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Abstract
The tumormicroenvironment, including stromal cells, surrounding blood vessels and extracel-

lular matrix components, has been defined as a crucial factor that influences the proliferation,

drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors,

the communications and interaction between cancer cells and stromal cells have been

reported to play pivotal roles in cancer promotion and progression. To investigate these rela-

tionships, an on-chip co-culture model was developed to study the cellular interaction

between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in

both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2

individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized

for cell patterning. Microelectrodes arrays were installed within each chamber including elec-

trodes at various distances away from the confrontation line for the electrochemical impedi-

metric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-

cell contact occurred, by evaluating the impedance signal responses representing cell condi-

tion and behavior, both direct and indirect cell-to-cell interactions through conditioned media

were investigated. The impact of specific distances that lead to different influences of fibro-

blast cells on cancer cells in the co-culture environment was also defined.

Introduction
There is growing evidence demonstrating that the tumor microenvironment, including stromal
cells, inflammatory cells, extracellular matrix (ECM), cytokines, vessels and growth factors,
plays an important role in the initiation, progression and invasion of cancer [1–3]. During
tumorigenesis, cancer cells interact dynamically with surrounding stromal cells, such as fibro-
blasts, adipose cells and resident immune cells. Among these, fibroblasts form the largest group
of stromal cells and appear to function prominently in cancer progression [4–5].

First described in the late 19th century, fibroblasts are elongated, non-vascular, non-epithe-
lial and non-inflammatory cells of the connective tissue with extended cell processes that show
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a fusiform or spindle-like shape in profile. Fibroblasts perform many important functions,
including the deposition of ECM, the regulation of epithelial differentiation, and the regulation
of inflammation; they are also involved in wound healing [5]. During normal proliferation in
healthy organs, fibroblasts synthesize and secrete various types of collagens (i.e., types I, III,
and V) as well as fibronectin and proteoglycans, which are the essential constituents of ECM
[6]. Fibroblasts also secrete type IV collagen and laminin, which assist in the formation of the
basement membrane [7]. In wounded organs, fibroblasts play an important role in the healing
process by invading lesions and generating ECM to serve as a scaffold for other cells [8].

In the early stage of tumorigenesis, cancer cells form a neoplastic lesion within the boundary
of the basement membrane but separated from the surrounding tissue [9]. The basement mem-
brane, fibroblasts, immune cells, capillaries and ECM surrounding the cancer cells form an
area that is called the tumor microenvironment. As the principle source of ECM components,
fibroblasts are defined as a key cellular component of tumors. In association with cancer cells,
normal fibroblasts can acquire a perpetually activated phenotype by direct cell-cell communi-
cation or by various stimuli that arise when tissue injury occurs [10]. Activated fibroblasts
exhibit the up-regulations of ECM-degrading matrix metalloproteinases-2, 3 and 9 (MMP-2,
MMP-3 and MMP-9) as well as many growth factors, which induce proliferative signals to
adjacent epithelial cells [11]. From this close association, a question arises about the heterotypic
cellular interactions between tumor cells and fibroblasts in the tumor microenvironment. In
the past decade, a number of research studies have clarified the effect of fibroblasts on various
aspects of cancer cell behavior including proliferation, angiogenesis, invasion, metastasis and
drug resistance; however, cancer cells behavior has yet to be completely explained. Promi-
nently, Stoker et al. (1966), Wadlow et al. (2009) and Flaberg et al. (2011, 2012) have shown
that normal fibroblasts can inhibit the growth of cancer cells in vitro and they termed this effect
as neighbor suppression [12–15]. Flaberg et al. (2012) designed a co-culture assay with H2A-
mRFP-labeled tumor cells on a mono-layer of fibroblasts [15]. Over the course of 62.5 h,
tumor cells proliferation and motility were significantly inhibited by the fibroblasts through
direct cell-to-cell interaction. To fully understand these effects, we conjectured whether there is
an indirect neighbor interaction between fibroblasts and cancer cells, which we termed as a dis-
tance effect. The given hypothesis is that the inhibitory effect of fibroblasts on cancer cells is a
function of the distance between these 2 cell types in a common stromal microenvironment.

