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Abstract: Prodrugs are bioreversible medications that should undergo an enzymatic or chemical
transformation in the tumor microenvironment to release active drugs, which improve cancer se-
lectivity to reduce toxicities of anticancer drugs. However, such approaches have been challenged
by poor therapeutic efficacy attributed to a short half-life and low tumor targeting. Herein, we
propose cathepsin B-overexpressed tumor cell activatable albumin-binding doxorubicin prodrug,
Al-ProD, that consists of a albumin-binding maleimide group, cathepsin B-cleavable peptide (FRRG),
and doxorubicin. The Al-ProD binds to in situ albumin, and albumin-bound Al-ProD indicates
high tumor accumulation with prolonged half-life, and selctively releases doxorubicin in cathepsin
B-overexpressed tumor cells, inducing a potent antitumor efficacy. Concurrently, toxicity of Al-ProD
toward normal tissues with innately low cathepsin B expression is significantly reduced by maintain-
ing an inactive state, thereby increasing the safety of chemotherapy. This study offers a promising
approach for effective and safe chemotherapy, which may open new avenues for drug design and
translational medicine.

Keywords: prodrug; albumin; drug delivery; targeted therapy; chemotherapy

1. Introduction

Chemotherapy is still the first-line treatment option owing to its high sensitivity against
wide range of cancers, but it is often accompanied by serious side effects attributed to a
lack of cancer selectivity [1]. The risk of side effects by chemotherapy restricts drug dosage,
which may limit the tumors from being exposed to sufficiently high drug concentrations,
eventually leading to treatment failure [2]. Thus, many endeavors have been made to
overcome these issues by improving the cancer selectivity of anticancer drugs to tumors.
One of the promising approaches, prodrug, involves bioreversible medications that should
undergo an enzymatic or chemical transformation in the tumor microenvironment to
release active drugs, which greatly improve the cancer selectivity to reduce the off-target
toxicity of anticancer drugs [3–5]. Selective activation of prodrugs can be achieved by
intrinsic differences of enzyme expression between tumor and normal tissues [6]. Many
designed prodrugs that selectively release active drugs by overexpressed enzymes in the
tumor microenvironment, including caspases, cathepsins, and matrix metalloproteinases
(MMPs), have greatly increased the safety of chemotherapy with minimal side effects [7–10].
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However, such approaches have been challenged by unfavorable pharmacokinetics (PK),
indicating a short in vivo half-life and poor tumor targeting owing to their small molecule
structure, resulting in limited antitumor efficacy [11].

Albumin is the most abundant protein in the blood and has 17 disulphide bonds with
one free thiol from unpaired cysteine (Cys34), which has emerged as a versatile protein
carrier to improve the PK profile of anticancer drugs for tumor targeting [12]. The un-
derlying mechanism of albumin-based drug delivery is that anticancer drugs containing
thiol-reactive molecules selectively bind to accessible free thiol on Cys34 of endogenous
albumins, and thus enhance the half-lives of drugs [13]. This long half-life is attributable
mainly to its macromolecular size, being above the kidney filtration threshold, as well as
receptor-mediated salvage mechanism, preventing degradation, facilitated by the neona-
tal Fc receptor (FcRn) [14]. Therefore, anticancer drugs bound to albumin accumulate
within tumors via the enhanced permeability and retention (EPR) effect that is shown in
the macromolecular complex by the increased vascular permeability and low lymphatic
drainage [15,16]. In clinics, albumin-bound doxorubicin, Aldoxorubicin, has shown potent
antitumor efficacy with significantly prolonged patient survival [17]. However, the delivery
efficiency to tumors of even the effective drug carriers was, unexpectedly, found to be less
than 1~3% in many preclinical studies [18]. This means that a considerable amount of
drugs inevitably localized in the off-target tissues and blood stream, which can increase the
risk of systemic toxicity. Thus, albumin-based drug delivery of aldoxorubicin still indicated
representative side effects of chemotherapy in patients at various stages [19].

