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Abstract

Histone modifications in chromatin regulate gene expression. A transcriptional co-repressor complex containing LSD1–
CoREST–HDAC1 (termed LCH hereafter for simplicity) represses transcription by coordinately removing histone
modifications associated with transcriptional activation. RE1-silencing transcription factor (REST) recruits LCH to the
promoters of neuron-specific genes, thereby silencing their transcription in non-neuronal tissues. ZNF198 is a member of a
family of MYM-type zinc finger proteins that associate with LCH. Here, we show that ZNF198-like proteins are required for
the repression of E-cadherin (a gene known to be repressed by LSD1), but not REST-responsive genes. ZNF198 binds
preferentially to the intact LCH ternary complex, but not its individual subunits. ZNF198- and REST-binding to the LCH
complex are mutually exclusive. ZNF198 associates with chromatin independently of LCH. Furthermore, modification of
HDAC1 by small ubiquitin-like modifier (SUMO) in vitro weakens its interaction with CoREST whereas sumoylation of HDAC1
stimulates its binding to ZNF198. Finally, we mapped the LCH- and HDAC1–SUMO-binding domains of ZNF198 to tandem
repeats of MYM-type zinc fingers. Therefore, our results suggest that ZNF198, through its multiple protein-protein
interaction interfaces, helps to maintain the intact LCH complex on specific, non-REST-responsive promoters and may also
prevent SUMO-dependent dissociation of HDAC1.
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Introduction

The ordered assembly of genomic DNA into a proteinacious

substance—chromatin—allows for high-order regulation of DNA-

templated processes, such as transcription, replication, and DNA

repair. Chromatin contains repeating units of nucleosomes, which

consists of one histone H3/H4 tetramer and two H2A/H2B

dimers wrapped around by double-stranded DNA [1–3]. Polymers

of nucleosomes flanked by various lengths of linker DNA can fold

into compacted high-order structures that are subject to dynamic

regulation [4].

Post-translational modifications on the flexible tails of histones

can directly or indirectly affect chromatin structure [5]. Histone

acetylation is generally associated with transcriptional activation

and is dynamically regulated by histone acetyltransferases (HATs)

and histone deacetylases (HDACs) [5]. The effect of histone lysine

methylation, catalyzed by methyltransferases, depends on the

specific residue and degree of modification (mono-, di-, or

trimethylation) [6]. Histone H3 lysine 4 di- and trimethylation

(H3K4me2/3) is associated with active promoters [7,8], but

H3K9me2/3 is mostly associated with transcriptional repression

[9]. Lysine-specific demethylase 1 (LSD1; also known as BHC110

or AOF2) is a flavin adenine dinucleotide (FAD)-dependent amine

oxidase that demethylates histone H3K4me1/2, but not H3K4me3

[10,11]. Although LSD1 alone can demethylate bulk histones or

peptide substrates, it requires a co-factor, REST co-repressor

(CoREST), for efficient binding to nucleosomes and demethylation

of nucleosomal substrates [12–14]. The LSD1–CoREST interac-

tion also stabilizes the LSD1 protein in the cell [14]. A fraction of the

abundant class I HDACs, HDAC1 and HDAC2, associate with

LSD1–CoREST, forming an LSD1–CoREST–HDAC1/2 (LCH)

core ternary complex [15–18]. Formation of this complex on

chromatin enables HDAC1/2 and LSD1 to stimulate each other’s

activity through CoREST [19].

The LCH complex can be targeted to specific promoters

through binding to sequence-specific transcriptional factors, either

directly or indirectly. For example, RE1-silencing transcription

factor (REST), which is a Krüppel-like zinc finger-containing

protein, binds directly to CoREST and recruits the LCH complex

to neuron-specific gene promoters that contain RE1 elements, thus

repressing the expression of neuron-specific genes in non-neuronal

tissues [20,21]. In addition, LCH can be incorporated into a larger

co-repressor complex that also contains CtBP1/2 and the G9a

histone H3K9 methyltransferase [16]. CtBP1/2 in turn binds to

Krüppel-like zinc finger-containing sequence-specific repressors

ZEB1/2, which recruit this complex to chromatin [22]. Finally,

LSD1 is targeted to androgen- and estrogen-responsive promoters

through interactions with androgen receptor (AR) and possibly

estrogen receptor (ER). In this context, LSD1 activates transcrip-

tion through promoting the demethylation of H3K9me1/2 at

these promoters [23,24]. Whether the entire LCH complex is

targeted to AR- or ER-dependent promoters is unclear.

Several human proteins, including ZNF198, ZNF237, ZNF261,

ZNF262, and ZNF258, contain a stretch of unique tandem zinc
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fingers called MYM (myeloproliferative and mental retardation)

domains [25] (Figure S1). The MYM-domains of ZNF198 are

frequently fused to FGF receptor kinase in myeloproliferative

syndromes [26–28]. Disruptions near the ZNF261 gene have been

linked to X-linked mental retardation [29]. Among human MYM-

domain proteins, ZNF198, ZNF261, and ZNF262 share a similar

domain architecture and possibly perform similar functions (Figure

S1). A Drosophila homolog of these proteins, without children

(dWoc), is essential for viability, associates with chromatin, and

prevents telomere fusions [30–32]. Interestingly, ZNF198 and

ZNF261 are present in transcriptional corepressor complexes that

also contain LCH [13,14,18], although their functions in

transcriptional regulation have not been explored.

Many transcription factors and cofactors are modified by small

ubiquitin-like modifier (SUMO). Sumoylation of these factors

generally leads to transcriptional repression. For unknown reasons,

multiple subunits within a given chromatin-associated complex are

often targeted by sumoylation [33,34]. For example, ZNF198,

ZNF262, HDAC1, and LSD1 are known SUMO substrates

[33,35–37]. Sumoylation of HDAC1 has been shown to be

required for its function. Recent reports have also identified

ZNF198 as a non-covalent binding partner for SUMO [38,39].

