydrology [9], and other single indicators;
our study provided a comprehensive ecological quality evaluation based on RSEI. In
addition, previous studies usually construct RSEI using an interval of a few years [24,26],
which cannot detect the variation of years between the multiphase RSEI. In this study, we
carried out a 20-year long-term monitoring by constructing RSEI every year.

The principal of RSEI is actually based on the P–S–R model. NDBSI represents the
pressure from human activity. NDVI represents the state of the eco-environment. LST and
WET represent the climate in response of environment [65]. The loading of four indexes on
PC1 shows that NDVI (greenness) and WET (wetness) have positive effects on ecological
quality, whereas LST (heat) and NDBSI (dryness) have negative effects on ecological quality
(Table 4), which is consistent with the principal of the RSEI and other studies [18,19,66].
The eigenvalue contribution of PC1 ranged from 82.35% to 92.85% (Table 4), indicating
that PC1 contains most of the information of the four indexes and PCA is appropriate for
weight determination. Moreover, the contribution of PC1 is even larger than many related
studies [21,67].
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The construction of RSEI using the Google Earth Engine is efficient. Therefore, we
consider that the model is feasible for ecological quality assessment of LHRB and other
regions, even at a larger scale.

Table 4. Results of principal component analysis.

Year
Contribution (%) Loading on PC1

PC1 PC2 NDVI LST WET NDBSI

2001 91.86 4.90 0.50 −0.61 0.52 −0.44
2002 89.98 6.49 0.46 −0.50 0.66 −0.43
2003 82.35 13.77 0.39 −0.42 0.60 −0.35
2004 85.74 10.49 0.46 −0.63 0.67 −0.41
2005 89.79 7.02 0.41 −0.53 0.56 −0.42
2006 82.36 13.45 0.39 −0.49 0.59 −0.36
2007 92.51 4.23 0.50 −0.61 0.59 −0.46
2008 88.15 8.23 0.42 −0.64 0.63 −0.44
2009 90.80 5.99 0.51 −0.53 0.60 −0.45
2010 92.85 3.92 0.43 −0.64 0.59 −0.45
2011 91.36 5.26 0.44 −0.59 0.62 −0.44
2012 90.31 5.99 0.42 −0.61 0.67 −0.46
2013 83.24 12.90 0.34 −0.35 0.48 −0.33
2014 87.67 8.94 0.42 −0.52 0.53 −0.40
2015 84.04 12.01 0.32 −0.45 0.52 −0.33
2016 86.75 9.20 0.40 −0.53 0.54 −0.36
2017 88.02 8.07 0.41 −0.54 0.57 −0.39
2018 86.81 8.88 0.39 −0.53 0.59 −0.38
2019 85.77 10.12 0.38 −0.55 0.62 −0.37
2020 82.71 13.52 0.32 −0.36 0.48 −0.33

4.2. Response of Ecological Quality to Land Use and Climate Change
4.2.1. Response of EQ to Land Use

(1) EQ of various land use types

Water body and wetlands were excluded from the comparison in view that the water
could affect the EQ value. As GlobeLand 30 only contains data from 2000, 2010, and 2020,
we used the land use of 2000 to substitute that of 2001.

In 2001, the average EQ of different land use types ranged from 0.26 to 0.72. The land
use type with the highest EQ here was forestlands (0.72 ± 0.12), followed by shrublands
(0.60 ± 0.19), cultivated lands (0.54 ± 0.18), grasslands (0.54 ± 0.23), construction lands
(0.54± 0.13), and bare lands (0.27± 0.22). In 2010, EQ of forestlands, shrublands, grasslands,
and cultivated lands increased, while that of construction lands and bare lands decreased.
In 2020, EQ of all land use types showed improvement (Figure 9).

Figure 9. EQ of various land use types in 2001, 2010, and 2020.



Int. J. Environ. Res. Public Health 2022, 19, 7719 14 of 22

The spatial distribution of land use is quite similar to that of EQ (Figures 2 and 10).
Forestlands is primarily in the center of the LHRB, while grasslands are throughout the
upper and middle reaches. Cultivated lands are mostly distributed in the northwest and
south. Construction lands are concentrated in the south, and the majority of bare lands
are located in the north. The similar spatial distribution indicates the EQ and land use are
likely related.

Figure 10. Land use in (a) 2000, (b) 2010, (c) 2020.