2. Materials and Methods
2.1. Materials

Phe-Arg-Arg-Gly (NH2-FRRG-COOH) peptide was synthesized from Peptron (Dae-
jeon, Republic of Korea). Cathepsin B-inhibitory siRNA, γ-maleimidobutyric acid, and
Monoclonal anti-mouse cathepsin B antibody were purchased from Santa Cruz Biotech-
nology (Dallas, TX, USA). Cell counting kit-8 (CCK-8) was purchased from Vitascientific
(Beltsville, MD, USA). TUNEL assays kit, recombinant cathepsin B, cathepsin E, cathepsin
D, caspase-9, and caspase-3 were purchased from R&D systems (Minneapolis, MN, USA).
BCA protein quantification kit was purchased from Thermo Fisher scientific (Oakville,
ON, USA). Maleimide-PEG2-NHS, human serum albumin (HSA), mouse serum albumin
(MSA), bovine serum albumin (BSA), hematoxylin and eosin (H&E) staining kit, and dox-
orubicin hydrochloride were purchased from Sigma Aldrich (Oakville, ON, USA). Fetal
bovine serum (FBS), RPMI 1640 medium, Dulbecco’s modified Eagle medium (DMEM)
high glucose medium, streptomycin, and penicillin were purchased from WELGENE Inc.
(Daegu, Korea). Anti-β-actin antibody was purchased from Abcam (Hanam, Republic of
Korea). MDA-MB231 (human breast cancer cells) and H9C2 (rat BDIX heart myoblasts) cell
lines were purchased from American Type Culture Collection (ATCC; Manassas, VA, USA).
Six-week-old female Balb/c nude mice were purchased from NaraBio, Inc. (Seoul, Korea).

2.2. Synthesis of Cathepsin B-Overexpressed Tumor Cell Activatable Albumin-Binding
Doxorubicin Prodrug (Al-ProD)

Al-ProD was synthesized via a two-step reaction. At first, maleimide-PEG2-NHS
(100 mg, 1 equiv) was reacted with NH2-FRRG-COOH (251.4 mg, 2 equiv) in anhydrous
DMF (10 mL) at 37 ◦C for 12 h, and maleimide-PEG2-FRRG-COOH was purified using
HPLC. Second, subsequent synthesis of maleimide-PEG2-FRRG-DOX (Al-ProD) was per-
formed by dissolving maleimide-PEG2-FRRG-COOH (150 mg, 2 equiv), doxorubicin (DOX;
48.2 mg, 1 equiv), EDC (44.1 mg, 4 equiv), and NHS (40.9 mg, 4 equiv) in anhydrous 10 mL
DMF, while stirring at 37 ◦C for 24 h. Then, Al-ProD was further purified via HPLC, and
lyophilized at −90 ◦C to obtain a red powder (Freeze Dryer, ilShinBioBase, Republic of
Korea). After preparation, successful synthesis of Al-ProD was confirmed by measuring
purity and molecular weight via HPLC and MALDI-TOF mass spectrometer, respectively.
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2.3. Characterization of Al-ProD

The albumin-binding property of Al-ProD was firstly evaluated. Briefly, to a hu-
man serum albumin (HSA), mouse serum albumin (MSA), or bovine serum albumin
(BSA; 700 µM in PBS; pH 7.4), Al-ProD (100 µM) was added and incubated for 0, 5, and
60 min at room temperature. As a control, the HSA solution was pre-incubated with
γ-maleimidobutyric acid for 1 h before adding Al-ProD. After incubation, samples were
analyzed via native 12% SDS-PAGE gel. The gels were observed by trans-UV using the
iBrightTM Imaging System (Invitrogen by Thermo Fisher Scientiric), and then stained with
coomassie blue for visualizing proteins. The albumin-binding property of Al-ProD was
further analyzed using reverse-phased high performance liquid chromatography (RP-
HPLC; Agilent cary 300; Agilent Technologies) with ACN/H2O gradient from 80:20 to
20:80 for 30 min under a fluorescence detector (Ex/Em: 530/590 nm). In addition, mass
shift after incubation of HSA with Al-ProD for 5 min was confirmed by a matrix-assisted
laser desorption/ionization time of flight (MALDI-TOF, AB Sciex TOF/TOF 5800 System,
Annapolis, MD, USA) mass spectrometer with a cyano-4-hydroycinnamic acid (CHCA)
matrix. Next, cathepsin B-specific cleavage of Al-ProD that was pre-incubated with HSA
for 5 min (HSA-bound Al-ProD; 10 µM) was assessed by incubating with cathepsin B,
cathepsin E, cathepsin D, cathepsin L, caspase-9, or caspase-3 (50 µg) at 37 ◦C for 24 h,
followed by an analysis using HPLC with ACN/H2O gradient from 20:80 to 80:20 for
30 min.

