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The transforming growth factor-b (TGF-b) family includes cytokines controlling cell
behavior, differentiation and homeostasis of various tissues including components of
the immune system. Despite well recognized importance of TGF-b in controlling T cell
functions, the immunomodulatory roles of many other members of the TGF-b cytokine
family, especially bone morphogenetic proteins (BMPs), start to emerge. Bone
Morphogenic Protein Receptor 1a (BMPR1a) is upregulated by activated effector and
Foxp3+ regulatory CD4+ T cells (Treg cells) and modulates functions of both of these cell
types. BMPR1a inhibits generation of proinflammatory Th17 cells and sustains peripheral
Treg cells. This finding underscores the importance of the BMPs in controlling Treg cell
plasticity and transition between Treg and Th cells. BMPR1a deficiency in in vitro induced
and peripheral Treg cells led to upregulation of Kdm6b (Jmjd3) demethylase, an
antagonist of polycomb repressive complex 2 (PRC2), and cell cycle inhibitor Cdkn1a
(p21Cip1) promoting cell senescence. This indicates that BMPs and BMPR1a may
represent regulatory modules shaping epigenetic landscape and controlling
proinflammatory reprogramming of Th and Treg cells. Revealing functions of other BMP
receptors and their crosstalk with receptors for TGF-bwill contribute to our understanding
of peripheral immunoregulation.
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INTRODUCTION

The major polarized Th subsets, Th1, Th2, Th9 and Th17 cells, are generated in response of CD4+ T
cells to antigenic stimulation, co-stimulatory signals and cytokines and utilize specialized effector
mechanisms to eliminate different types of pathogens (1–4). TGF-b has emerged as the cytokine
controlling intrinsic activation of T cells and their antigenic responses (5, 6). In the presence of IL-4
or inflammatory cytokines, especially IL-6, TGF-b supports generation of Th9 or Th17 cells
respectively (7, 8). Th cell functions are controlled by regulatory CD4+ T cells (Treg), which express
the transcription factor Foxp3 (9, 10). Treg cells maintain immunological self-tolerance and
homeostasis but also control clinical conditions including immunometabolic and degenerative
diseases, and tissue regeneration (10–13). Population of thymus derived Treg cells is complemented
by peripheral Treg cells generated from conventional CD4+ Th cells which upregulate Foxp3 in
response to stimulation with antigen and TGF-b (14, 15). Peripheral Treg cells exhibit considerable
heterogeneity and utilize specialized mechanisms to constrain inflammatory reactions in response
to self and exogenous antigens (16–19). Foxp3 is essential for Treg cell function, especially for its
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suppressive activity (9). However, Treg cell lineage commitment
in the thymus seems to be initiated before Foxp3 expression and
Foxp3 expression does not confer all features of Treg phenotype
like expression of CTLA-4, lack of IL-2 expression (20–23).
Recent reports indicate that Treg-specific epigenetic changes
including DNA demethylation and histone modifications
establish a pattern of Treg gene expression and stability of Treg

cell phenotype (24–27). Treg-specific defects often correlate
with the development of several autoimmune disorders such
as type 1 diabetes, multiple sclerosis, psoriasis, rheumatoid
arthritis and Crohn’s disease (10, 28–31). This includes
reduced induction and homing of peripheral Treg cells,
alleviated or altered suppressor mechanisms and decreased
stability of Treg phenotype. Deficiency of Treg cells caused by
mutations of Foxp3 results in early onset autoimmune disease as
demonstrated in Foxp3 mutant scurfy mice and humans with
IPEX (immune dysregulation, polyendocrinopathy, enteropathy,
X-linked) syndrome (32, 33). Deletion of multiple other genes
affecting Foxp3 protein stability or altered epigenetic status of
Foxp3 gene locus resulted in compromised function of Treg cells
and were associated with autoimmune pathology (34, 35).
Nevertheless, compromised function of Treg cells is not always
associated with their reduced frequency (36, 37). For example,
signaling through the IL-27R or TGF-bR, impacted Treg cell
function but was not accompanied by major phenotypic or
quantitative changes of Treg population resulting in systemic
autoimmunity (38, 39).