The spatial distribution of land-use is quite similar to that of EQ. Forestland has
great ecological effects and provides a variety of ecosystem services including wildlife
habitat, carbon storage, climate control, etc. [68]. As a result, forestland has the highest EQ.
Cultivated lands and grasslands also have considerable ecological effects, although not as
much as forestlands [69], even if their similar spectral features during the growing season
may result in a similar average EQ. Moreover, the EQ of construction lands is also close to
that of grasslands and cultivated lands. According to the land use in the LHRB, grasslands
and cultivated lands are the main land use types in the north. Previous studies reported
that drought would lead to plant trait losses [70], and drought conditions are severe in
the north LHRB [71]. Thus, it is possible that the drought in the north LHRB causes the
EQ of grasslands and cultivated lands to be as low as that of construction lands (Figure 9).
Additionally, the bare lands are mostly located in the upper reaches, which makes the EQ of
bare lands even poorer than that of construction lands. When examining satellite imagery,
we found some open-pit mines in the upper and middle reaches in 2020 (Figure 8b). The
damage that mining brings to the environment is extreme [72,73]. The metal and mining
industry plays an important role in the local economy, with hundreds of mining companies
in Chengde and Qianan [42,43], putting huge pressure on the local ecology.

Since there is a substantial growth of construction lands (Figure 10) and a significant
downward trend of EQ in such areas (Figure 8b,c), we speculate that the expansion of
construction lands should lead to EQ degradation.

(2) EQ variation and the land use change

We extracted the regions where the EQ was seriously degraded and strongly improved
(Figure 8) and then superimposed these regions with the transitions of various land use
types. In the regions where the EQ strongly improved, the proportion of vegetation cover
reaches approximately 99%. The land use exhibited little variation.

From 2001 to 2010, the most significant transition was from cultivated lands to forest-
lands and grasslands. From 2010 to 2020, grasslands converted into cultivated lands. From
2001 to 2020, the area of forestlands was stable, while that of cultivated lands and grasslands
changed from 4865.36 km2 and 8604.79 km2 to 4498.94 km2 and 8821.42 km2, respectively.
The most noticeable changes are the transitions between cultivated lands, forestlands, and
grasslands. These regions are mostly located in the semi-arid area where the grasslands
are relatively more sensitive. According to Figure 9, the EQ of grasslands has seen more
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improvement than that of cultivated lands. Therefore, we consider the transition from
cultivated lands to grasslands likely improved the EQ.

In regions with serious degradation, vegetation still accounts for the largest proportion,
but has dropped dramatically by 14.09%. The most obvious change is the conversion from
cultivated lands to construction lands. From 2001 to 2020, the area of construction lands
rose from 218.52 km2 to 520.50 km2, with 89.58% converted from cultivated lands and most
of the conversion happening during the period from 2010 to 2020. Another significant
change is the larger proportion of bare lands converted from grasslands in these regions.
That is, the expansion of construction lands and bare lands and the reduction of cultivated
lands and grasslands should be the main reason EQ degraded.

The average CV of various land-use types was in the sequence of bare lands (0.21) >
grasslands (0.11) > cultivated lands (0.10) > construction lands (0.10) > shrublands (0.09)
> forestlands (0.05). The lowest CV indicated the EQ of forestlands was relatively stable.
Forestlands in LHRB have increased from 11,477.4 km2 to 11,815.7 km2, although the
vegetation area has reduced. Therefore, we consider the forestlands to be important for the
stability of EQ, and forestation probably mitigates the pressure from urban expansion.

Other studies found that land use could explain most of the spatial heterogeneity of
the RSEI [67], and the expansion of construction land or impervious surface is the main
reason that RSEI decreased [25,74], which is consistent with our result. Previous research
also pointed out that urban expansion is a threat to habitats [75]. In this research, we found
large amounts of cultivated lands converted into construction lands (Figure 11) in the
lower reaches, which indicates the increasing human activity probably resulted in the EQ
degradation in these areas. In the middle and lower reaches of LHRB, mining activities
were frequent over the past 20 years. Some of the mining areas even experienced both
mineral development and ecological restoration, with the EQ first decreasing and then
increasing [76]. These mining activities also have great impact on the EQ.

Figure 11. (a) Land use change in the regions with strong improvement; (b) Land use change in the
regions with serious degradation.

Land-use change played a major role in the runoff of LHRB [9]. It has threatened the
ecosystem in the LHRB and will keep affecting the ecosystem service in the future if there
is no conservation strategy [32]. Our suggestion is to reduce the invasion of ecological and
agricultural land and accelerate ecological restoration of the mining area.

4.2.2. Response of EQ to Climate Change

From 2001 to 2020, the MAP ranged from 408.17 mm to 613.42 mm. Although it
decreased dramatically in some years, the overall trend is increasing (Figure 12a,b). The
MAT changed more rapidly than MAP, while the decreasing trend from 2007 to 2012 and
the increasing trend from 2012 to 2017 are still obvious. Through the M–K test, the Z values
show that the MAP is increasing (Figure 12b), indicating the climate in the LHRB is getting
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wetter. However, the MAT presents a non-significant trend. It seems that the MAT in most
parts of the upper reaches is slightly decreasing, while in the middle and lower reaches it
is likely getting warmer (Figure 12d). Comparing the change of MAP and MAT with that
of EQ (Figure 3), it seems that their characteristics in variation are quite similar. The EQ
and MAP of LHRB shared consistent turning points (such as their low peak in 2009 and
turning point in 2002, 2016, and 2019, etc.), while MAT had opposite shifts around the same
years. These changes indicated the fluctuation of the EQ is probably due to climate change,
especially precipitation.