In this study, we characterize the function and mechanism of

ZNF198-like proteins in regulating the LCH complex. We show

that depletion of ZNF198, ZNF261, and ZNF262 by RNA

interference (RNAi) in HeLa cells causes derepression of E-

cadherin, a known target of LSD1. By contrast, ZNF198-like

proteins are not required for the transcriptional repression of

several REST-responsive genes that are repressed by LSD1.

Consistent with this finding, ZNF198 selectively binds to the

LSD1–CoREST–HDAC1 ternary complex and binding of

ZNF198 to LCH prevents its interaction with REST. Similar to

dWoc, ZNF198 associates with chromatin. Depletion of ZNF198-

like proteins weakens the association of LCH with chromatin.

Furthermore, sumoylation of HDAC1 decreases its affinity toward

CoREST, but enhances its binding to ZNF198. Finally, the

tandem repeats of MYM-type zinc fingers of ZNF198 mediate its

binding to both LCH and sumoylated HDAC1. Collectively, our

results suggest that, unlike the Krüppel-like zinc fingers which bind

to DNA, the MYM-type zinc fingers of ZNF198-like proteins

mediate multiple protein-protein interactions, maintains the

integrity of the LCH complex at non-REST-responsive promoters,

and may antagonize SUMO-dependent disassembly of the LCH

complex.

Results

ZNF198 associates with LSD1, CoREST, and HDACs in
human cells

The MYM-type zinc fingers have the CX2CX19–24[F/

Y]CX3CX3[F/Y] (X is any residue) consensus motif [28]. Five

proteins in the human proteome contain tandem repeats of the

MYM-type zinc fingers, including ZNF198, ZNF261, ZNF262,

ZNF237, and ZNF258 (Figure S1). Some of the MYM zinc fingers

in ZNF237 and ZNF258 lack key conserved cysteines (Figure S1),

whereas the zinc fingers in ZNF198, ZNF261, and ZNF262 all

appear to be intact. ZNF198, ZNF261, and ZNF262 have

additional features that differentiate them from ZNF237 and

ZNF258. They contain a proline/valine-rich (P/V-rich) domain

downstream of the MYM domain. They also contain a domain at

their C-terminal region that is predicted by 3D-Jury [40] to have a

fold similar to DNA breaking-rejoining enzymes, such as Cre

recombinase. The Cre-like domain is also found in several proteins

that do not contain MYM zinc fingers (Figure S1).

ZNF198 and ZNF261 have been shown to be present in several

LSD1-containing transcriptional corepressor complexes in sub-

stoichiometric amounts [13,14,18]. To identify the major

ZNF198-interacting proteins in human cells, we immunoprecip-

itated the endogenous ZNF198 protein from HEK293 and HeLa

cells (Figure 1A and data not shown). The ZNF198-binding

proteins were detected by Colloidal blue staining followed by mass

spectrometry. LSD1, CoREST, and HDAC1/2 were present at

near stoichiometric levels. ZNF262 was also present at sub-

stoichiometric amounts. Several abundant proteins, including

tubulin, Hsp70, and dynein, were also identified in the anti-

ZNF198 IP, although they might not be specific ZNF198

interactors. This result indicates that LSD1, CoREST, and

HDAC1/2 are major binding proteins of ZNF198 in human cells

and confirms earlier findings that have demonstrated the

interactions between the LCH complex and proteins containing

MYM zinc fingers.

ZNF198-like proteins are not required for the repression
of REST-responsive genes

Through its binding to REST, the LCH complex is recruited to

neuron-specific genes and represses their transcription in non-

neuronal tissues. We first tested whether ZNF198-like proteins

were required for the repression of REST-responsive genes.

Because ZNF198, ZNF261, and ZNF262 have all been shown to

be associated with LSD1-containing corepressor complexes, we

depleted from U2OS and other human cells the three ZNF198-

like MYM proteins using RNA intereference (RNAi). As shown in

Figure 1B, RNAi against ZNF198, ZNF261, and ZNF262

effectively knocked down the levels of ZNF198 without affecting

the levels of LSD1, CoREST, or HDAC1. We did not have

antibodies against ZNF261 and ZNF262. However, quantitative

RT-PCR analysis (QPCR) confirmed that the siRNAs against

these two genes effectively reduced their mRNA levels (Figure 1C).

As a comparison, we also depleted LSD1 from human cells using

RNAi. Cells transfected with siRNA against luciferase were used

as a control. As expected, QPCR analysis revealed that LSD1

RNAi caused an up-regulation of mRNA levels of the known

LSD1 target genes, SCN3A and NCAM2 [23] (Figure 1D). By

contrast, depletion of ZNF198-like proteins did not significantly

alter the mRNA levels of SCN3A and NCAM2 (Figure 1D),

suggesting that these proteins were not required for the repression

of these putative REST-responsive neuronal genes in non-

neuronal tissues.

To identify additional genes that were repressed by LSD1, we

performed microarray analysis of RNA samples from HeLa cells

transfected with siRNAs against luciferase or LSD1 (data not

shown). Among the genes that were up-regulated by LSD1 RNAi,

we confirmed that keratin 17 (KRT17) was a REST-responsive

gene, because REST directly bound to the promoter of KRT17 as

demonstrated by chromatin immunoprecipitation (ChIP)

(Figure 2A). Using QPCR, we confirmed that LSD1 RNAi indeed

increased the mRNA levels of KRT17. Depletion of ZNF198-like

MYM proteins again had no effect on KRT17 expression

(Figure 2B). Therefore, these ZNF198-like proteins do not appear

to be required for the repression of REST-responsive genes.