Uncovering what mechanisms control Treg cell homeostasis
become even more important when it was discovered that Treg

cells which lost Foxp3 expression (exTreg cells) may produce
inflammatory cytokines, IFN-g and IL-17 (40, 41). While
downregulation of Foxp3 may be required to alleviate
suppressive effect of Treg cells, allowing for effective immune
responses to pathogens, in other cases Treg cell instability
exacerbated tissue damage and contributed to immune
pathology (42, 43). Treg instability also contributes to the
augmentation of anti-tumor immunity (44, 45). exTreg cells
promoted destruction of pancreatic islets and accelerated onset
of diabetes (41). In rheumatoid arthritis and EAE, pathogenic
Th17 cells were shown to arise from Treg cells (46, 47). In
contrast, resolution of inflammation may depend on the
opposite process of trans differentiation of Th17 cells into Treg

cells (47, 48). Thus, regulation of the Th cell lineage plasticity is
critical for understanding of immune regulation and
pathogenesis of autoimmune diseases (49, 50).
GENERATION AND MAINTENANCE OF
TREG POPULATION

Multiple reports identified membrane and soluble molecules
which proved essential to control abundance and fitness of Treg

cell population in peripheral organs and promote their
suppressor function. This includes signaling through the TCR,
costimulatory molecules (CD28 and CTLA-4) and cytokines
receptors (18, 43, 51–56). IL-2 and TGF-b were the most
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studied cytokines in the context of Treg cell biology. IL-2 is a
key cytokine required for induction of Foxp3 in thymic Treg

precursors and in peripheral CD4+ T cells (14, 57–59).
Mechanistically, Stat5 in response to IL-2 signaling binds
enhancer in the Foxp3 gene inducing its expression in the
thymus (60). In peripheral Treg cel ls IL-2 induced
transcriptional program controls metabolic fitness of Treg cells,
sustains their survival and suppressor function and prevents
autoimmunity (61, 62). Foxp3 CNS2 (conserved noncoding
sequence) enhancer element acts as an IL-2 sensor by binding
Stat5 and conferring stable inheritance of Foxp3 expression (63).
IL-2 induced genetic program of Treg cell differentiation and
peripheral maintenance depend on activation of Smad3 and the
presence of TGF-b (59, 64–66). While both IL-2 and TGF-b
promote generation and sustain Treg cells, IL-2 inhibits and TGF-b
enhances generation of effector Th17 cells underscoring the
importance of context dependent signaling for Th lineage
ontogeny (67, 68).

Immunoregulatory role of TGF-b has been known before the
discovery of Treg cells (69). TGF-b provides vital signals that
limit immune activation so deletion of the TGF-b1 gene in
experimental mice, which abrogated TGF-b signaling in
multiple T cell subsets, induced severe autoimmune
inflammatory disease (5, 70). T cell specific inhibition of TGF-
bRII signaling had similar outcome and precipitated systemic
autoimmune disease characterized by massive activation and
expansion of T cells (71, 72). Co-transfer of naive CD4+ T cells
expressing dominant negative TGF-bRII, and Treg cells, into
recipient mice demonstrated that effector cells need to respond
to TGF-b for the Treg cells to control their activation (73). T cell
specific deletion of TGF-bRII revealed that TGF-b signaling is
not required for thymic development of Treg cells but supports
Foxp3 expression, suppressor function and sustains peripheral
population of Treg cells (74, 75). In summary, earlier reports
supported conclusions that while Treg thymic development is
not affected, both T cell autonomous and Treg dependent
tolerance mechanisms are abrogated by elimination of TGF-b
signaling in effector Th and in Treg cells (75–77). The caveat of
these experiments is that they relied on inhibition of TGF-b
signaling in multiple T cell subsets and examined Treg cells in
the context of induced severe autoimmune inflammatory
disease, complicating interpretation of the role of TGF-b in
Treg cells (6). In contrast, analysis of newborn mice with T cell
specific TGF-bRI gene deletion and, inhibition of TGF-b
signaling in thymic organ cultures identified TGF-b, in
connection with IL-2, as cytokines essential for inducing
Foxp3 expression and thymocyte commitment to Treg cell
differentiation in the thymus (78). However, another report
defined TGF-b role in Treg development to be limited to
enhancing survival and protection from negative selection of
thymocytes committed to become Treg cells (79). This report of
limited impact of TGF-b in inducing Treg cell generation was
questioned by demonstrating that intrathymic transfer of early
thymocytes, where TGF-bRI gene deletion is induced at the
double positive stage, failed to produce any Treg cells,
corroborating reports that TGF-b signaling is indispensable for
March 2022 | Volume 13 | Article 865546
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Treg lineage commitment (80). In contrast, deletion of the TGF-
bRI gene in Treg cells following Foxp3 expression, by Foxp3
controlled cre expression, did not decrease thymic generation of
Treg cells, in agreement with reports that TGF-b signaling is
dispensable for Treg lineage commitment (80). Moreover,
abrogation of TGF-b signaling in already differentiated Treg