In this study, we proposed a simple co-culture model with embedded high-throughput
microelectrode arrays (MEA) using an electric cell-substrate impedance sensing (ECIS) assay
(Fig 1) to monitor tumor cell conditions continuously when confronted with cultured fibro-
blasts. This electrical sensing method was utilized in this study due to the prominent advan-
tages; this method is non-invasive, simple to setup, easy to perform, extraordinarily sensitive to
cellular conditions and capable of real-time monitoring [16,17]. The MEA were patterned on
both sides of the cell culture areas at various distances from the separation line. During the cell
interactions, each electrode continuously records an impedance signal through a high-through-
put data acquisition system. This type of impedimetric data has been acknowledged to reflect
cellular adhesion, spreading, proliferation and viability in treatment conditions with environ-
mental toxins, drugs, and chemicals, as well as other substances.

In this study, we showed the inhibitory effect of MRC-5 human lung fibroblasts on the nor-
mal proliferation of A549 human lung cancer cells. Impedance signal differences were deter-
mined to indirectly demonstrate the distance effect between MRC-5 and A549 cells in a co-
culture environment. Particularly in the drug treatment conditions, we also observed an inten-
sive suppression in direct fibroblast—cancer interaction, which was higher than that exerted by
indirect interaction. Additionally, the inhibitory effect of fibroblasts was confirmed using the
fluorescence-activated cell sorting (FACS) method in a mixed culture model. Our study was
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aimed to mimic an in-vivo therapeutic stromal effect on tumor progression with a novel detec-
tion and analysis technique in the real-time domain.

Materials and Methods

MEA fabrication
The MEA pattern was fabricated on glass microscope slides (52 mm × 76 mm) by common
photolithography processes using AZ-5214E (MicroChemicals GmbH, Germany) as a negative
photoresist for a lift-off process. The patterning was followed by the deposition of a 250 Å/500
Å Ti/Au bi-layer by using an e-beam evaporation system, and the unneeded portions were
selective removed in acetone. After the electrodes were formed, we performed a second photo-
lithography step to apply a 2 μm thick layer of SU-8 2002 (MicroChem, USA) as an isolation
layer for the gold traces, leaving only the electrodes arrays and contact pads expodes.

Cell culture
MRC-5 human lung fibroblasts and A549 human lung cancer cells were obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA) and were cultured in RPMI
medium 1640 (Gibco) supplemented with 10% Fetal bovine serum (FBS, Gibco) and 1% antibi-
otics/antimycotics (Gibco). These cells were maintained in condition of 37°C and of 5% CO2

and sub-cultured under treatment of trypsin-EDTA (Gibco) solution. The number of cells was
counted using the Cellometer (Cellometer Auto T4, USA).

Cell patterning on MEA chip
In this study, the cell was patterned using a common physical barrier method to create cell-free
regions for collective cell migration [18]. A physical barrier was applied prior to cell seeding to

Fig 1. (A) Microelectrode arrays (1: working electrode, 2: common counter electrode) were fabricated on
experimental glass slides (76mm x 52mm) by common photolithography processes. SU-8 photoresist was
used as passivation layer to cover the conducting traces. (B) The sensing platform was divided into 2 areas,
one for the cancer cells and one for microenvironment agents. Several mirco-sized working electrodes were
installed in each area at different distances: 100, 250, 650, 1450 and 3050μm far from the confrontation line.
(C) A single electrode was 100μm in diameter. (D) An image of a real chip after the co-culturing of 2 different
cell types on 2 sides. (E) The co-culture patterning process using a dual-chamber mold. (E1) After treating the
surface for cell culture, the cell chip was placed on the designed fixture, and the dual-chamber mold was fixed
at the proper location by screws. The 2 chambers were separated each other by a 100μm thick wall for cell
patterning. (E2) After the cells in both chamber had attached to the chip surface, the dual-chamber mold was
replaced by a well-type open reservoir. A PDMS bed was also installed to prevent solution from leaking. The
cell chip was connected to the measurement system and was kept in the incubator during the measurements.

doi:10.1371/journal.pone.0153813.g001
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block cell mixing, and the removal of the physical barrier initiates the cell migration and con-
frontation process. Acrylic fixtures for the cell chip and dual-chamber mold were designed
using AutoCAD and were fabricated using a CNC milling machine (Fig 1E). Before being used
for cell culture, all of the devices were sterilized in an alcohol bath and were dried in an oven
with UV light. After the dual-chamber mold was fixed to the cell chip in the proper position
using screws, each chamber was treated with a collagen solution (10%) for 15 min at room tem-
perature to promote cell adhesion. Then, the chambers were washed with 1X PBS, and the 2
types of cell suspension (5×105 cells/chamber) were injected into the 2 separate chambers.
After 12 h, when both cell types had attached well and had formed a monolayer on the chip
surface, the chambers were disassembled and were replaced by the well-type reservoir. The cell
chip was connected to the ECIS system and kept in the incubator during the measurements.