ZNF198-like proteins are required for the repression of E-
cadherin

Corepressor complexes containing LSD1, CoREST, and

HDAC1 can be recruited to promoters in REST-independent

ways. E-cadherin is a well-characterized gene that is repressed by

the CtBP corepressor complex containing LSD1, but E-cadherin is

LSD1 Regulation by ZNF198

PLoS ONE | www.plosone.org 2 September 2008 | Volume 3 | Issue 9 | e3255



not known to be regulated by REST [16]. We confirmed that E-

cadherin was indeed repressed by LSD1 (Figure 2C). RNAi

against ZNF198-like MYM proteins also significantly elevated the

mRNA level of E-cadherin. Therefore, ZNF198-like proteins are

required for the repression of at least some LSD1-repressed genes

that are not regulated by REST.

ZNF198 binds selectively to the LSD1–CoREST–HDAC1
(LCH) ternary complex

We next sought to understand the mechanisms by which

ZNF198-like MYM-domain proteins regulated the LCH complex.

First, we tested whether ZNF198 bound directly to LSD1,

CoREST, or HDAC1. To do this, we purified recombinant

His6-ZNF198, GST-CoREST, His6-LSD1, and HDAC1-FLAG

(Figure 3A and 3C). Surprisingly, in GST pull-down assays,

ZNF198 did not bind efficiently to CoREST alone, LSD1–

CoREST, or HDAC1–CoREST (Figure 3B, lanes 6–8 and

Figure 3C, lanes 2 and 3). ZNF198, however, bound efficiently

to the intact LCH ternary complex (Figure 3B, lane 2; Figure 3C,

lane 1). Inhibition of HDAC1 and LSD1 activities using

trichostatin A [41] (TSA) and tranylcypromine [42] (TCP),

respectively, had no effect on the binding between ZNF198 and

LCH (Figure 3B, lanes 3–5). Furthermore, binding of ZNF198 to

LCH greatly reduced the binding of REST to LCH (Figure 3D,

lanes 5 and 6). This suggests that ZNF198-binding and REST-

binding to LCH are mutually exclusive, consistent with our finding

that ZNF198 does not appear to be required for the repression of

REST-responsive genes.

ZNF198-like proteins stabilize the LCH complex on
chromatin

Binding of ZNF198 to LCH prevents the binding of REST.

One possibility is that ZNF198 recruits LCH to specific promoters

in a manner similar to REST. However, we were unable to detect

high-affinity binding of ZNF198 to DNA in vitro (data not shown).

Prompted by the finding that the Drosophila homolog of ZNF198,

Woc, associated with chromatin, we tested whether ZNF198 also

bound to chromatin in human cells. We transfected HeLa cells

with plasmids encoding Myc-ZNF198 or its fragments. The cells

were stained with anti-Myc either with or without extraction

Figure 1. ZNF198-like proteins are not required for the repression of REST-responsive genes. (A) LSD1, CoREST, and HDAC1/2 are major
binding partners of ZNF198 in 293 cells. IP of ZNF198 from HEK293 whole cell lysates was separated on SDS-PAGE and stained with Colloidal Blue.
Bands were excised and identified by mass spectrometry. (B) HeLa cells were transfected with siRNAs against luciferase (siLuc) or ZNF198, ZNF261,
and ZNF262 (siMYM). Cell lysates were blotted with the indicated antibodies. (C & D) U2OS cells were transfected with the indicated siRNAs for three
days, followed by quantitative RT-PCR using the indicated primer sets. Cycling-time values were normalized to the housekeeping gene cyclophilin B.
Each PCR reaction was performed in triplicate, and error bars indicate the standard deviation of three separate experiments.
doi:10.1371/journal.pone.0003255.g001
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before fixation (Figure 4A and 4B). To mark the nuclei of

transfected cells after extraction, cells were also co-transfected with

a plasmid encoding a known chromatin-bound protein GFP-

MCM7. As expected, GFP-MCM7 remained in the nucleus after

such extraction, indicating that it was bound to chromatin [43]

(Figure 4A). Both the endogenous ZNF198 (data not shown) and

the full-length Myc-ZNF198 (Figure 4A) were diffusely nuclear

localized and this staining was resistant to extraction, consistent

with ZNF198 being bound to chromatin. Analysis of the ZNF198

fragments showed that those fragments lacking the P/V-rich

domain were not detected in the nuclei after extraction, even

though these nuclei contained GFP-MCM7 and had thus been

transfected (Figure 4A and 4B). These data indicate that the P/V-

rich domain is required for the association of ZNF198 with

chromatin. The P/V-rich region alone, however, bound to

chromatin much weaker than the full-length Myc-ZNF198 and

its larger fragments (Figure 4B). Therefore, multiple regions in

ZNF198 contribute to its association with chromatin.

Formation of an intact LSD1–CoREST–HDAC1/2 complex

on chromatin is important for optimal co-repressor activity [19].

Consistent with our in vitro finding that ZNF198 interacted

specifically with the LCH ternary complex, depletion of LSD1 by

RNAi also dramatically reduced the amounts of CoREST and

HDAC1 in the a-ZNF198 IPs (Figure 5A, top panel, compare

lanes 1 and 3). Through selective binding to the LCH ternary

complex, ZNF198 would be expected to stabilize this complex. On

the other hand, depletion of ZNF198-like MYM-domain proteins

only slightly decreased the association of LSD1 with CoREST and

HDAC1 (Figure 5A, middle panel, compare lanes 1 and 2). Thus,

ZNF198-like proteins have a role in maintaining the LCH

complex, but are not essential for its stability.