cells did not decrease proportion of peripheral Treg cells, Foxp3
expression was preserved and no systemic autoimmunity was
observed (39). Only aged mice suffered from local skin and
gastrointestinal inflammation due to selective defect of TGF-bRI
deficient Treg cells to migrate, accumulate and control Th17 cell
mediated responses. In contrast to Th17 cells, control of Th1
effector cells by TGF-bRI deficient Treg cells was enhanced. This
result suggested that TGF-b does not control overall fitness of
Treg cells but rather modulates their suppressor function to
selectively impact different Th subsets in specific organs.
Another report demonstrated that Treg cell mediated production
of TGF-b is necessary to prevent food allergy underscoring the
importance of Treg derived TGF-b in allergic responses and
maintenance of immune tolerance (81).
BONE MORPHOGENETIC PROTEINS,
THEIR RECEPTORS AND
SIGNALING PATHWAYS

Bone Morphogenetic Proteins (BMPs) are the largest subfamily
of the TGF-b cytokine superfamily which also includes TGF-b, a
founding member of the family, activins, nodal and growth and
differentiation factors. BMPs were identified by their ability to
induce bone differentiation (82). It is now well known that in
addition of inducing differentiation of osteoblasts, bone-forming
cells, BMPs control multiple cellular processes including
differentiation of various cell types, adhesion, migration and
proliferation and apoptosis (83, 84). They have prominent role in
regulating body axes formation during embryonal development,
regulate epithelial - mesenchymal transition in cancer and
wound healing (83, 85–87). BMPs sustain stem cell renewal
and differentiation, including tissue specific and cancer stem cells
(88–90). Individual BMPs often have overlapping functions, but
they can be highly specific when function as morphogens or
cytokines sustaining tissue homeostasis. BMPs are highly
pleiotropic cytokines which act in autocrine, paracrine and
endocrine fashion determined by tissue environment and
intrinsic properties of target cells (91).

Tight regulation of BMP signaling is crucial to maintain
homeostasis of tissues and organs, and is achieved by
controlling BMP gene expression, secretion and maturation of
BMP precursors. Proteases involved in producing active, mature
BMPs include furin, which is induced in activated T cells and
essential for Treg cell suppressor function (92). Mature BMPs are
bound and sequestered by soluble (e.g. chordin, noggin, gremlin)
or membrane/matrix proteins (e.g. fibrin, small leucine-rich
proteins) or pseudoreceptors like BAMBI (BMP and Activin
Membrane-Bound Inhibitor) (93, 94). This complex system
regulates BMPs bioavailability by controlling their secretion,
Frontiers in Immunology | www.frontiersin.org 3
proteolytic maturation of BMP precursors, degradation
and sequestration.