CellTracker staining for migration checking
MRC-5 fibroblasts were stained with CellTracker before co-culture to assess their migration
into the area of A549 tumor cells. In brief, MRC-5 cells were cultured in a cell culture dish
(SPL), and were harvested using Trypsin-EDTA (Gibco). The cells were centrifuged, the super-
natant was removed, and the cells were re-suspended in 1 ml of culture media (RPMI-1640
with 10% FBS, 1% PS, 25 mMHEPES, Gibco). The cell solution received 20 μM of CellTrack-
erTM (Life Technologies, CellTrackerTM Green CMFDA) and the cells were subsequently incu-
bated for 30 min. Then, the cells were centrifuged and supernatant was removed; then, the cells
were re-suspended in 1 ml of fresh culture media. The stained cells were then ready to be
injected into the co-culture chamber as described in the cell patterning section. The cell stain-
ing was confirmed using fluorescence microscopy (Eclipse 80i, Nikon).

Flow cytometry analysis
A549 and MRC-5 cells (5×105 cells/ml) were cultured in 6-well plates for both the mono-cul-
ture of A549 cells and the co-culture of A549 and MRC-5 cells). Each cell type was treated with
30 μM of curcumin (Sigma-Aldrich) for 3 days. Then, the cells were washed three times with
cold PBS (Sigma-Aldrich) and suspended binding buffer (10 mMHEPES, 140 mMNaCl, 2.5
mM CaCl2, pH 7.4, Sigma-Aldrich). Each sample received 5 μMAnnexin V conjugated Alexa
Fluor1 594 (Life Technologies, excitation/emission: 590/617 nm) and was incubated for 15
min at room temperature. The cells were analyzed using an Accuri C6 flow cytometer (BD Bio-
science) and the data were analyzed with FlowJo software (Treestar).

MTS assay
Curcumin (Sigma-Aldrich) was prepared in DMSO and diluted to desired concentrations in
cell culture media. For the experiment, cells were cultivated at 1×104 cells/100 μl of the initial
seeding amount in a 96-well cell culture plate for 24 h. The A549 cells and MCR-5 fibroblasts
were treated with various concentrations of curcumin (1, 10, 30, 50, 70, 100 and 500 μM) for 3
days. The Cell Counting Kit-8 solution (Dojindo Inc.) was diluted to 1:10 with medium and
added to each well of the plate, and then the cells were incubated for 4 h. Cell proliferation was
measured at 450 nm using a Wallac 1420 VICTOR3 V microplate reader.

Measurement system
An Agilent 4284A Impedance Precision Meter (Agilent CA, USA) and a designed switching
relay circuit were operated to simultaneously measure the impedance of the electrodes arrays.
The measuring conditions were 10 mV and 10 kHz at 5 min intervals. LabVIEW (National
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Instrument, TX, USA) software was used to control the meter and record numerical data to a
PC, and then the data were automatically plotted on a real-time chart.

Statistical analysis
All the data were expressed as the means (±SD) of 3 repetitions. Statistical analysis was per-
formed by a one-way factorial ANOVA, followed by the Tukey’s honestly significant difference
(HSD) test of difference. Differences were considered to be statistically significant at p values
less than 0.05.

Results

MEA characterization via monocultures of tumor cells and fibroblasts
In the first experimental step, the MEA cell chips were validated via monocultures of A549
tumor cells and MRC-5 fibroblasts in normal proliferative conditions. Before operating the cell
measurement system, the arrays were adjusted (by LabVIEW) to normalize the systematic dif-
ferences, such as wiring, soldering and conductive traces. The normalized cell-free resistance of
each electrode was fixed at 2.6 kO. Fig 2A shows the resistance responses when single elec-
trodes were challenged by various concentrations of A549 cells. The data obtained over 16 h
were fitted by a hill algorithm for a growth/sigmoidal model (OriginPro 9). Below 1.25×105

cells/well, the resistance curves corresponded well to the fitting curves. At higher cell densities,
a lag phase appeared from 4 h to 8 h, when the cells were rearranging themselves on binding
the site prior to forming a monolayer on the electrodes. To easily estimate viability throughout
this study, a dimensionless parameter termed the cell index (CI) was defined as the relative
change in measured electrical resistance and can be calculated using the equation below

CI ¼ Ri

Rcell�free

� 1

where Ri is the resistance of the cell-covered electrodes, and Rcell-free is the resistance of blank
electrodes (2.6 kO). After 16 h, a calibration curve was plotted, which represented the correla-
tion between CI value and cell seeding density (Fig 2B).