Figure 12. Trend of climate factors (a) MAP, (b) M–K test of MAP, (c) MAT, (d) M–K test of MAT.

We calculated the Spearman correlation between EQ and MAT and that between the
EQ and MAP by pixel to investigate the relationship between climate change and EQ.
The results of the Spearman correlation analysis showed an increasing monotonic relation
between the MAP and EQ in most parts of the LHRB (Figure 13), which is similar to
the spatial distribution of the highly improved areas (Figure 8a). The monotonic relation
indicated that the increasing precipitation could improve the EQ in most regions, while too
much precipitation could have a negative effect on the EQ in the lower part of the middle
reaches. As for the areas around construction lands and cultivated lands with more human
activities, the impact of precipitation would be greatly reduced. The change of temperature
probably had less influence on EQ, as the MAT had a significant negative correlation with
EQ only in a few regions in the lower-middle part and a non-significant positive or negative
correlation in most of the other regions.
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Figure 13. (a) Spearman coefficient between MAP and EQ from 2001 to 2020 by pixel, (b) Spearman
coefficient between MAT and EQ from 2001 to 2020 by pixel (0.05 significance level).

In the whole LHRB, the land use did not show a dramatically significant change, while
the overall EQ was improving with a monotonic relation between climate factors, thus, we
think the climate change may affect the EQ more. The changing trend of climate factors is
generally consistent with other studies [77].

In some areas, NDVI is usually the main factor affecting RSEI [19,66]. In this research,
according to the loadings on PC1, LST and WET had more contribution to EQ than NDVI
and NDBSI (Table 4), indicating that climate factors probably had more influence on
the EQ in LHRB. Although LST was selected to characterize the climate response of the
environment, the relationship between LST and MAT is complicated as there are too many
factors that could affect it including different land-use types [78]. Previous research found
the correlation between plant growth and temperature in northern China is not significant
during the growing season [79,80], which means the MAT change likely cannot affect NDVI
too much. As a result, the impact of MAT is limited.

WET has been used as a proxy of soil and vegetation moisture and can be easily
influenced by precipitation [81,82]. Sufficient precipitation provides moisture for soil and
vegetation, which would improve plant growth and affect NDVI [83]. Sometimes, too much
precipitation could inhibit it because insufficient sunshine would inhibit photosynthesis [84].
The vegetation in the upper reaches of LHRB showed an improvement over the past few
years according to recent research; this is correlated with precipitation, which grassland
is more sensitive to [85]. With increased soil moisture, LST would decrease due to the
water–heat balance [86]. On the other hand, decreased MAP would lead to EQ degradation.
Thus, MAP can affect the EQ to a great extent.

The impacts of land use and climate change in LHRB have led to various results
for different ecosystem functions. The frequent change in precipitation caused recurrent
droughts and runoff reduction [87,88], while improving vegetation net primary productivity
in the upper reaches [85]. Climate change and land-use change also reduced water yield
and purification of LHRB [34]. In our research, from the perspective of RSEI, the overall
EQ of LHRB is improved due to climate change.

Forestation can regulate the impacts of climate change and human activity through the
carbon sink [89–91]. According to land-use change, the forestlands in LHRB have increased
from 11,477.4 km2 to 11,815.7 km2 during the past 20 years, which illustrates the local
government’s efforts. Because the ecological quality in the LHRB is sensitive to climate
change, we suggest carrying out more forestation projects to enhance resistance against
sharp fluctuations of climate change and mitigate the impacts of urban expansion.

In fact, sensitivity to climate change is also a limitation of RSEI. In this research,
although we constructed RSEI with cloud-free and mean value composite images, the sharp
changes in climate factors made the RSEI fluctuate abnormally for some years, which added
uncertainty to the evaluation and should be improved in the future to enhance robustness.
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The land-use data only includes 2000, 2010, and 2020, which also adds uncertainty about
land-use change and limits our purpose of long-term and continuous monitoring in this
research. In addition, a fusion with Landsat datasets would improve the spatial resolution
and accuracy.

5. Conclusions

This research constructed time-series RSEI from 2001 to 2020 to assess the EQ of LHRB
and introduced CV and Sen + M–K to investigate the variation trend of EQ. Ultimately, the
response of EQ to land use and climate change was discussed.