TGF-b family cytokines, including BMPs, signal through
heteromeric complexes of type I and type II receptors, which
have activity of serine/threonine kinases (Figure 1). Cytokine
ligand binds to a type II receptor and the ligand-receptor
complex binds to a type I receptor. Formation of a ternary
complex activates receptor kinase activity and induces
phosphorylation of transcription factors, Smads, which activates
canonical signal transduction pathway (84). TGF-b itself binds
TGF-bRII and TGF-bRI (Alk-5) and induces phosphorylation of
Smad2/3. BMPs bind one of type II receptors, BMPR2, activin
receptor type 2A (ACVR2A) or activin receptor type 2B
(ACVR2B). Ligand binding to type II receptor induces
recruitment of one of type I receptors, activin receptor-like
kinase 1 (Alk-1, ACVRL1), activin A receptor type 1 (Alk-2,
ACVR1), activin receptor type 1B (Alk-4, ACVR1B), BMPR1a
(Alk-3) or BMPR1b (Alk-6, not expressed by CD4 cells) and leads
to conformational change of the heteromeric receptor to induce
kinase activity of type I receptor and phosphorylation of Smad1/5/
8. Promiscuity of ligand receptor interactions contributes to
redundant functions of BMPs but also underlies signaling
crosstalk between TGF-b and BMPs. TGF-b bound to TGF-bRII
may recruit and transphosphorylate ACVRL1 or BMPR1a with
subsequent phosphorylation and activation of Smad1/5/8 (95).
Type II receptors ACVR2A or ACVR2B may also bind TGF-bRI
with resulting phosphorylation of Smad2/3. Thus, combinatorial
activation of both Smad pathways could be essential for signaling
crosstalk of TGF-b and BMPs (96). Smad transcription factors
phosphorylated by TGF-b or by BMP receptors (R-Smads) form
trimeric complexes with Smad4 and translocate into nucleus. They
interact with multiple co-activators, including genes controlling
Treg phenotype, and bind specific motifs present in regulatory
regions of Smad inducible genes, including Foxp3 (84, 97, 98).
Besides activating Smads, BMPs signal through multiple Smad-
independent (non-canonical) pathways (99). This involves
activation of Tak-1 (TGF-b activated kinase 1) and downstream
activation of NF-kB (100–104). Smad independent signaling also
includes activation of PI3K-Akt pathway (105). Finally, BMPs
activate p38/JNK kinases which engages TRAF4 or TRAF6 and
activates Tak1 (106–108).
BONE MORPHOGENETIC PROTEINS
CONTROL OF TREG LINEAGE

While TGF-b mediated regulation of Th lineage differentiation
and immune system homeostasis have been extensively studied,
the role of other members of the TGF-b family, including BMPs
is only starting to emerge (109). Recent reports demonstrate that
BMPs, similar to TGF-b, are immunomodulatory cytokines
which control differentiation and functions of immune cells
impacting immune tolerance, inflammation and linage
specification of effector Th cells (110). BMPs regulate thymic
development of T cells, but published results remain controversial
(111–115). Both thymocytes and thymic stromal cells produce
March 2022 | Volume 13 | Article 865546
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BMPs and express BMP receptors. Fetal thymic cultures and
signaling inhibitor studies showed that BMPs are required for
early thymocyte progenitor homeostasis but block transition
from double negative to double positive thymocytes (112, 116).
In contrast, analysis of conditional knockout mice where
BMPR1a gene was deleted in hematopoietic cells (by crossing
to vav-cre mice) did not reveal changes in thymus cellularity and
subset proportions (114). Analysis of mice where BMPR1a gene
was deleted in double positive thymocytes showed normal
development of T cells with the exception of a population of
Foxp3+ Treg cells which was severely decreased suggesting a
unique role of this receptor in Treg specification (117). However,
thymic but not peripheral Treg population was normal when
BMPR1a gene was deleted at the later stage, in thymocytes
expressing Foxp3 (118).

BMPR1a is expressed in mature CD4+ T cells in lymph
nodes, spleen and peripheral organs (118). It is expressed at
low level in naive CD4+ T cells and at higher levels in activated
Th and Treg cells. It is upregulated following T cell activation
within hours. Since expression of BMPR2 is not affected by T
cells activation, it is upregulation of BMPR1a which renders
activated CD4+ T cell sensitive to BMPs (119). In vitro studies
Frontiers in Immunology | www.frontiersin.org 4
using signaling inhibitors have shown that BMPs regulate
proliferation and activation of CD4+ T cells but the role of
BMPs in controlling peripheral Treg cells was not addressed (120,
121). Blockade of BMP signaling in rheumatoid arthritis patients
augmented inflammation induced by IL-17 and BMPs
ameliorated intestinal inflammation suggesting that cellular
targets of BMP signaling may include effector Th17 and Treg