2.4. Cellular Uptake

To assess intracellular behavior of Al-ProD via fluorescence imaging, 3 × 105 MDA-
MB231 and H9C2 cells were seeded in confocal dishes. After 24 h stabilization, each cell
was incubated with free DOX or HSA-bound Al-ProD (2 µM) for 48 h at 37 ◦C. As a control,
MDA-MB231 cells were pre-incubated for 2 h with cathepsin B-inhibitory siRNA that was
pre-incubated with Lipofectamine 2000 for 40 min at room temperature. Then, cells were
washed twice with DPBS, fixed with 5% paraformaldehyde for 15 min, and stained with
4′,6-diamidino-2-phenylindole (DAPI) for 10 min. Fluorescence imaging was performed
using a Leica TCS SP8 confocal laser-scanning microscope (Leica Microsystems GmbH;
Wetzlar, Germany). The DOX fluorescence in images was quantitatively analyzed using an
Image Pro software (Media Cybernetic, Rockville, MD, USA).

2.5. Cytotoxicity Assay

The cytotoxicity of Al-ProD was assessed via cell counting kit-8 (CCK) assays. First,
5 × 103 MDA-MB231 or H9C2 cells were seeded in 96-well cell culture plates. After 24 h
stabilization, the free DOX or HSA-bound Al-ProD were added to each well and incubated
for 48 h. Then, the cells were additionally incubated with culture medium containing
10% CCK solution for 30 min. The cell viability was measured using a microplate reader
(VERSAmaxTM; Molecular Devices Corp., San Jose, CA, USA) with 450 nm of wavelength.

2.6. Western Blot

Cathepsin B expression in MDA-MB231 and H9C2 cells was analyzed via Western
blot [20]. Briefly, 2 × 105 MDA-MB231 or H9C2 cells were seeded in six-well cell culture
plates. After 24 h incubation, MDA-MB231 and H9C2 cells were solubilized using lysis
buffer including 1% protease inhibitors, and the resulting lysates were centrifuged at
3000 rpm for 40 min to remove debris. The proteins in lysates were quantified by BCA
protein quantification kit, and then separated using sodium dodecyl sulfate-polyacrylamide
(SDS-PAGE) gel electrophoresis and transferred onto PVDF membranes. Then, membranes
were incubated with TBS-T containing 5% bovine serum albumin (BSA) for 1 h to block
non-specific IgG binding and incubated with anti-cathepsin B primary antibody for 12 h at
4 ◦C. Finally, membranes were incubated with HRP-conjugated anti-mouse IgG antibody
for 2 h at room temperature and immunoreactive bands were observed via an enhanced
chemiluminescence (ECL) system.
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2.7. Pharmacokinetics (PK)

Mice were bred under pathogen-free conditions at the Korea Institute of Science and
Technology (KIST). All experiments with live animals were performed in compliance
with the relevant laws and institutional guidelines of Institutional Animal Care and Use
Committee (IACUC) in Korea Institute of Science and Technology (KIST), and IACUC
approved the experiment (approved number of 2020-123). To assess pharmacokinetic (PK)
profiles in vivo, BALB/c nude mice were intravenously injected with free DOX (3 mg/kg)
or Al-ProD (3 mg/kg based on DOX contents), and blood samples were collected from
mice at pre-determined times (0, 3 h, 6 h, 9 h, 12 h, 24 h, 48 h, 72 h, 96 h, 120 h, and 144 h).
Then, each drug in the blood samples was extracted with DMSO by intense vortex and
the samples were centrifuged at 2000 rpm for 40 min to obtain as a blood plasma. Finally,
amount of free DOX and Al-ProD in samples was analyzed by IVIS Lumina Series III
system (PerkinElmer; Waltham, MA, USA).