The results showed a strong spatial heterogeneity in the EQ of LHRB. The EQ was
low in the upper reaches due to drought climate conditions, while it was improved by
climate change. In the middle reaches, the EQ was higher and more stable, even though
there were frequent mining activities during the period. In the lower reaches, EQ was low
and degraded because the construction land kept expanding rapidly. The overall EQ was
relatively good; it was altered by land use and climate change. The area of different levels
kept converting over the past 20 years.

Through time-series analysis, we found climate change greatly affected the EQ of
LHRB. The increasing precipitation improved the EQ in most regions, and the fluctuations
in precipitation and temperature made the EQ fluctuate at the same time. Meanwhile, the
expansion of construction land and warmer climate in urban areas led to the degradation.
The EQ was sensitive to climate change and land-use change. Stopping the invasion of
ecological and agricultural land could help to mitigate these impacts in the future.
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Abbreviations

Abbreviation Definition
EQ Ecological quality
LHRB Luanhe River Basin
RSEI Remote sensing ecological index
GEE Google Earth Engine
SDGs Sustainable Development Goals
NDVI Normalized difference vegetation index
FVC Fractional vegetation coverage
EEQ Eco-environmental quality
EI Ecological index
AHP Analytic hierarchy process
PCA principal component analysis
MODIS Moderate-resolution Imaging Spectroradiometer
UR Upper reaches
MR Middle reaches
LR Lower reaches
LST Land surface temperature
WET Tasseled cap wetness
NDBSI Normalized difference built-up and soil index
MAP Mean annual precipitation
MAT Mean annual temperature
P-S-R Pressure-State-Response
SI Soil index
IBI Index-based built-up index
MNDWI Modified normalized difference water index
PC1 The first principal component of PCA
PC2 The second principal component of PCA
CV Coefficient of variation
M-K Mann-Kendall
Sen + M-K Theil–Sen trend analysis and Mann–Kendall test

References
1. Stott, P. How climate change affects extreme weather events. Science 2016, 352, 1517–1518. [CrossRef] [PubMed]
2. Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.;

et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [CrossRef]
3. Sidik, H.; Rusuli, Y.; Eziz, M. The impact of human activity and climate change on Ecosystem Services Value in the Yanqi Basin,

Xinjiang, China. Chin. J. Eco. Agric. 2016, 24, 684–694. (In Chinese)
4. Grimm, N.B.; Chapin, F.S., III; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.;

Raymond, P.A.; et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482.
[CrossRef]

5. Jones, C.; Lowe, J.; Liddicoat, S.; Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2009, 2,
484–487. [CrossRef]

6. Nguyen, K.-A.; Liou, Y.-A. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total
Environ. 2019, 664, 995–1004. [CrossRef]

7. Yan, Y.; Kuang, W.; Zhang, C.; Chen, C. Impacts of impervious surface expansion on soil organic carbon—A spatially explicit
study. Sci. Rep. 2015, 5, 17905. [CrossRef]

8. Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ.
2009, 43, 37–50. [CrossRef]

9. Li, J.; Feng, P. Runoff variations in the Luanhe River Basin during 1956–2002. J. Geogr. Sci. 2007, 17, 339–350. [CrossRef]
10. Zhang, L.; Zhang, H.; Xu, E. Information entropy and elasticity analysis of the land use structure change influencing eco-

environmental quality in Qinghai-Tibet Plateau from 1990 to 2015. Environ. Sci. Pollut. Res. 2022, 29, 18348–18364. [CrossRef]
11. Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change

or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [CrossRef]
12. Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on

NDVI time series data. Ecol. Indic. 2021, 129, 107933. [CrossRef]

http://doi.org/10.1126/science.aaf7271
http://www.ncbi.nlm.nih.gov/pubmed/27339968
http://doi.org/10.1038/s41558-020-00972-w
http://doi.org/10.1890/120282
http://doi.org/10.1038/ngeo555
http://doi.org/10.1016/j.scitotenv.2019.01.407
http://doi.org/10.1038/srep17905
http://doi.org/10.1016/j.atmosenv.2008.09.063
http://doi.org/10.1007/s11442-007-0339-8
http://doi.org/10.1007/s11356-021-17978-2
http://doi.org/10.1016/j.ecolind.2018.03.029
http://doi.org/10.1016/j.ecolind.2021.107933


Int. J. Environ. Res. Public Health 2022, 19, 7719 20 of 22

13. Xu, J.; Xie, G.; Xiao, Y.; Li, N.; Yu, F.; Pei, S.; Jiang, Y. Dynamic Analysis of Ecological Environment Quality Combined with Water
Conservation Changes in National Key Ecological Function Areas in China. Sustainability 2018, 10, 1202. [CrossRef]

14. Ying, X.; Zeng, G.-M.; Chen, G.-Q.; Tang, L.; Wang, K.-L.; Huang, D.-Y. Combining AHP with GIS in synthetic evaluation of
eco-environment quality—A case study of Hunan Province, China. Ecol. Modell. 2007, 209, 97–109. [CrossRef]