cells (122–125). BMP2/4 or activin A synergized with the TGF-b
to generate inducible Treg (iTreg) cells but were not able to
completely replace TGF-b and induce Foxp3 expression (126,
127). Foxp3 enhancer, CNS1, contains canonical Smad1/5/8
binding site that partially overlaps Smad2/3 site. T cells
activated in the presence of BMPs differentiated into Th1 or
Th2 but Th17 differentiation was inhibited. BMP signaling
resulted in inhibition of Rorc and IL-17 upregulation (119).
These results were complemented by analysis of CD4+ T cells
deficient in BMPR1a (117, 119). Generation of Th17 cells in
vitro, induced by IL-6 and TGF-b, is greatly enhanced by
abrogation of the BMPR1a signaling but it still requires
presence of TGF-b. At the same time, in vitro generation of
iTreg cells is impaired, not improved, by BMPR1a deficiency,
suggesting complex interaction between BMPR1a and TGF-b
FIGURE 1 | Schematic overview of the canonical, SMAD-dependent BMP and TGF-b signaling pathway. Signaling is initiated by binding to a heteromeric complex
of type I receptors, e.g. BMPR1a, TGF-bR1, ACVRL1 or ACVR1, associated with type II receptors, e.g. BMPR2, TGF-bR2, ACVR2A/2B. Intracellular, BMP or TGF-b
responsive transcription factors, Smads become phosphorylated and associate with co-Smad4 and translocate into nucleus. This signaling pathway is controlled by
inhibitory Smad6. Once in the nucleus Smad complexes associate with transcription factors e.g. Runx2, Id1/2 or NFAT, bind regulatory regions of Smad dependent
genes and regulate transcription. The figure shows interdependence of BMP and TGF-b signaling at the level of receptor binding and Smad phosphorylation.
March 2022 | Volume 13 | Article 865546
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signaling pathways (117). Deletion of BMPR1a gene does not
affect phosphorylation of Smad2/3 in CD4+ T cells activated for 1
hour in the presence of TGF-b, however genes mediating
responses to TGF-b signaling, including Smad3, Tsc22D1, Skil,
were differentially expressed when analyzed after 4 days (128,
129). Transcriptome analyses using RNA-seq revealed that of 72
transcription factors identified as differentially expressed
between wild type and BMPR1a deficient iTreg cells, 39
included genes identified in previous reports to support Th17
cell differentiation and 17 to support iTreg cell generation (130–
135). Transcription factors Rorc, Rxra, Batf,Maf, Ikzf2 and Ikzf4
were overexpressed in BMPR1a deficient Treg cells, while Hopx
and Foxp3 had lower expression compared to wild type Treg cells
(118). BMPR1a deficient iTreg cells also had lower expression of
Crem, Pde3b and Gpr83, genes associated with Treg phenotype
(21, 118, 136, 137). Thus, BMPR1a signaling in naive cells affects
developmental programme controlling lineage choice of iTreg

and Th17 cells and, likely, balance between these two cell subsets.
ALTERED ONTOGENESIS AND
PHENOTYPIC STABILITY OF BMPR1a
DEFICIENT TREG CELLS

Abrogation of BMPR1a signaling in mature Treg cells resulted
in increased proportion of Treg cells expressing low levels
of Foxp3, as mice aged, and significantly altered proportions of
Treg cells expressing naive (CD44lowCD62L+) and mature
(CD44+CD62Llow) phenotype. Treg cells still expressing high
levels of Foxp3, and naive phenotype, were replaced by cells
with low expression of Foxp3, and mature phenotype, and these
cells dominated peripheral Treg population in aged mice.
Acquisition of mature phenotype is associated with Treg

activation, or is evidence of cellular senescence indicating
disruption of peripheral homeostasis (138, 139). Analysis of
cell surface markers showed that BMPR1a-deficient Treg cells
expressed lower levels of CD39 and Klrg1, indicating that their
suppressor function and terminal maturation are impaired (140,
141). Phenotypic changes of the Treg population were
accompanied by gradual upregulation of CD44, and
downregulation of CD62L, on conventional CD4+ T cells in
aging mice. Progressive loss of Foxp3 expression, associated with
senescent phenotype, and increased presence of activated,
conventional T cells, are consistent with compromised Treg cell
suppressor function and unstable Treg phenotype (118).