We next tested whether depletion of ZNF198-like proteins

affected the chromatin binding of LSD1 by subcellular fraction-

ation [44]. The majority of ZNF198 was found in insoluble

chromatin fractions (Figure 5B and 5C, compare supernatant and

pellets). LSD1 RNAi did not affect chromatin association of

ZNF198, suggesting that ZNF198 bound to chromatin indepen-

dently of LCH (Figure 5B and 5C). By contrast, only a small

fraction of LSD1 was associated with chromatin (Figure 5B). RNAi

of ZNF198-like proteins reduced the levels of LSD1 in the

chromatin fraction by about 2-fold (Figure 5B, compare lanes 7

and 8). This effect was more pronounced after a high-salt

extraction of the chromatin fraction (Figure 5C, compare lanes

4 and 5). Importantly, an unrelated chromatin-binding protein

MCM7 was unaffected by RNAi against ZNF198-like proteins

[45]. Therefore, ZNF198-like proteins are required for efficient

chromatin-association of LSD1 and possibly the LCH complex.

HDAC1 levels in chromatin fractions, however, were not affected

by RNAi against ZNF198-like proteins, presumably because only

a fraction of cellular HDAC1 associated with LSD1 and ZNF198

(data not shown).

To further characterize the nature of chromatin association of

ZNF198 and LSD1, we digested the chromatin fraction with

micrococcal nuclease (MNase) followed by EDTA extraction [44]

(Figure 5D). Most of MCM7 and histone H3 were released into

the supernatant by MNase digestion (Figure 5D). Although about

50% of HDAC1 and LSD1 and a small fraction of ZNF198 were

also released, significant fractions of ZNF198, LSD1, and HDAC1

remained in the pellet. Therefore, at least a portion of the LCH

complex associates with nuclease-resistant chromatin materials or

nuclear matrix or both.

Sumoylation of HDAC1 weakens its binding to CoREST
but enhances its binding to ZNF198

Both HDAC1 and LSD1 can be sumoylated. Although the

function of LSD1 sumoylation has not been established, sumoyla-

tion of HDAC1 at its C-terminal region is required for its ability to

repress transcription [37]. We were interested in how sumoylation

of HDAC1 may affect its interaction with CoREST. Since

sumoylation of HDAC1 has been shown to be important for its

repressor activity, we hypothesized that SUMO-HDAC1 might

show increased affinity for CoREST. We tested this hypothesis by

comparing binding of sumoylated and free HDAC1-FLAG to

GST-CoREST using GST pull-down assays (Figure 6A). Surpris-

ingly, free HDAC1-FLAG, but not SUMO2-HDAC1-FLAG,

bound to GST-CoREST. Thus, sumoylation of HDAC1 inhibits

its interaction with CoREST.

Recently, it has been shown that ZNF198 and LSD1 could bind

to SUMO non-covalently [38,39]. To confirm these reports, we

tested whether ZNF198, LSD1, CoREST, HDAC1, and PIASxb

Figure 2. ZNF198-like proteins are required for the repression of E-cadherin. (A) ChIP analysis reveals that REST binds to the promoter of
keratin 17 (KRT17). (B) LSD1 is required for the repression of KRT17. U2OS cells were transfected with the indicated siRNAs for three days, followed by
quantitative RT-PCR using KRT17 primers. (C) U2OS cells were transfected with the indicated siRNAs for three days, followed by quantitative RT-PCR
using the E-cadherin primer set. Cycling-time values were normalized to the housekeeping gene cyclophilin B. Each PCR reaction was performed in
triplicate, and error bars indicate the standard deviation of three separate experiments.
doi:10.1371/journal.pone.0003255.g002
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bound SUMO non-covalently in GST pull-down assays

(Figure 6B). Consistent with previous reports [46], PIASxb bound

to both GST-SUMO1 and GST-SUMO2. By contrast, ZNF198

bound preferentially to GST-SUMO2. We could not detect

binding of LSD1, CoREST, or HDAC1 to either GST-SUMO1

or GST-SUMO2. Therefore, our results confirm that ZNF198

binds to SUMO2 non-covalently and suggest that the reported

non-covalent binding between LSD1 and SUMO2 in human cell

lysates is likely indirect and mediated through ZNF198.

We next tested how sumoylation of HDAC1 might influence its

interaction with ZNF198. We performed FLAG IPs with either

sumoylated or free HDAC1-FLAG as bait (Figure 6C). ZNF198

Figure 3. ZNF198 binds preferentially to the intact LSD1–CoREST–HDAC1 (LCH) ternary complex. (A) Recombinant His6-ZNF198 purified
from Sf9 cells was treated with TEV protease and analyzed by SDS-PAGE followed by Coomassie staining. TEV protease digestion removed the His6-
tag and caused the protein to migrate faster, thus confirming the identity of the band as His6-ZNF198. (B) Recombinant His6-ZNF198 (6 mg) was
added to glutathione-agarose beads that had been preincubated with 1 mg GST-CoREST, 2 mg HDAC1-FLAG, or 3 mg His-LSD1 as indicated. When
indicated, TCP or TSA were present for the entire procedure. After washing, bound proteins were detected by western blotting with the indicated
antibodies. (C) GST pull-downs assays were performed as in (B), except that bound proteins were stained with Coomassie blue. The bands belonging
to His6-ZNF198, His6-LSD1, GST-CoREST, and HDAC1-FLAG are labeled. (D) ZNF198 competes with REST for binding to the LCH complex. HDAC1-FLAG
(1 mg) and the His6-LSD1–His6-CoREST binary complex (3 mg) were preincubated with anti-FLAG M2 agarose in the indicated combinations. After
washing, 35S-REST was added to each binding reaction in the presence or absence of His6-ZNF198 (10 mg). Bound REST was detected using a
phosphoimager (upper panel). The intensities of REST bands in each reaction were quantified and normalized to lane 5. The values were averages of
two experiments. Proteins bound to the anti-FLAG beads were also analyzed by SDS-PAGE and stained with Coomassie blue (lower panel). Note that
His6-CoREST and HDAC1-FLAG migrate at the same position on the gel.
doi:10.1371/journal.pone.0003255.g003