2.8. Biodistribution in Breast Tumor Models

The biodistribution of Al-ProD was assessed in breast tumor models, which were
prepared by subcutaneous inoculation of 1 × 107 MBA-MB231 cells into the left flank of
BALB/c nude mice. When the tumor volumes were approximately 200–250 mm3, the
mice were intravenously injected with free DOX (3 mg/kg) or Al-ProD (3 mg/kg based
on DOX contents). Then, noninvasive near-infrared fluorescence (NIRF) imaging was
performed using an IVIS Lumina Series III system after 0 h, 3 h, 6 h, 12 h, 24 h, 48 h, and
72 h of injection. Fluorescence intensities in tumor regions were quantified via Living
Image software. Mice were sacrificed after 12 h of injection for ex vivo imaging, followed
by the collection of lung, liver, kidney, spleen, heart, and tumor tissues. Tumor tissues were
also cut into 10 µm thick sections for histological assays. Slide-mounted tumor sections
were analyzed by Leica TCS SP8 confocal laser-scanning microscope.

2.9. Antitumor Efficacy and Toxicity Evaluation

To evaluate the antitumor efficacy, MDA-MB231 tumor-bearing mice were randomly
divided into three groups: (i) saline; (ii) free DOX; and (iii) Al-ProD. Then, mice were
treated once every three days with free DOX (3 mg/kg) or Al-ProD (3 mg/kg based on
DOX contents), at which time tumor volumes were approximately 60–80 mm3. Antitumor
efficacy was assessed by measuring tumor volumes once every two days, calculated as
largest diameter × smallest diameter2 × 0.53, once every 2 days. The body weights of mice
were also measured once every two days to assess in vivo toxicity. The in vivo toxicity
of Al-ProD was further assessed by histological analyses. At 20 days after treatment,
major organs were collected from mice and samples were stained with H&E following the
manufacturer’s protocol. Then, organ sections were observed using an optical microscope.

2.10. Statistics

The statistical significance between two groups was analyzed using Student’s t-test.
One-way analysis of variance (ANOVA) was performed for comparisons of more than
two groups, and multiple comparisons were analyzed using Tukey–Kramer post-hoc
test. Survival data were plotted as Kaplan–Meier curves and analyzed using log-rank test.
Statistical significance was indicated with an asterisk (* p < 0.05, ** p < 0.01, and *** p < 0.001)
in the figures.

2.11. Data Availability

All relevant data are available with the article and its Supplementary Information files,
or available from the corresponding authors upon reasonable request.
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3. Results
3.1. Albumin-Binding and Selective Activation of Al-ProD

Herein, we propose cathepsin B-overexpressed tumor cell activatable albumin-binding
doxorubicin prodrug, Al-ProD, which can effectively deliver anticancer drugs by in situ
albumin-mediated passive targeting with minimal side effects. The Al-ProD was prepared
by conjugating doxorubicin (DOX) to C-terminus of cathepsin B-cleavable peptide (NH2-
FRRG-COOH; NH2-Phe-Arg-Arg-Gly-COOH) and introducing a maleimide group to the
N-terminus of peptide (Figure 1a). The maleimide group in the Al-ProD selectively bound to
the thiol in physiological pH, thereby allowing the covalent binding with in situ circulating
albumin (Figure 1b). Moreover, FRRG peptide is a well-known substrate of cathepsin B,
which is associated with tumor invasion and metastasis as a promising cancer biomarker
overexpressed in malignant tumors compared with normal tissues in clinical studies [21,22].
Compared with other substrate peptide of cathepsin B, FRRG peptide exhibited high
specificity against the target enzyme without non-specific cleavage and, especially, it was
reported that G-DOX cleaved from FRRG-DOX by enzymatic cleavage was additionally
metabolized into free DOX by intracellular proteases [23,24]. Therefore, the in situ albumin-
bound Al-ProD greatly enhances tumor accumulation with prolonged in vivo half-life
and induces a potent antitumor efficacy by selectively releasing free DOX in cathepsin
B-overexpressed tumor cells (Figure 1c). Concurrently, toxicity toward normal tissues with
innately low cathepsin B expression is significantly reduced by maintaining a non-toxic
inactive state, thereby increasing the safety of chemotherapy (Figure 1d). In the present
study, albumin-binding of Al-ProD was confirmed on human serum albumin (HSA), mouse
serum albumin (MSA), and bovine serum albumin (BSA). Selective action of Al-ProD was
studied in breast cancer cells and cardiomyocytes, indicating differential levels of cathepsin
B. The in vivo pharmacokinetics and tumor regression effect with minimal toxicity were
also carried out in breast cancer models.