Additionally, A549 tumor cells and MRC-5 fibroblasts were separately treated with various
doses of curcumin to define an appropriate treatment condition for the co-culture study.

Fig 2. (A) Resistance responses of MEA to various concentrations of A549 tumor cells in monoculture for 16 h (at 10mV, 10kHz). (B) This calibration curve
represents the correlation between A549 cell density and cell index value. (C) MTS results from of monocultures of A549 cells and MRC-5 fibroblasts after 72
h of exposure to curcumin. The IC50 values for the A549 cells and MRC-5 cells were 50 μM and 30 μM, respectively. The data are shown as the mean (±SD)
of 3 repetitions.

doi:10.1371/journal.pone.0153813.g002
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Curcumin has proven effective in inducing apoptosis as well as inhibition of proliferation of
lung adenocarcinoma cell line—A549 [19]. In this study, curcumin was chosen to create the
treatment environment for the proposed co-culture model. An MTS assay was performed, and
a cell viability curve was plotted after 72 h (Fig 2C). The results showed that curcumin has a
significant toxic effect on both tumor cells and fibroblasts at 10 μM. The IC50 values for the
A549 cells and MRC-5 cells were 50 μM and 30 μM, respectively. The treatment dose at 30 μM
was chosen for the subsequent co-culture experiment, where tumor cells were simultaneously
exposed to both the toxic effect of curcumin and the inhibitory effect of adjacent fibroblasts.

Inhibitory effect of fibroblasts on tumor cells in mixed culture
Tumor cell proliferation in this type of co-culture model is determined by properties of both
the cancer cells and the fibroblasts, which could exert opposing proliferative effects in vitro.
For example, AG09877 fibroblasts stimulate the proliferation of carcinoma T47D cells, while
AG04351 fibroblasts exhibit a growth-inhibition effect on the same cancer cell line [13]. To
determine the reciprocal effects between A549 and MRC-5, a FACS assay was performed with
a mixed culture model using these 2 cell lines. The detection scheme was based on the differ-
ences in phosphatidylserine (PS) location between healthy cells and apoptotic cells. In normal
viable cells, PS is located on the cytoplasmic surface of the cell membrane. When the cells start
to undergo apoptosis, PS is translocated from the inside to the outside of the cell membrane
and is exposed to the external cellular environment. Using a specific phospholipid-binding
protein (Annexin V-conjugated Alexa Fluor1 594) and a flow cytometry sorting system, the
early-stage apoptotic cells can be distinguished from the whole cell population.

As shown in Fig 3, curcumin treatment in the monocultures induced apoptosis in both
A549 cells and MRC-5 cells at 9.87% and 19.05% apoptotic cells, respectively. This ratio was
less significant than our MTS results as well as the results of other previous studies [20]. These
differences were explained by the lack of dead cells, which cannot be discriminated by FACS
with only PS staining.

In mixed cultures without a neighbor effect between the tumor cells and fibroblasts, a ratio
of total apoptotic cells was expected from 9.87% to 19.05% in the same experimental condi-
tions. Interestingly, the ratio of apoptotic cells in the mixed cultures was determined to be
33.71%. This result suggested that the cell-to-cell inhibitory effect was present in parallel with
the toxic effect of curcumin for both cell types. However, specific effects on each cell line were
difficult to determine using FACS.

Inhibitory effect of fibroblasts on the normal proliferation of tumor cells
To discriminate the particular contribution of each cell line to the total inhibitory effect, we
examined cellular conditions via impedance responses in a co-culture model. Raw resistance
data of A549 cells at various distances away from fibroblasts (0.1, 0.25, 0.65, 1.45, and 3.05
mm) were linearly fitted and normalized, as shown in Fig 4A. The corresponding resistance
data after 24 h and 48 h were converted into CI values using the equation shown in section 1
(Fig 4B). During the first 24 h after cell contact, the distance effect was indistinct, and the CI
values did not show significant differences between the 1st electrode array (0.1 mm) and the 5th

electrode array (3.05 mm).
A significant difference in the proliferation of A549 cells was observed at 48 h. The CI values

of A549 cells in directly contact and adjacently contact with fibroblasts (i.e., at the 1st and 2nd

electrode arrays) slightly decreased from 6.12 and 6.23 to 5.57 and 5.77, while those of the fur-
ther A549 cells (i.e., at 3rd, 4th and 5th electrode arrays) maintained stable impedance responses
at the confluent cell density (Fig 4C). These result clearly showed that fibroblasts are able to
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inhibit the proliferative rate of tumor cells in confronted cultures more effectively than effects
mediated through the media environment.