LSD1 Regulation by ZNF198

PLoS ONE | www.plosone.org 5 September 2008 | Volume 3 | Issue 9 | e3255



exhibited minimal binding to HDAC1 alone. Strikingly, ZNF198

binding to HDAC1 was greatly enhanced by HDAC1 sumoyla-

tion, even though a minor fraction of HDAC1 was sumoylated in

this particular assay. As a control, this minimal sumoylation of

HDAC1 did not perturb its binding to CoREST, because the

majority of HDAC1 remained unsumoylated and retained the

ability to bind to CoREST (Figure 6C). Thus, sumoylation of

HDAC1 weakens its binding to CoREST, but enhances its

binding to ZNF198 in vitro.

Many non-covalent binding partners of SUMO are efficiently

sumoylated in vitro [46,47]. Consistent with a previous report [35],

ZNF198 was efficiently sumoylated in vitro (Figure S2A). Many

efficient SUMO substrates with SUMO binding capacity, such as

RanBP2 and PIASxb, are also SUMO ligases [46,47]. ZNF198,

however, failed to stimulate the sumoylation of either LSD1 or

HDAC1 in vitro (Figure S2B). Therefore, we do not have evidence

to suggest that ZNF198 functions as a SUMO ligase.

MYM-type zinc fingers of ZNF198 mediate its interactions
with the LCH complex and sumoylated HDAC1

We next mapped the regions of ZNF198 required for binding to

the ternary LCH complex or HDAC1-SUMO2. We used

recombinant FLAG-tagged HDAC1-SUMO2, HDAC1, or

LSD1–CoREST–HDAC1 as baits. As expected, full-length

ZNF198 bound to both SUMO2-HDAC1 and LSD1–CoR-

EST–HDAC1, but not to HDAC1 alone (Figure 7A). Analysis of a

series of truncation mutants of ZNF198 revealed that the central

region of ZNF198 containing the 10 tandem MYM-type zinc

fingers was necessary and sufficient for binding to both SUMO2-

HDAC1 and LSD1–CoREST–HDAC1 (Figure 7A). Further

mapping revealed that a small ZNF198 fragment containing two

zinc fingers, MYM8-9, was sufficient for binding to the LCH

complex in vitro (Figure 7A). MYM8-9 could also be co-

immunoprecipitated with LSD1 from HeLa cell lysates

(Figure 7B), although it was unclear whether it bound LSD1 as

efficiently as the wild-type ZNF198. By contrast, efficient binding

of ZNF198 to SUMO2-HDAC1 required larger fragments of

ZNF198 containing most of its MYM-type zinc fingers (Figure 7A).

Notably, ZNF198 has three putative SUMO interaction motifs

(SIMs) [38]. Deletion of the N-terminal region containing SIM1

and SIM2 or mutation of SIM3 did not affect the binding of

ZNF198 to HDAC1-SUMO2 (Figure 7A), indicating that none of

these putative SIM motifs of ZNF198 are important for HDAC1-

SUMO2 binding. Thus, zinc fingers 8 and 9 of ZNF198 mediate

Figure 4. ZNF198 binds to chromatin through its P/V-rich domain. (A) HeLa Tet-on cells were transfected with the indicated Myc-tagged
ZNF198 constructs along with GFP-MCM7. Cells were either fixed directly (–Extraction) or extracted prior to fixation (+Extraction) and stained with
anti-Myc antibody (red) and DAPI (blue). GFP is shown in green. (B) Summary of the staining data described in (A). The ZNF198 fragments are shown
on the left while the percentages of GFP-positive cells that were also Myc-positive after extraction are shown on the right. More than 30 GFP-positive
cells from 10 random fields were counted for each fragment. The boundaries of ZNF198 fragments are indicated by triangles.
doi:10.1371/journal.pone.0003255.g004
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its binding to LCH, whereas additional zinc fingers are required

for the binding of ZNF198 to HDAC1-SUMO2.

Discussion

Functions of ZNF198-like proteins in transcriptional
repression

Consistent with a role of ZNF198 in transcriptional regulation,

several well established transcriptional repressors, including LSD1,

CoREST and HDAC1/2, are major binding proteins of ZNF198

in vivo. Interestingly, ZNF198 only interacts with the intact LSD1–

CoREST–HDAC1 (LCH) ternary complex. Moreover, ZNF198-

and REST-binding to LCH are mutually exclusive. Expectedly,

ZNF198-like proteins are dispensable for the LSD1-mediated

repression of REST-responsive neuron-specific genes in non-

neuronal cell lines, such as HeLa and U2OS. This created a

serious challenge for our studies on ZNF198, because most known

LSD1-repressed genes are REST-responsive. Despite this difficul-

ty, we managed to show that ZNF198-like proteins are required

for the transcriptional repression of E-cadherin, a well-established

LSD1-repressed gene that is not REST-responsive. Identification

of additional genes whose repression requires ZNF198-like

proteins is needed to fully understand their biological functions.

We have further shown that ZNF198 binds directly to

chromatin in part through its proline/valine-rich domain.