The cathepsin B-overexpressed tumor cell activatable albumin-binding doxorubicin
prodrug, Al-ProD, which consists of albumin-binding maleimide group, cathepsin B-
cleavable peptide (NH2-FRRG-COOH; NH2-Phe-Arg-Arg-Gly-COOH), and doxorubicin
(DOX), was designed for cancer-targeted therapy with minimal side effects. The Al-ProD
was synthesized by conjugating DOX to C-terminus of FRRG peptide and introducing
a maleimide group to the N-terminus of peptide (Figure S1). After the reaction, 99% of
Al-ProD was purified with HPLC (Figure S2). The successful synthesis was also confirmed
via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spec-
trometer, wherein the exact molecular weight of Al-ProD was calculated to be 1370.44 Da
for C64H83N13O21, and measured to be 1370.616 m/z [M] (Figure S3). First, the plasma
albumin-binding ability of Al-ProD was assessed by various in vitro studies. The Al-ProD
and albumin from different species of human (human serum albumin; HSA), mouse (mouse
serum albumin; MSA), and bovine (bovine serum albumin; BSA) were clearly observed via
the doxorubicin absorbance and coomassie blue staining in SDS-PAGE gel, respectively
(Figure 2a). Importantly, the band of Al-ProD was detected below 7 kDa, but the band
shifted to 50–75 kDa after incubation with HSA, BSA, or MSA for 1 h. MALDI-TOF mass
spectrometer further confirmed the molecular weight shift of the HSA from 66,409 to
67,780 m/z when incubated with Al-ProD, showing a mass difference comparable to that of
Al-ProD (1370.616 m/z), indicating the successful albumin-binding (Figure S4). In contrast,
the Al-ProD band was not shifted when each albumin (HSA, MSA, and BSA) was pre-
incubated with 4-maleimido butyric acid to block the thiol group. As a control, FRRG-DOX
with the absence of a maleimide group and free DOX were also not bound to all types of
albumin, only showing the band below 7 kDa. The HSA-binding of Al-ProD was further
analyzed by HPLC (Figure 2b). Binding of Al-ProD with HSA in HPLC spectrum was
confirmed by a shift of the Al-ProD peak (14 min) to a broad peak at 16 min that appeared
to be a free HSA peak, wherein the binding was accomplished within 5 min. However,
Al-ProD did not bound to HSA for 60 min when the thiol group of HSA was blocked.
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Figure 1. In situ albumin-mediated cancer-targeted therapy by Al-ProD. (a) The Al-ProD is pre-
pared by conjugating doxorubicin (DOX) to the C-terminus of cathepsin B-cleavable peptide (FRRG)
and introducing a maleimide group to the N-terminus of peptide. (b) Intravenously injected Al-
ProD efficiently binds to in situ circulating albumin in blood vessels. (c) Albumin-bound Al-ProD
greatly enhances tumor accumulation via albumin-mediated passive tumor targeting and induces
a potent antitumor efficacy by selectively releasing free DOX in cathepsin B-overexpressed tumor
cells. (d) Concurrently, Al-ProD significantly reduced toxicity toward normal tissues with innately
low cathepsin B expression by maintaining a non-toxic inactive state, thereby increasing the safety
of chemotherapy.