15. Ministry of Environmental Protection of China. Technical Criterion for Ecosystem Status Evaluation; Ministry of Environmental
Protection of China: Beijing, China, 2015. Available online: http://english.mee.gov.cn/Resources/standards/Eco_Environment/
201605/t20160512_337614.shtml (accessed on 2 July 2021). (In Chinese)

16. Chai, L.H.; Lha, D. A new approach of deriving indicators and comprehensive measure for ecological environmental quality
assessment. Ecol. Indic. 2018, 85, 716–728. [CrossRef]

17. Mancini, M.S.; Galli, A.; Coscieme, L.; Niccolucci, V.; Lin, D.; Pulselli, F.M.; Bastianoni, S.; Marchettini, N. Exploring ecosystem
services assessment through Ecological Footprint accounting. Ecosyst. Serv. 2018, 30, 228–235. [CrossRef]

18. Xu, H. Assessment of ecological change in soil loss area using remote sensing technology. Trans. Chin. Soc. Agric. Eng. 2013, 29,
91–97. (In Chinese)

19. Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI)
Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [CrossRef]

20. Yang, J.Y.; Wu, T.; Pan, X.Y.; Du, H.T.; Li, J.L.; Zhang, L.; Men, M.X.; Chen, Y. Ecological quality assessment of Xiongan New Area
based on remote sensing ecological index. Chin. J. Appl. Ecol. 2019, 30, 277–284. (In Chinese)

21. Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the
Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [CrossRef]

22. Jing, Y.; Zhang, F.; He, Y.; Kung, H.-T.; Johnson, V.C.; Arikena, M. Assessment of spatial and temporal variation of ecological
environment quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 2020, 110, 105874. [CrossRef]

23. Li, J.; Gong, J.; Guldmann, J.-M.; Yang, J. Assessment of Urban Ecological Quality and Spatial Heterogeneity Based on Remote
Sensing: A Case Study of the Rapid Urbanization of Wuhan City. Remote Sens. 2021, 13, 4440. [CrossRef]

24. Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the Temporal and Spatial Changes of Ecological
Quality in the Hami Oasis Based on RSEI. Sustainability 2020, 12, 7716. [CrossRef]

25. Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious
surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [CrossRef]

26. Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment
based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [CrossRef]

27. Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through
Landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [CrossRef]

28. Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general
method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271.
[CrossRef]

29. Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts
on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [CrossRef]

30. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

31. Carrasco, L.; O’Neil, A.W.; Morton, R.D.; Rowland, C.S. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2
and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [CrossRef]

32. Xu, J.; Barrett, B.; Renaud, F.G. Ecosystem services and disservices in the Luanhe River Basin in China under past, current and
future land uses: Implications for the sustainable development goals. Sustain. Sci. 2022. [CrossRef] [PubMed]

33. Bi, W.; Weng, B.; Yuan, Z.; Ye, M.; Zhang, C.; Zhao, Y.; Yan, D.; Xu, T. Evolution Characteristics of Surface Water Quality Due to
Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. Int. J. Environ. Res. Public
Health 2018, 15, 1724. [CrossRef] [PubMed]

34. Wu, Y.; Zhang, X.; Li, C.; Xu, Y.; Hao, F.; Yin, G. Ecosystem service trade-offs and synergies under influence of climate and land
cover change in an afforested semiarid basin, China. Ecol. Eng. 2021, 159, 106083. [CrossRef]

35. Bi, W.; Weng, B.; Yuan, Z.; Yang, Y.; Xu, T.; Yan, D.; Ma, J. Evolution of Drought–Flood Abrupt Alternation and Its Impacts on
Surface Water Quality from 2020 to 2050 in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2019, 16, 691. [CrossRef]

36. Wen, X.; Ming, Y.; Gao, Y.; Hu, X. Dynamic Monitoring and Analysis of Ecological Quality of Pingtan Comprehensive Experimental
Zone, a New Type of Sea Island City, Based on RSEI. Sustainability 2020, 12, 21. [CrossRef]

37. Nie, X.; Hu, Z.; Zhu, Q.; Ruan, M. Research on Temporal and Spatial Resolution and the Driving Forces of Ecological Environment
Quality in Coal Mining Areas Considering Topographic Correction. Remote Sens. 2021, 13, 2815. [CrossRef]

38. Zhang, Q.; Sun, C.; Chen, Y.; Chen, W.; Xiang, Y.; Li, J.; Liu, Y. Recent Oasis Dynamics and Ecological Security in the Tarim River
Basin, Central Asia. Sustainability 2022, 14, 3372. [CrossRef]