Depletion of ZNF198 reduces the amount of chromatin-bound

Figure 5. ZNF198-like proteins regulate the chromatin association of LSD1. (A) HeLa Tet-on cells were transfected with the indicated
siRNAs: Luc (firefly luciferase), MYM (ZNF198, ZNF261, and ZNF262), or LSD1. Lysates from these RNAi cells were immunoprecipitated with either anti-
ZNF198 (top panel) or anti-LSD1 (middle panel). The IPs and the lysates (bottom panel) were blotted with the indicated antibodies. (B) After RNAi of
the indicated proteins, nuclear pellets were generated by subjecting HeLa Tet-on cells to hypotonic lysis followed by centrifugation. Normalized
samples from each step were subjected to SDS-PAGE and blotted with the indicated antibodies. (C) Nuclear pellets in lanes 7–9 in (B) were subjected
to extraction with a high-salt buffer. Normalized samples from each step were blotted with the indicated antibodies. (D) HeLa cells transfected with
siLuc were subjected to fractionation as in B. The nuclear pellet in lane 7 in (B) was digested with micrococcal nuclease (MNase) followed by
extraction with 2 mM EDTA. Supernatants (S) and pellets (P) were blotted with the indicated antibodies.
doi:10.1371/journal.pone.0003255.g005
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LSD1 as revealed by subcellular fractionation experiments. Thus,

one possible mechanism by which ZNF198-like proteins facilitate

the functions of the LSD1–CoREST–HDAC1-containing core-

pressor complexes is to recruit or stabilize the LSD1–CoREST–

HDAC1 ternary complex on chromatin. Because we have so far

failed to detect ZNF198 at specific promoters using ChIP, it

remains to be determined whether ZNF198-like proteins are

required for the stable association of the LCH complex at specific

promoters. It will also be interesting to test whether, in addition to

tethering the LCH complex to chromatin, ZNF198 directly

facilitates the demethylation or deacetylation or both of nucleo-

somes by the LCH complex.

ZNF198 and sumoylation of HDAC1
Sumoylation of HDAC1 is required for its function in

transcriptional repression [37,48]. For example, cells stably

expressing wild-type HDAC1, but not its sumoylation-deficient

mutant, show cell cycle defects [37]. The sumoylation-deficient

mutant of HDAC1 also shows lower deacetylase activity [37,48],

suggesting that sumoylation is required for the full activation of the

catalytic activity of HDAC1. We show that HDAC1 sumoylation

inhibits its binding to CoREST. Our finding is consistent with

previous findings that the C-terminus of HDAC1 mediates its

interactions with cofactors [49] and mutation of the HDAC1

sumoylation sites does not disrupt cofactor binding [37].

HDAC1 and LSD1 exhibit positive cooperativity in deacetylat-

ing and demethylating nucleosomes. CoREST bridges the

interaction between HDAC1 and LSD1. Disruption of the

HDAC1–CoREST interaction by HDAC1 sumoylation is thus

expected to abolish the positive cooperativity between HDAC1

and LSD1. Paradoxically, sumoylation of HDAC1 is required for

its function and possibly activity. Our finding that sumoylation of

HDAC1 enhances its binding toward ZNF198 provides one

possible way to resolve the paradox of HDAC1 sumoylation.

Through its abilities to bind multiple components of the LCH

complex and to sumoylated HDAC1, ZNF198 may antagonize the

disruption of the HDAC1–CoREST interaction by HDAC1

sumoylation and preserve the integrity of the LCH complex on

chromatin. The physiological significance of these in vitro findings

remains to be established.

MYM-type zinc fingers as protein-protein interaction
modules

ZNF198 has been proposed to recruit transcriptional corepres-

sors to specific promoters through sequence-specific DNA-binding,

a function that is analogous to REST. This hypothesis largely

stems from the fact that both ZNF198 and REST contain tandem

zinc fingers and bind to the LCH complex [18,20,21]. Further-

more, ZNF198 competes with REST for CoREST-binding.

However, the tandem zinc fingers of REST are Krüppel-like zinc

fingers that mediate sequence-specific DNA-binding to RE1-

elements in promoters [50,51]. Structure comparison reveals that

the MYM-type zinc fingers in ZNF198 have a fold that is distinct

from that of the Krüppel-like zinc fingers (Figure 7C). In

particular, the long a-helix that mediates DNA binding in

Krüppel-like zinc fingers [52] is much shorter in the MYM-type

zinc fingers. Therefore, the MYM-type zinc fingers are unlikely to

bind to DNA in a manner similar to the Krüppel-like zinc fingers.

In fact, a search using the Dali server (http://www.ebi.ac.uk/dali)

revealed that the fold of MYM-type zinc fingers is most related to

that of the LIM (Lin11, Isl-1 & Mec-3) domain. LIM domains are

also often found in tandem repeats and mediate protein-protein

interactions [53]. The structural similarity between the MYM and

Figure 6. Sumoylation of HDAC1 weakens its interaction with
CoREST, but enhances its binding to ZNF198. (A) HDAC1-FLAG
(40 ng) was incubated with SUMO2 and sumoylation enzymes with or
without ATP. The reaction mixtures were then added to glutathione-
agarose beads that had been preincubated with buffer or GST-CoREST
(1 mg). After washing, bound (top panel) and unbound (bottom panel)
proteins were blotted with anti-FLAG. The sumoylated and un-
sumoylated HDAC1 bands are labeled. (B) The indicated 35S-labeled in
vitro translated proteins were incubated with glutathione-agarose
beads bound with 10 mg of GST, GST-SUMO1, or GST-SUMO2. The
bound proteins were separated by SDS-PAGE, stained with Coomassie
blue (bottom panel, a representative image), and analyzed using a
phosphoimager (top panel). (C) HDAC1-FLAG (1 mg) bound to anti-
FLAG M2 agarose beads was incubated with SUMO2 and sumoylation
enzymes with or without ATP. After washing, either His6-ZNF198 (6 mg)
or GST-CoREST (2 mg) was added to the beads. The bound proteins
were blotted with the indicated antibodies.
doi:10.1371/journal.pone.0003255.g006
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LIM domains further supports a role for MYM-type zinc fingers in

mediating protein-protein interactions.