Figure 2. Albumin binding and selective activation of Al-ProD. (a,b) Albumin-binding of Al-ProD.
Al-ProD was incubated with human serum albumin (HSA), mouse serum albumin (MSA), or bovine
serum albumin at room temperature. As a control, the HSA solution was pre-incubated with γ-
maleimidobutyric acid to block thiol in HSA. In addition, free DOX or FRRG-DOX with the absence
of a maleimide group were also incubated with three types of serum albumin. After incubation,
samples were analyzed via (a) SDS-PAGE gel and (b) RP-HPLC. (c,d) HPLC chromatograms when
Al-ProD was incubated with (c) cathepsin B or (d) other enzymes.
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Next, we assessed the cathepsin B-specific cleavage of Al-ProD by incubation with
various enzymes. As the Al-ProD releases the DOX molecules via enzymatic degradation in
the presence of cathepsin B, it is major of concern whether the cathepsin B can recognize and
cleave FRRG peptide without interference by albumin adjacent when Al-ProD was bound
to albumin. To address this concern, HSA-bound Al-ProD was incubated with enzyme
reaction buffer containing cathepsin B (MES buffer; 50 µg/mL). The result showed that
HSA-bound Al-ProD began to be cleaved to glycine-conjugated doxorubicin (G-DOX) after
3 h incubation and G-DOX release was gradually increased for 9 h incubation (Figure 2c).
These results were clearly supported by MALDI-TOF analysis, which confirm the molecular
weight of G-DOX (calculated mass: 600.58 Da, measured mass: 601.2019 m/z [M+H],
623.184 [M+Na], and 639.1573 [M+K]) at a newly appeared peak (14 min) after incubation
with cathepsin B in the HPLC spectrum (Figure S5). It was already reported that G-DOX
cleaved from FRRG-DOX by cathepsin B enzymatic cleavage are efficiently metabolized
into free DOX by intracellular proteases [23,24]. In contrast, HSA-bound Al-ProD was
not cleaved by other enzymes, such as caspase-3, caspase-9, cathepsin D, cathepsin E,
and cathepsin L, or saline (hydrolysis; Figure 2d). These results clearly demonstrate that
Al-ProD successfully binds to albumin via a maleimide group and selectively releases DOX
molecules in the presence of cathepsin B enzyme.

3.2. Cancer Cell-Selective Cytotoxicity of Al-ProD

The in vitro selective activation of Al-ProD premised on differential expression levels
of cathepsin B was assessed in breast cancer cells (MDA-MB231) and rat BDIX cardiomy-
ocytes (H9C2). As expected, MDA-MB231 cells expressed a 24.26 ± 3.08-fold high amount
of cathepsin B compared with H9C2 cells (Figure S6). Each cell showed a robust uptake
of HSA-bound Al-ProD (red color) after 48 h of incubation, as confirmed by confocal
laser scanning microscope (CLSM; Figure 3a). However, DOX fluorescence was limited
to the cytoplasm of H9C2 cells, whereas that in MDA-MB231 cells was observed in nu-
clei. The HSA-bound Al-ProD also remained in the cytoplasm of cathepsin B-suppressed
MDA-MB231 cells, which are pre-treated with cathepsin B-inhibitory siRNA for 24 h.
Quantitatively, DOX fluorescence in nuclei was 2.48–2.89-fold stronger in HSA-bound
Al-ProD-treated MDA-MB231 cells than H9C2 and cathepsin B-suppressed MDA-MB231
cells (Figure 3b). In contrast, intracellular free DOX was clearly observed at the nuclei in
both MDA-MB231 and H9C2 cells, regardless of cathepsin B expression (Figure 3c). As the
mode of action of DOX is intercalation into DNA base pairs, inducing breakage of DNA
strand and inhibition of DNA and RNA replication, the DOX moleucle inside the nuclei
of cells is an important indicator of its cytotoxicity. As a result, this differential cellular
uptake of Al-ProD resulted in cancer cell-selective cytotoxicity [25]. The IC50 value of
HSA-bound Al-ProD in MDA-MB231 was measured to be 7.33 µM, while it was >200 µM
in H9C2 cells after 48 h incubation, which showed about a 30-fold difference that indicates
cancer cell-selective cytotoxicity (Figure 3d). In contrast, free DOX exhibitied indiscriminate
cytotoxicity in both MDA-MB231 and H9C2 cells with nearly similar IC50 values (Figure 3e).
These results suggest that Al-ProD can efficiently eradicate cancers with minimal off-target
toxicities toward normal tissues by selective activation in cancer cells.
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Figure 3. Cellular uptake and cytotoxicity of Al-ProD. (a) Fluorescence images of MDA-MB231
and H9C2 cells treated with Al-ProD. As a control, MDA-MB231 cells were pre-incubated with
cathepsin B-inhibitory siRNA. (b) Quantification analysis of DOX fluorescence in nuclei or cytosol
of Al-ProD- or free DOX-treated MDA-MB231, H9C2, and cathepsin B-inhibitory siRNA-treated
MDA-MB231 cells. (c) Fluorescence images of MDA-MB231 and H9C2 cells treated with free DOX.
(d,e) Cytotoxicity of (d) Al-ProD or (e) free DOX in MDA-MB231 and H9C2 cells. Significance
(*** p < 0.001) was determined by Student’s t-test (d).