39. Wu, Y.; Zhang, X.; Fu, Y.; Hao, F.; Yin, G. Response of Vegetation to Changes in Temperature and Precipitation at a Semi-Arid
Area of Northern China Based on Multi-Statistical Methods. Forests 2020, 11, 340. [CrossRef]

40. Ren, P.; Li, J.; Feng, P.; Guo, Y.; Ma, Q. Evaluation of Multiple Satellite Precipitation Products and Their Use in Hydrological
Modelling over the Luanhe River Basin, China. Water 2018, 10, 677. [CrossRef]

http://doi.org/10.3390/su10041202
http://doi.org/10.1016/j.ecolmodel.2007.06.007
http://english.mee.gov.cn/Resources/standards/Eco_Environment/201605/t20160512_337614.shtml
http://english.mee.gov.cn/Resources/standards/Eco_Environment/201605/t20160512_337614.shtml
http://doi.org/10.1016/j.ecolind.2017.11.039
http://doi.org/10.1016/j.ecoser.2018.01.010
http://doi.org/10.3390/rs11202345
http://doi.org/10.1016/j.ecolind.2021.108214
http://doi.org/10.1016/j.ecolind.2019.105874
http://doi.org/10.3390/rs13214440
http://doi.org/10.3390/su12187716
http://doi.org/10.1016/j.ecolind.2018.05.055
http://doi.org/10.1016/j.jclepro.2019.118126
http://doi.org/10.1016/j.rse.2016.07.032
http://doi.org/10.1016/j.rse.2016.01.023
http://doi.org/10.1016/j.rse.2014.10.009
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.3390/rs11030288
http://doi.org/10.1007/s11625-021-01078-8
http://www.ncbi.nlm.nih.gov/pubmed/35035586
http://doi.org/10.3390/ijerph15081724
http://www.ncbi.nlm.nih.gov/pubmed/30103482
http://doi.org/10.1016/j.ecoleng.2020.106083
http://doi.org/10.3390/ijerph16050691
http://doi.org/10.3390/su12010021
http://doi.org/10.3390/rs13142815
http://doi.org/10.3390/su14063372
http://doi.org/10.3390/f11030340
http://doi.org/10.3390/w10060677


Int. J. Environ. Res. Public Health 2022, 19, 7719 21 of 22

41. Li, J.; Gao, Z.; Guo, Y.; Zhang, T.; Ren, P.; Feng, P. Water supply risk analysis of Panjiakou reservoir in Luanhe River basin of
China and drought impacts under environmental change. Theor. Appl. Climatol. 2019, 137, 2393–2408. [CrossRef]

42. Yu, C.; Li, H.; Jia, X.; Li, Q. Improving resource utilization efficiency in China’s mineral resource-based cities: A case study of
Chengde, Hebei province. Resour. Conserv. Recycl. 2015, 94, 1–10. [CrossRef]

43. Bing, L.; Zhongying, Z.; Biao, T.; Hongbo, L.; Hanchi, C.; Zhen, M. Comprehensive Utilization of Iron Tailings in China. IOP Conf.
Ser. Earth. Environ. Sci. 2018, 199, 042055. [CrossRef]

44. Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006. 2015. Available online: https:
//lpdaac.usgs.gov/products/mod13a2v006/ (accessed on 15 February 2022).

45. Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid
V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod11a2v006/ (accessed on 15 February 2022).

46. Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006. 2015. Available online:
https://lpdaac.usgs.gov/products/mod09a1v006/ (accessed on 15 February 2022).

47. Jin, Z.; Azzari, G.; You, C.; di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at
national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [CrossRef]

48. Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean Composite Fire Severity Metrics Computed with
Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sens. 2018, 10, 879. [CrossRef]

49. Peng, S. 1-km Monthly Precipitation Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2020.
50. Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2020); National Tibetan Plateau Data Center: Beijing, China, 2019.
51. Lobser, S.E.; Cohen, W.B. MODIS tasselled cap: Land cover characteristics expressed through transformed MODIS data. Int. J.

Remote Sens. 2007, 28, 5079–5101. [CrossRef]
52. Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. (In Chinese)
53. Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J.

Remote Sens. 2005, 9, 589–595. (In Chinese)
54. Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Brown, C.E., Ed.;

Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157.
55. Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River

Basin. Ecol. Indic. 2015, 51, 117–126. [CrossRef]
56. Panwar, M.; Agarwal, A.; Devadas, V. Analyzing land surface temperature trends using non-parametric approach: A case of

Delhi, India. Urban Clim. 2018, 24, 19–25. [CrossRef]
57. Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [CrossRef]
58. Cai, B.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens

2009, 13, 1170–1186.
59. Tian, Z.-H.; Ren, Z.-G.; Wei, H.-T. Driving mechanism of the spatiotemporal evolution of vegetation in the Yellow River basin

from 2000 to 2020. Chin. J. Environ. Sci. 2022, 43, 743–751. (In Chinese)
60. Moore, T.W. Decreasing trends in consecutive-day tornado events in the United States. Int. J. Climatol. 2021, 41, 6530–6540.