Fibroblasts–tumor cells interaction in treatment conditions: obvious
neighbor effect over distances
To provide a full understanding of the neighbor effect between fibroblasts and tumor cells in
vitro, we constructed a co-culture model with MRC-5 cells and A549 cells in therapeutic condi-
tions. Curcumin was introduced into the confronted cultures at the previously defined concen-
tration, 30μM; impedance was then monitored for the following 84 h. The average responses
were normalized and nonlinearly fitted using a dose-response algorithm (Fig 5A). Interestingly,
the distance effect was clearly demonstrated at early times after drug exposure (Fig 5A and 5B).
After 24 h, the average CI values obtained were 5.57, 5.77, 6.35, 6.34 and 6.40 for tumor cells
that were located at 0.1, 0.25, 0.65, 1.45 and 3.05 mm away from the fibroblast confrontation
line. After 48 h and 72 h, significant decreases of all the CI values and the appearance of gaps

Fig 3. Histogram results of curcumin treatment at 30μM by FACS assay.Different percentages of
apoptotic cells were obtained in the A549 tumor cells and MRC-5 fibroblasts monocultures and in the mixed
culture of these 2 cell lines. [A color figure can be viewed in the online issue].

doi:10.1371/journal.pone.0153813.g003
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between the arrays clearly reflected the intensive combined apoptotic effect of both the anti-
cancer drug activity and growth inhibition via fibroblast interactions. We also performed a
migration assay under the confronted co-culture conditions to investigate the migration ability
of fibroblasts into the tumor cells area and thus be able to distinguish the direct cell-to-cell
interaction effect from the total inhibitory effect (Fig 5C). After 72 h, the remaining fluorescent
intensity showed the efficient apoptotic effect of curcumin on the MRC-5 cells, but no signifi-
cant migration was observed. These results corresponded well with those of other studies about
the effects of curcumin treatment on the migration kinematics of cultured fibroblasts.

Fig 4. (A) Cellular resistance responses (at 10mV, 10kHz) of A549 tumor cells as a function of time and distance from fibroblasts over 54 h of co-culture in
normal growth conditions. The raw data were linearly-fitted and converted to CI value with respect to the cell-free electrode response (2.6 kΩ). (B) CI values
of tumor cells at 5 different distances away from the cultured fibroblasts. After 48 h in co-culture, the CI values indicated that the tumor cells that were
confronted with fibroblasts were clearly inhibited in comparison with distant cells. (*p < 0.02). (C) Bright-field images of the confrontation between tumor cells
and fibroblasts at 0 h and 48 h. The scale bar represents 200 μm.

doi:10.1371/journal.pone.0153813.g004

Fig 5. (A) Cellular resistance responses (at 10mV, 10kHz) of A549 tumor cells as a function of time and distance from fibroblasts over 84 h of co-culture in
the curcumin treatment condition. The raw data were fitted and converted to CI values with respect to the cell-free electrode responses (2.6 kΩ). (B) CI values
of the tumor cells at 5 different distances away from the cultured fibroblasts. The inhibitory effect of fibroblasts on tumor cells was more clearly observed in the
toxic environment after 24 h (*p <0.04). (C) The migration rate of fibroblasts into the tumor cell area was assessed using a cell tracker staining assay. In the
treatment condition, no significant migration was observed. The gray dots indicate the location of the electrodes arrays. The scale bar represents 500 μm.