3.3. Pharmecokinetics and Tumor Targeting of Al-ProD

To evaluate the high tumor accumulation of albumin-binding Al-ProD by extended
in vivo half-life, the pharmacokinetics (PK) of Al-ProD and free DOX was firstly compared
in BALB/c nude mice after intravenous injection at a dose of molar equivalent to 3 mg/kg
of doxorubicin. In contrast to free DOX, showing fast in vivo clearance with a half-life of
15 min, Al-ProD showed a significantly extended half-life of more than 3 h (Figure 4a). In
addition, a detectable amount of the Al-ProD remained for 144 h in the body, indicating
the dramatically extended residence time in vivo. As a result, the area under the curve
(AUC) of Al-ProD was approximately sevenfold increased compared with that of free DOX.
The tumor accumulation of Al-ProD by extended in vivo half-life was further assessed
via noninvasive near-infrared fluorescence (NIRF) imaging in breast tumor models. The
breast tumor-bearing mice were prepared by subcutaneous inoculation of MDA-MB231
cells (1 × 107) into BALB/c nude mice, and free DOX (3 mg/kg) or Al-ProD (3 mg/kg
based on DOX contens) were intravenously injected into mice. In the case of free DOX, the
DOX fluorescence in tumor tissues was rapidly decreased for 6 h owing to its rapid in vivo
clearance by a short half-life (Figure 4b). However, DOX fluorescence of Al-ProD in tumor
tissues was significantly stronger than free DOX at all time points and was retained for
72 h of injection, which indicates high tumor accumulation by albumin-mediated passive
targeting effect. The DOX fluorescence from tumor tissues was quantitatively 3.33–4.08-fold
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stronger in mice treated with Al-ProD than free DOX after 12 h injection (Figure 4c). Ex
vivo imaging after 12 h of injection further confirmed the high tumor accumulation of
Al-ProD, wherein the DOX fluorescence in tumor tissues was 3.41–4.92-fold stronger than
the free DOX group (Figure 4d). Finally, histological analyses also indicated strong DOX
fluorescence (red color) in whole tumor tissues from mice treated with Al-ProD compared
with free DOX (Figure 4e). In contrast, only a small quantity of free DOX was observed
in tumor tissues. These results demonstrate that the abumin-binding property of Al-ProD
greatly extended the in vivo half-life of drugs, leading to high tumor accumulation via a
passive targeting effect.

Figure 4. Pharmacokinetics and biodistribution of Al-ProD. (a) PK profiles of Al-ProD and free
DOX. Area under the curve (AUC) was calculated by Origin 2020 software. (b) NIRF images of
MDA-MB231 tumor-bearing mice treated with Al-ProD of free DOX. (c) Quantification analysis on the
DOX fluorescence at tumor tissues in NIRF images. (d) Ex vivo imaging of organs from mice treated
with Al-ProD or free DOX after 12 h injection. (e) Quantification analysis of the DOX fluorescence
at major organs in ex vivo imaging. (e) Fluorescence images of whole tumor tissues after 12 h of
Al-ProD or free DOX treatment. Significance (** p < 0.01, *** p < 0.001) was determined by Student’s
t-test (c,d).

3.4. Antitumor Efficacy and Toxicity Studies of Al-ProD in Breast Tumor Models

To evaluate the antitumor efficacy, MDA-MB231 tumor-bearing mice prepared by
same protocol as in Figure 4b were treated with free DOX (3 mg/kg) or Al-ProD (3 mg/kg
based on DOX contens) once every three days. Importantly, Al-ProD (347.42 ± 25.9 mm3)
significantly decreased the tumor volume compared with free DOX (580.25 ± 139.92 mm3;
p < 0.05) and saline (1810.98 ± 544.56 mm3; p < 0.001) groups on day 20 after treatment
(Figure 5a). Tumor tissues stained with H&E and TUNEL also showed greatly elevated
damaged areas and apoptosis in the Al-ProD group compared with the free DOX and
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saline groups, which clearly indicated the potent antitumor efficacy by albumin-mediated
passive targeting of Al-ProD (Figure 5b). Next, we assessed the reduced off-target toxicity
of Al-ProD by high cancer selectivity during treatment. Body weights of mice in the free
DOX group gradually decreased during treatment owing to severe systemic toxicity, while
those in the Al-ProD group showed no significant body weight loss, similar to the saline
group (Figure 5c). Furthermore, normal organs stained with H&E exhibited structural
abnormalities in the free DOX group, whereas only negligible toxicity was observed in
organs of the Al-ProD group on day 20 after treatment (Figure 5d). In agreement with the
above results, the mice in free DOX group were all dead within 18 days, with a median
survival of 16 days, whereas Al-ProD-treated mice survived over 25 days (Figure 5e). As a
control, median survial of the saline group was measured to be 20 days, wherein the mice
were dead as a result of tumor progression. Collectively, our findings demonstrate that
Al-ProD effectively inhibits tumor growth without side effects, thereby allowing effective
and safe chemotherapy.