In conclusion, we have revealed a functional requirement of

ZNF198-like proteins in transcriptional repression of LSD1-

repressed genes that are not REST-responsive. Our results further

suggest the following model to explain the mechanism by which

ZNF198 promotes the functions of LSD1 (Figure 8). In this model,

ZNF198 binds to chromatin and recruits the LSD1–CoREST–

HDAC1 ternary complex to chromatin. The MYM-type zinc

fingers of ZNF198 mediate its interactions with the LCH complex

and with sumoylated HDAC1. Through its ability to engage in

multiple protein-protein interactions, ZNF198 stabilizes the LCH

Figure 7. MYM-type zinc fingers of ZNF198 mediate its binding to the LCH complex and HDAC1-SUMO2. (A) 35S-labeled ZNF198
fragments and mutants were incubated with anti-FLAG beads that had been preincubated with HDAC1-SUMO2, HDAC1, or the LSD1–CoREST–
HDAC1 complex. After washing, the bound proteins were visualized by autoradiography and Coomassie blue staining (bottom panel). Three putative
SUMO-interacting motifs (SIMs) are indicated. The SIM3 mutant contains V483A, L484A, and V485A mutations. (B) HeLa Tet-on cells were transfected
with the indicated constructs for 24 hours. Lysates and the Myc IPs of the transfected cells were blotted with the indicated antibodies. (C) Ribbon
drawings of three Krüppel-like zinc fingers bound to DNA (PDB ID: 1ZAA; left) and a MYM-type zinc finger from ZNF237 (PDB ID: 2DAS; right). Zinc
ions are shown as spheres while zinc-binding ligands are shown in sticks.
doi:10.1371/journal.pone.0003255.g007
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complex on chromatin and possibly prevents the dissociation of

HDAC1 from the complex that is triggered by HDAC1

sumoylation.

Materials and Methods

Protein expression and purification
SUMO-related constructs and protein purification were de-

scribed previously [33]. The coding regions of CoREST and

LSD1 were amplified from human fetal thymus cDNA library (BD

Biosciences) and ZNF198 was amplified from a purchased cDNA

plasmid (Open Biosystems) by PCR. The PCR products were

digested and ligated into appropriate expression vectors. Similar

methods were used to construct plasmids encoding various

ZNF198 fragments. The pSC-b-REST construct was a gift from

Jenny Hsieh.

The full-length His6-LSD1, His6-LSD1–His6-CoREST, or

His6-ZNF198 were expressed in Sf9 insect cells and purified using

a combination of Ni2+-Sepharose (Amersham) affinity chromatog-

raphy and ion exchange chromatography (Resource Q, Amer-

sham). HDAC1-FLAG was purified with M2 agarose beads

(Sigma) from Sf9 cell lysates and eluted with the FLAG peptide.

GST-CoREST, GST-SUMO1, and GST-SUMO2 were purified

from bacterial lysates using glutathione-agarose resin (Amersham).

Proteins were stored in buffers containing 50 mM Tris-HCl,

pH 8.1, 50–200 mM KCl, 10% glycerol, and 1 mM DTT.

Cell culture and transfections
HeLa Tet-on (BD Biosciences) and U2OS cells were grown in

DMEM (Invitrogen) supplemented with 10% fetal bovine serum,

2 mM L-glutamine, and 100 mg/ml penicillin and streptomycin at

37uC and 5% CO2. DNA and siRNA transfections were performed

with the effectene reagent (Qiagen) and Lipofectamine RNAiMax

reagent (Invitrogen), respectively, according to manufacturer’s

protocols. The siRNA sequences are: 59- GGCCUAGA-

CAUUAAACUGA-39 (LSD1), 59-GGGCCAGACAGCUUAU-

CAA-39 (ZNF198), 59-GACCCUGUGUAAGAACUUU-39

(ZNF261), 59-CACCACCACUAGUAAAGAU-39 (ZNF262).

Cell fractionation
Lysates of HeLa Tet-on cells (2610-cm plates) transfected with

siRNAs for 48 hrs were fractionated as described [44] with one

significant modification. We included an additional high-salt

extraction step using buffer C (10 mM HEPES, pH 7.9, 10 mM

KCl, 300 mM NaCl, 1.5 mM MgCl2, 25% glycerol, 0.1% Triton

X-100, 1 mM DTT, 10 mg/ml protease inhibitor cocktail, and

0.4 mM PMSF).

Immunofluorescence
HeLa Tet-on cells transfected with various plasmids were either

extracted as previously described [43] and then fixed with 4%

paraformaldehyde or directly fixed. All samples were then permea-

bilized with 0.1% Triton-X100 in PBS, and incubated with 1 mg/ml

of anti-Myc (9E10, Roche). After washing, fluorescent secondary

antibodies (Molecular Probes) were added at 1:500 dilutions. The

cells were again washed three times with PBS, counter-stained with

DAPI, and viewed using a 636objective on a Zeiss Axiovert 200 M

microscope. Images were acquired using the Intelligent Imaging

software, and pseudo-colored in Adobe Photoshop.