When wild type or BMPR1a-deficient Treg cells, expressing
high levels of Foxp3, were co-transferred to lymphopenic mice,
with naive conventional CD4+ T cells, only wild type Treg cells
retained Foxp3 expression, and were able to protect recipient
mice from inflammatory bowel disease. BMPR1a-deficient Treg

cells had high expression of CCR6 and IL-23R, receptors
regulating homing and promoting differentiation of Th17 cells
or their precursors. This was associated with increased levels of
Rorc, IFN-g and IL-17 in donor BMPR1a-deficient cells (41).

Immunization of mice with BMPR1a-deficient Treg cells led
to robust activation of conventional CD4+ T cells, which
Frontiers in Immunology | www.frontiersin.org 5
expressed higher levels of activation markers, and inflammatory
cytokines IFN-g and IL-17. BMPR1a deficient Treg cells in
immunized mice had lower expression of Foxp3, CD39, 4-1BB,
and Klrg1. CD39 is an ectonuclease directly involved in Treg

suppressor function, and 4-1BB binding of galectin-9 augments
Treg function (140, 142–144). Klrg1 is upregulated on antigen
activated, highly suppressive Treg cells (141). Similarly, exacerbated
inflammatory response was observed in mice infected with
Citrobacter rodentium, a mouse model of bacterial colitis (145).
These findings indicate unstable phenotype, and decreased ability
of BMPR1a-deficient Treg cells, to control inflammation and point
to the importance of BMPs signaling to control immune
homeostasis in situ and in inflammation.
SIGNALING CIRCUITS CONTROLLED BY
BMPR1a SIGNALING

Transcriptome analyses of Treg and iTreg cells revealed that
BMPR1a gene deletion results in elevated levels of genes
promoting phenotypic plasticity and functional adaptation of
Treg lineage cells including Rorc, IRF4, Hif1a, Batf3 (Figure 2)
(118, 146, 147). This finding is consistent with observed
downregulation of Foxp3 and enhanced production of Th1/
Th17 cells in inflammatory conditions by BMPR1a-deficient
Treg cells (46, 148–150). In addition, a set of genes differentially
expressed between BMPR1a-sufficient and deficient Treg and iTreg

cells included Cdkn1a (p21Cip1) and Kdm6b (Jmjd3). Higher
levels of these genes in BMPR1a-deficient cells provided cues
how BMP signaling shapes Treg population (Figure 2).

Cdkn1a is a cell cycle inhibitor associated with cell
maturation and senescence (151). Higher expression of
Cdkn1a in peripheral BMPR1a-deficient Treg cells correlates
with decreased proliferation and renewal of this subset while
promoting maturation and senescence. Cdkn1a also controls
CD4+ T cell responses to antigen and generation of memory or
anergic cells (152). Kdm6b demethylase is an antagonist of
polycomb repressive complex 2 (PRC2) which sustains
repressive trimethylation of H3K27. Differentiation of wild
type, naive CD4+ T cells into iTreg cells is associated with
downregulation of Kdm6b. In contrast, Kdm6b expression
remains elevated when BMPR1a-deficient CD4+ T cells
when they differentiate into iTreg cells. Kdm6b is also elevated
in Treg cells directly isolated from mutant experimental mice
(118). In CD4+ T cells Kdm6b promoted proinflammatory
immune responses and enhanced cellular senescence (153).
Upregulation of Cdkn1a and Cdkn2a (p16Ink4), controlled by
Kdm6b, regulated cell cycle and inhibited reprogramming into
self-renewing pluripotent stem cells supported by BMP signaling
(88, 154, 155). Consistent with these reports, Cdkn1a expression
in T cells was found to depend on epigenetic status of DNA and
was upregulated by histone deacetylase inhibitors (156).