[CrossRef]
61. Gillespie, T.W.; Ostermann-Kelm, S.; Dong, C.; Willis, K.S.; Okin, G.S.; MacDonald, G.M. Monitoring changes of NDVI in

protected areas of southern California. Ecol. Indic. 2018, 88, 485–494. [CrossRef]
62. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
63. Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948.
64. Tian, Y.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper

and middle streams of the Luanhe River, northern China. Sci. Total Environ. 2019, 667, 142–151. [CrossRef]
65. Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from

Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [CrossRef]
66. Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River

Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [CrossRef]
67. Zhou, J.; Liu, W. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI)

in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [CrossRef]
68. Mann, C.; Loft, L.; Hernández-Morcillo, M.; Primmer, E.; Bussola, F.; Falco, E.; Geneletti, D.; Dobrowolska, E.; Grossmann, C.M.;

Bottaro, G.; et al. Governance Innovations for forest ecosystem service provision—Insights from an EU-wide survey. Environ. Sci.
Policy 2022, 132, 282–295. [CrossRef]

69. Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26,
146–154. [CrossRef]

70. Luo, W.; Griffin-Nolan, R.J.; Ma, W.; Liu, B.; Zuo, X.; Xu, C.; Yu, Q.; Luo, Y.; Mariotte, P.; Smith, M.D.; et al. Plant traits and soil
fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology 2021, 102, e03465. [CrossRef]

71. Wang, Y.; Zhang, T.; Chen, X.; Li, J.; Feng, P. Spatial and temporal characteristics of droughts in Luanhe River basin, China. Theor.
Appl. Climatol. 2018, 131, 1369–1385. [CrossRef]

72. Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the effects of open-pit mining on the eco-environment using a moving window-
based remote sensing ecological index. Environ. Sci. Pollut. Res. 2020, 27, 15716–15728. [CrossRef]

http://doi.org/10.1007/s00704-018-2748-2
http://doi.org/10.1016/j.resconrec.2014.10.013
http://doi.org/10.1088/1755-1315/199/4/042055
https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod13a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod09a1v006/
http://doi.org/10.1016/j.rse.2019.04.016
http://doi.org/10.3390/rs10060879
http://doi.org/10.1080/01431160701253303
http://doi.org/10.1016/j.ecolind.2014.07.031
http://doi.org/10.1016/j.uclim.2018.01.003
http://doi.org/10.1080/01621459.1968.10480934
http://doi.org/10.1002/joc.7210
http://doi.org/10.1016/j.ecolind.2018.01.031
http://doi.org/10.2307/1907187
http://doi.org/10.1016/j.scitotenv.2019.02.356
http://doi.org/10.1016/j.ecolind.2018.02.006
http://doi.org/10.3390/rs13214477
http://doi.org/10.3390/su14095642
http://doi.org/10.1016/j.envsci.2022.02.032
http://doi.org/10.1016/j.ecoser.2017.06.010
http://doi.org/10.1002/ecy.3465
http://doi.org/10.1007/s00704-017-2059-z
http://doi.org/10.1007/s11356-020-08054-2


Int. J. Environ. Res. Public Health 2022, 19, 7719 22 of 22

73. Zeng, F. International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, Cham, 2020. In Eco-
Environmental Geological Evaluation of Environmental Impact of Mining; Abawajy, J.H., Choo, K.-K.R., Islam, R., Xu, Z., Atiquzzaman,
M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 2041–2045.

74. Zhang, T.; Yang, R.; Yang, Y.; Li, L.; Chen, L. Assessing the Urban Eco-Environmental Quality by the Remote-Sensing Ecological
Index: Application to Tianjin, North China. ISPRS Int. J. Geoinf. 2021, 10, 475. [CrossRef]

75. He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective.
Glob. Chang. Biol. 2014, 20, 2886–2902. [CrossRef] [PubMed]

76. Cheng, S.; Gu, H.; Song, W.; Ai, Y.; Zhang, Y.; Lu, S. Study on the Ecological Disturbance Monitoring in Mining Area Based on
Remote Sensing Information: Taking Qian’an City as an Example. Metal Mine 2021, 50, 182. (In Chinese)

77. Feng, S.; Hao, Z.; Zhang, X.; Wu, L.; Zhang, Y.; Hao, F. Climate change impacts on concurrences of hydrological droughts and
high temperature extremes in a semi-arid river basin of China. J. Arid Environ. 2022, 202, 104768. [CrossRef]