doi:10.1371/journal.pone.0153813.g005
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Discussion
Impedimetric cell-based biosensors have been acknowledged as a versatile and reliable character-
ization platform for bio-analytical studies due to their prominent advantages, such as high sensi-
tivity, high throughput and real-time recording capability. Using various geometrical electrode
designs, ECIS platforms have been extensively utilized in the studies of cell attachment and
spreading [21,22], cell motility [23], cell layer barrier functions [24], as well as for in vitro toxico-
logical studies and drug screening [25,26]; these platforms also been integrated with other bio-
analytical systems [27]. The outstanding electrode design is the microelectrode array, which con-
sists of many uniform single microelectrodes on one shared platform. Because they are on the
order of microns in size, single microelectrodes are able to address the heterogeneous properties
of cells that are concealed within average cells populations, instead of providing a collective cellu-
lar response to a given physiological condition. However, the use of single microelectrodes in cel-
lular measurement has to address the extraordinary sensitivity of cell behaviors such as micro-
movements, attachment, spreading and proliferation. This signal fluctuation presents a challenge
for determining actual cell behavior on an electrode surface. The solution provided in this study
was using arrays for measurement repetition, and then applying proper fitting methods to the
obtained average data. Using this method, the relative changes of cell viability can be shown via
CI number and can easily be converted to percentages in comparison with initial CI values.

This study was aimed to propose a simple but effective method to investigate the interactions
of tumor cells and fibroblasts in a co-culture model, with specific focus on the distance effect
between these 2 cell lines. The overall inhibitory and toxic effects on A549 cancer cells are shown
in Fig 6. It should be noted that other previous studies have examined the inhibition of tumor
cell proliferation and motility by fibroblasts [28–31]; the common conclusion was that the inhibi-
tion effect was both contact- and soluble factor-dependent. However, the effective distance
between tumor cells and fibroblasts had not yet been determined. By integrating anMEA plat-
form into a co-culture model, we successfully determined the differences of A549 tumor cell
behaviors at various distances away fromMRC-5 fibroblasts in both normal proliferation and
treatment conditions. Our results showed that the influences on the tumor cells could be catego-
rized into 3 different zones based on the viability of the tumor cells. The first zone was located up
to 0.25 mm away from the fibroblast confrontation line, where cancer cells were strongly inhib-
ited in both normal and toxic conditions. This result can be explained by the involvement of the
surface molecules of fibroblasts as well as the soluble factors that are secreted because of the con-
frontation between fibroblasts and tumor cells [31]. The second zone was located up to 3 mm
away from the first zone, where the effect in normal growth conditions was indistinct but was
clearly demonstrated in the treatment condition. This result can also be explained by the soluble
factors secreted from fibroblasts from a limited distance. The third zone encompassed the
remaining area. In the normal co-cultures, the A549 tumor cells in this zone maintained CI val-
ues of 6.6 and 6.5, which indicated a normal proliferation rate despite the cross-talk of distant
cells. In the treatment condition, A549 cell viability was determined to be 75.6%, which was
approximately the same value determined by the mitochondrial based MTS assay (72.1%). This
equivalence obviously indicated that conditioned media did not cause any inhibitory effect when
the cancer cells were more than 3 mm away from the fibroblasts.

The response of malignant human cells to the stromal microenvironment and therapeutic
regimens is a fundamental topic in cancer research, but a full understanding has not been
achieved due to an overreliance on end-point assays [32–34]. In this study, we introduced a
well-established assay to a novel sensing platform for the first time to facilitate the continuous
monitoring and the location-dependent assessment of cellular inhibition effects. Our results
emphasized that the factor of tumor size could affect the efficiency of cancer chemotherapy
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and should be considered as an influential parameter in co-culture systems. Further studies
that characterize the molecular elements secreted by cells as well as signaling pathways using
our platform and similar 3D co-culture systems for each cancer type will be remarkably benefi-
cial to the cancer research community.

Conclusion
To the best of our knowledge, this study is the first attempt to address the factor of distance in the
differential inhibition of tumor cell proliferation by human fibroblasts. Our impedimetric cell-
based results revealed that the neighbor suppression effect of normal fibroblasts depends on not
only cell type and manner of interaction but also the distance between the 2 cell lines. A549
tumor cells were intensively inhibited within 0.25 mm fromMRC-5 fibroblasts, whereas no inhi-
bition was observed at 3 mm and further. With the capability of automatic measurements, our
high-throughput assay may facilitate the preliminarily evaluation of desired cell–cell interactions
in different growth or treatment conditions before the utilization of any other biological assays.

Author Contributions
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Fig 6. Summary of A549 cell viability as a function of co-culture time and distance from fibroblasts
over 72 h in the curcumin treatment condition.

doi:10.1371/journal.pone.0153813.g006
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