Mechanistic control of Treg cells by Kdm6b and BMPR1a
signaling is consistent with reports demonstrating that inhibition
of Ezh2, a H3K27 methyltransferase of the PRC2, compromised
Treg cell function in tumors and autoimmune diseases (157, 158).
March 2022 | Volume 13 | Article 865546
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Ezh2 is induced in Treg cells upon activation, and sustains Treg

cell stability and function in inflammation (159–161). Deletion
of Ezh2 gene in Treg cells increased production of exTreg cells,
infiltration of CD8+ and effector CD4+/Treg ratio in tumors,
production of TNF-a and IFN-g (157). Altogether, BMPR1a
signaling in Treg cells modulates expression of Kdm6b, an
antagonist of Ezh2, and epigenetic landscape controlling Treg

cell plasticity.
DISCUSSION

Dysfunction of Treg cells, resulting in altered balance between
effector and Treg cells, is considered a main underlying cause of
most autoimmune diseases (162). Acquisition of effector Th cell
functions, rather than decreased proportions of Treg cells, are the
main cause of autoimmune pathologies but little is understood
how this process is controlled (163). Heterogeneity of the Treg

cell population may account for effector like properties of Treg

cells, while Foxp3 expression is retained (43, 164). In addition,
Frontiers in Immunology | www.frontiersin.org 6
genetic cell fate mapping, suggested that phenotypic plasticity of
the Treg cell lineage, especially in inflammatory environment,
results in the presence of different proportions of effector CD4+ T
cells that downregulate Foxp3 expression (41, 165). Finally, the
functions of Treg cells are shaped by tissue specific environmental
factors, leading to the development of specialized subsets of Treg

cells controlling tissue homeostasis and regeneration (11–
13, 166).

Foxp3 expression and development of a specific epigenetic
signature are required to sustain Treg functions (167, 168).
Abrogation of BMPR1a signaling in Treg cells led to a gradual
loss of Foxp3 expression, and was associated with upregulation of
transcription factors specific for effector Th lineages, Th1 and
Th17 cells. Molecular changes were accompanied by decreased
suppressor functions in situ and enhanced responses to
immunization or bacterial infections. These findings are
consistent with reports demonstrating that inhibition of the
BMP signaling exacerbated rheumatoid arthritis, and BMPs
treatment ameliorated renal inflammation (122, 125). Altered
transcriptional landscape in BMPR1a-deficient Treg cells was
FIGURE 2 | BMP and TGF-b signaling in Treg cell biology. BMP and TGF-b signaling regulates expression of genes essential for Treg lineage specification e.g. Foxp3,
Crem, Pde3b and Hopx. Selective abrogation of BMPR1a signaling results in altered gene expression and upregulation of Kdm6b, Cdkn1a, IL-17, Lft, Rorc and
Hif1a. Expression of proinflammatory genes is regulated by demethylation of inhibitory H3K27m3 epigenetic marks by Kdm6b demethylase.
March 2022 | Volume 13 | Article 865546
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associated with epigenetic changes, mediated by overexpression
of the Kdm6b demethylase (118, 153). Overexpression of Kdm6b
impaired generation of iTreg cells, and promoted inflammation
by enhanced generation of Th17 cells (169, 170). Overexpression
of Cdkn1a in BMPR1a-deficient Treg cells led to acquisition of
mature, senescent phenotype and decreased proliferation of Treg

cells. This result is consistent with ealier reports of BMPs
regulating renewal and differentiation of embryonic and tissue
specific stem cells including T cell progenitors (88, 115, 155). Treg

cell senescence may be a factor in progression of chronic
autoimmune diseases (171). In summary, BMPs and BMPR1a
signaling controls critical molecular circuits, impacting both
Foxp3 expression and epigenetic landscape of Treg cells. While
little is known how BMPs may affect tissue resident Treg cells, one
could speculate that tight control of BMP secretion, maturation
Frontiers in Immunology | www.frontiersin.org 7
and stability predisposes them to perform immunoregulatory
functions and contribute to the acquisition of organ
specific features.
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