78. Hrisko, J.; Ramamurthy, P.; Yu, Y.; Yu, P.; Melecio-Vázquez, D. Urban air temperature model using GOES-16 LST and a diurnal
regressive neural network algorithm. Remote Sens. Environ. 2020, 237, 111495. [CrossRef]

79. Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different
vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [CrossRef]

80. Liu, X.; Zhu, X.; Li, S.; Liu, Y.; Pan, Y. Changes in Growing Season Vegetation and Their Associated Driving Forces in China
during 2001–2012. Remote Sens. 2015, 7, 15517–15535. [CrossRef]

81. Lamqadem, A.A.; Saber, H.; Pradhan, B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data
and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [CrossRef]

82. Yang, L.; Sun, G.; Zhi, L.; Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 2018, 8, 4026.
[CrossRef] [PubMed]

83. Jin, H.; Chen, X.; Wang, Y.; Zhong, R.; Zhao, T.; Liu, Z.; Tu, X. Spatio-temporal distribution of NDVI and its influencing factors in
China. J. Hydrol. 2021, 603, 127129. [CrossRef]

84. Sun, R.; Chen, S.; Su, H. Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to
2015. Remote Sens. 2021, 13, 187. [CrossRef]

85. Liu, Q.; Zhao, L.; Sun, R.; Yu, T.; Cheng, S.; Wang, M.; Zhu, A.; Li, Q. Estimation and Spatiotemporal Variation Analysis of Net
Primary Productivity in the Upper Luanhe River Basin in China From 2001 to 2017 Combining With a Downscaling Method.
IEEE. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 353–363. [CrossRef]

86. Wanders, N.; Pan, M.; Wood, E.F. Correction of real-time satellite precipitation with multi-sensor satellite observations of land
surface variables. Remote Sens. Environ. 2015, 160, 206–221. [CrossRef]

87. Chen, X.; Li, F.-W.; Wang, Y.-X.; Feng, P.; Yang, R.-Z. Evolution properties between meteorological, agricultural and hydrological
droughts and their related driving factors in the Luanhe River basin, China. Hydrol. Res. 2019, 50, 1096–1119. [CrossRef]

88. Li, J.; Zhou, S. Quantifying the contribution of climate- and human-induced runoff decrease in the Luanhe river basin, China. J.
Water Clim. Chang. 2015, 7, 430–442. [CrossRef]

89. Chen, K.; Cai, Q.; Zheng, N.; Li, Y.; Lin, C.; Li, Y. Forest Carbon Sink Evaluation—An Important Contribution for Carbon
Neutrality. IOP Conf. Ser. Earth. Environ. Sci. 2021, 811, 012009. [CrossRef]

90. Odoulami, R.C.; Abiodun, B.J.; Ajayi, A.E.; Diasso, U.J.; Saley, M.M. Potential impacts of forestation on heatwaves over West
Africa in the future. Ecol. Eng. 2017, 102, 546–556. [CrossRef]

91. Law, B.E.; Berner, L.T.; Buotte, P.C.; Mildrexler, D.J.; Ripple, W.J. Strategic Forest Reserves can protect biodiversity in the western
United States and mitigate climate change. Commun. Earth Environ. 2021, 2, 254. [CrossRef]

http://doi.org/10.3390/ijgi10070475
http://doi.org/10.1111/gcb.12553
http://www.ncbi.nlm.nih.gov/pubmed/24643992
http://doi.org/10.1016/j.jaridenv.2022.104768
http://doi.org/10.1016/j.rse.2019.111495
http://doi.org/10.1002/joc.3543
http://doi.org/10.3390/rs71115517
http://doi.org/10.3390/rs10121862
http://doi.org/10.1038/s41598-018-22394-7
http://www.ncbi.nlm.nih.gov/pubmed/29507383
http://doi.org/10.1016/j.jhydrol.2021.127129
http://doi.org/10.3390/rs13020187
http://doi.org/10.1109/JSTARS.2021.3132723
http://doi.org/10.1016/j.rse.2015.01.016
http://doi.org/10.2166/nh.2019.141
http://doi.org/10.2166/wcc.2015.041
http://doi.org/10.1088/1755-1315/811/1/012009
http://doi.org/10.1016/j.ecoleng.2017.02.054
http://doi.org/10.1038/s43247-021-00326-0

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	MODIS Data 
	Other Data 

	Quantification of Ecological Quality 
	Coefficient of Variation 
	Theil–Sen Median Trend Analysis and Mann–Kendall Test 

	Results 
	Spatiotemporal Distribution of Ecological Quality in LHRB 
	Ecological Quality Assessment in LHRB 
	Coefficient of Variation 
	Trend Analysis of Ecological Quality 

	Discussion 
	Feasibility of Ecological Quality Assessment with RSEI 
	Response of Ecological Quality to Land Use and Climate Change 
	Response of EQ to Land Use 
	Response of EQ to Climate Change 


	Conclusions 
	References