Figure 5. Antitumor efficacy and toxicity evaluation of Al-ProD. (a) Tumor growth curves of
MDA-MB231 tumor-bearing mice after saline, free DOX, or Al-ProD treatment once every three
days. (b) Tumor tissues stained with H&E or TUNEL to assess antitumor efficacy on day 20 after
treatment. (c) Body weights during treatment. (d) Major organs stained with H&E to assess structural
abnormalities on day 20 after treatment. (e) Mice survival during treatment. Significance (* p < 0.05
and *** p < 0.001) was determined by one-way ANOVA with the Tukey−Kramer post-hoc test (a,c) or
log-rank test (e).
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4. Conclusions

In summary, we proposed achieving the effective and safe chemotherapy with cathep-
sin B-overexpressed tumor cell activatable albumin-binding doxorubicin prodrug (Al-
ProD) via albumin-mediated drug delivery. Al-ProD, which consists of albumin-binding
maleimide, cathepsin B-cleavable peptide, and doxorubicin, efficiently bound to plasma
albumin, thereby dramatically extending the in vivo half-life of doxorubicin. Importantly,
highly accumulated Al-ProD in the tumor tissues via albumin-mediated passive targeting
selectively released doxorubicin in cathepsin B-overexpressed cancer cells, which pro-
voked potent antitumor efficacy. Concurrently, Al-ProD significantly reduced the toxicity
against normal tissues with innately low cathepsin B by maintaining an inactive state. As
a result, localized tumor delivery of doxorubicin by Al-ProD greatly inhibited the breast
tumor progression with minimized side effects. Compared with the conventional drug
delivery system that encapsultes active drugs into nanoparticles, Al-ProD can prevent
the off-target toxicities by accidental drug leakage during circulation. In addition, this
system also reduces the risk of potential side effects from carrier materials by using the
natural delivery carrier. Finally, presice and consice structures allow the simple preparation
protocol, thereby overcoming the fundamental problems of targeted drugs for clinical trans-
lation, such as difficulty in quality control (QC) and mass production. Therefore, this study
provides a promising approach for effective and safe chemotherapy, which may open new
avenues for drug design and provide significant advances for translational nanomedicine.
However, unexpectedly low delivery efficiency of targeted drugs is still a common lim-
itation of current drug delivery systems. Thus, many researchers are making efforts to
develop the advanced formulation and to increase the understanding of the complex tumor
microenvironment that reduces the delivery efficiency of targeted drugs. Considering
the clinical success of albumin-mediated drug delivery to improve the pharmacokinetics
and tumor targeting of drugs as well as ongoing pipelines like Al-ProD will further move
albumin-binding drugs from bench to bedside.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics14010083/s1, Figure S1. Synthetic scheme to prepare cathepsin B-overexpressed
tumor cell activatable albumin-binding doxorubicin prodrug (Al-ProD). Figure S2. The purity (>99%)
of Al-ProD was confirmed by high performance liquid chromatography (HPLC). Figure S3. The
molecular weight of Al-ProD was confirmed via MALDI-TOF mass spectrometer. Figure S4. MALDI-
TOF analysis results of human serum albumin and human serum albumin-bound Al-ProD. Figure S5.
Metabolite assay of Al-ProD. Glycine-conjugated doxorubicin (G-DOX) release from Al-ProD was
confirmed via MALDI-TOF mass spectrometer. Figure S6. Cathepsin B expression levels of MDA-
MB231 and H9C2 cells. (left) Western blot analysis of cathepsin B of MDA-MB231 cancer cells and
H9C2 normal cells. (right) Relative expression levels of cathepsin B in each cell.
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