Antibodies, immunoprecipitation, and immunoblotting
Rabbit polyclonal antibodies against ZNF198 and LSD1 were

generated using a ZNF198 fragment (residues 923–1377) and an

LSD1 fragment (residues 171–852) as the antigens at Zymed and

Yenzym, respectively. The following antibodies were purchased

from Upstate: a-HDAC1 (05-614), a-CoREST (07-455). Large-

scale immuno-purification of ZNF198-containing protein com-

plexes was performed as described [54]. For IP and western

experiments, HeLa Tet-on cells from a 10-cm dish were washed

and harvested in cold PBS 2 days after transfection and lysed in

1 ml of buffer C supplemented with 0.5 mM okadaic acid.

Antibodies immobilized on Affi-prep protein A beads were

incubated with the lysates for 2 hrs at 4uC. After washing, the

beads were dissolved in SDS sample buffer and analyzed by SDS-

PAGE following by immunoblotting. For immunoblotting, crude

sera were used at 1:1000 dilution while purified antibodies were

used at a final concentration of 1 mg/ml.

Figure 8. Proposed mechanisms by which ZNF198 regulates the LSD1–CoREST–HDAC1 complex. See DISCUSSION for details.
doi:10.1371/journal.pone.0003255.g008
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In vitro binding and sumoylation assays
In vitro transcription and translation and in vitro sumoylation

assays were performed as previously described [33]. For binding

assays, HDAC1-FLAG, GST-CoREST, or GST-SUMO1/2

proteins together with other proteins were incubated with 5–

10 ml M2 agarose (Sigma) or glutathione-sepharose 4B (Amer-

sham) beads in 50 ml binding solution (TBS supplemented with

0.05% Tween-20 and 1 mM DTT) for 1 hr. After washing, the

beads were then incubated in 50 ml blocking solution (TBS

supplemented with 0.05% Tween-20, 5% dry milk, 1 mM DTT)

for 1 hr at room temperature. The appropriate recombinant

proteins or 5 ml 35S-labeled in vitro translated proteins were

incubated with the beads for 1 hr at room temperature. Beads

were then washed four times with the binding solution, boiled in

SDS sample buffer, and subjected to SDS-PAGE followed by

Coomassie Blue staining and autoradiography. For binding

reactions containing ZNF198, 100 mM ZnCl2 was included in

all buffers.

Reverse transcription and quantitative PCR
RNA from U2OS cells grown on 6-well plates and transfected with

siRNAs was extracted using TriZOL reagent (Invitrogen) followed by

RNAeasy RNA purification kit (Qiagen). RNA was then subjected to

DNase digestion and inactivation followed by reverse transcription

using random hexamers as primers. 2.5 ml of this cDNA was then

used for quantitative PCR in 20 ml reactions using a 26SYBR Green

mix (Bio-Rad). The primers used were: SCN3A-Fwd (59-ATGCT-

GGGCTTTGTTATGCT-39), SCN3A-Rev (59-TGGCTTGGC-

TTCAGTTTTCT-3); Cyclophilin B-Fwd: (59-GGAGATGGCA-

CAGGAGGAA-39), Cyclophilin B-Rev (59-GCCCGTAGTGCTT-

CAGTTT-39); E-cadherin-Fwd (59-GGATGACACAGCGTGA-

GAGA-39), E-cadherin-Rev (59-ACAGGATGGCTGAAGGT-

GAC-39), NCAM2-Fwd (59-CACGTTCACTGAAGGCGATA-

39), NCAM2-Rev (59-GCTGCCCTTTGACTTCGATA-39).

KRT17-Fwd (59-ATGCAGGCCTTGGAGATAGA-39), KRT17-

Rev (59-AGGGATGCTTTCATGCTGAG-39). All primers were

validated as described [55].

Chromatin immunoprecipitation (ChIP)
ChIP experiments were performed as described [56]. About

16107 HeLa Tet-on cells was used for each IP. Quantitative PCR

was performed with 2.5 ml of eluted DNA, using the following

primers: KRT17 ChIP-Fwd (59-GGATAGGCTCTCGGTC-

TCCT-39), KRT17 ChIP-Rev (59-GTCTTTCACCCCACA-

CTGCT-39), GAPDH ChIP-Fwd (59-TGTGCCCAAGACC-

TCTTTTC-39), GAPDH ChIP-Rev (59-TATTGAGGGCAGG-

GTGAGTC-39).

Supporting Information

Figure S1 Domain architecture of MYM domain-containing

proteins. The following color schemes from this illustration are

used throughout the manuscript: MYM-type zinc fingers (MYM,

red); proline/valine-rich domain (P/V-rich, green); Cre-like

domain (CLD, gold); glutamine-rich domain (Q-rich, gray);

potassium-tetramerization domain (K-tetra, black); and transpos-

ase-like domain (teal). Non-cysteine residues at zinc-coordinating

positions in certain MYM domains are indicated by asterisks.

Scale bar indicates 100 amino acids. The Cre-like domain of

KCTD1 was used for 3D-Jury analysis (http://Bioinfo.Pl/Meta).

Found at: doi:10.1371/journal.pone.0003255.s001 (0.50 MB TIF)

Figure S2 ZNF198 does not stimulate the sumoylation of

HDAC1 or LSD1. (A) 35S-labeled in vitro translated ZNF198

was incubated with sumoylation enzymes (E1 and E2) and ATP in

the presence or absence of SUMO2. The reaction mixtures were

separated by SDS-PAGE and analyzed using a phosphoimager.

The bands of unmodified and sumoylated ZNF198 are labeled. (B)

Mixtures of His-LSD1 (300 ng), HDAC1-FLAG (300 ng), and

GST-CoREST (100 ng) were subjected to in vitro sumoylation

reactions in the presence or absence of His-ZNF198 (1–2 mg). The

reaction mixtures were blotted with anti-FLAG (top panel) or anti-

LSD1 (bottom panel).

Found at: doi:10.1371/journal.pone.0003255.s002 (0.33 MB TIF)
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