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Abstract

Motivation: Tumor purity and ploidy have a substantial impact on next-gen sequence analyses of

tumor samples and may alter the biological and clinical interpretation of results. Despite the exist-

ence of several computational methods that are dedicated to estimate tumor purity and/or ploidy

from The Cancer Genome Atlas (TCGA) tumor-normal whole-genome-sequencing (WGS) data, an

accurate, fast and fully-automated method that works in a wide range of sequencing coverage,

level of tumor purity and level of intra-tumor heterogeneity, is still missing.

Results: We describe a computational method called Accurity that infers tumor purity, tumor cell

ploidy and absolute allelic copy numbers for somatic copy number alterations (SCNAs) from

tumor-normal WGS data by jointly modelling SCNAs and heterozygous germline single-

nucleotide-variants (HGSNVs). Results from both in silico and real sequencing data demonstrated

that Accurity is highly accurate and robust, even in low-purity, high-ploidy and low-coverage set-

tings in which several existing methods perform poorly. Accounting for tumor purity and ploidy,

Accurity significantly increased signal/noise gaps between different copy numbers. We are hopeful

that Accurity is of clinical use for identifying cancer diagnostic biomarkers.

Availability and implementation: Accurity is implemented in Cþþ/Rust, available at http://www.

yfish.org/software/.

Contact: yuhuang@simm.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a group of heterogeneous diseases that each bears its own

biological signature. Uncovering these biological signatures may yield

highly informative markers and targets for cancer therapeutics (Bild

et al., 2006; Potti et al., 2006; Roychowdhury and Chinnaiyan, 2014;

Sabbah et al., 2008). Recently, next-generation sequencing (NGS)

have enabled scientists to search for these cancer signatures on a

genome-wide scale (Cronin and Ross, 2011; Hanahan and Weinberg,

2011; Ross and Cronin, 2011). However, tumor purity, measured as

the fraction of cancer cells in a heterogeneous tumor sample, and

tumor cell ploidy, the average copy number of a cancer genome, have

a substantial impact on NGS analyses of tumor samples and may alter
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the biological and clinical interpretation of results (Aran et al., 2015;

Elloumi et al., 2011; Yadav and De, 2015). In this article, we made a

distinction between tumor cell ploidy (short as tumor ploidy) and

tumor sample ploidy (average between normal and cancer cells in a

tumor sample as described in Methods). Traditionally, a pathologist

is tasked to estimate tumor purity and ploidy by visually inspecting a

tumor sample. The progression of genomic technologies in the past

decade has opened the door to computationally infer tumor purity

and ploidy from genomic data. Recently, tumor-normal pair sequenc-

ing has gained significant traction among researchers in profiling can-

cer genomes for its improved statistical power over tumor-only

sequencing (Garofalo et al., 2016; Mwenifumbo and Marra, 2013).

The Cancer Genome Atlas (TCGA) contains close to a thousand

tumor-normal pair samples profiled by high-coverage (>30�) whole-

genome-sequencing (WGS) and another thousand profiled by low-

coverage (6–8�) WGS. A plethora of computational methods (Andor

et al., 2014; Carter et al., 2012; Gusnanto et al., 2012; Larson and

Fridley, 2013; Li and Xie, 2014; Mayrhofer et al., 2013; Oesper

et al., 2013; Su et al., 2012; Yu et al., 2014) have been developed to

infer tumor purity and ploidy from tumor-normal pair WGS data.

Estimating tumor purity and ploidy relies on statistical signals

that can differentiate tumor cells from normal cells in a tumor sam-

ple. Statistical differentiation in the tumor NGS data comes mainly

from two types of genetic variants. One type of event is somatic

copy number alterations (SCNAs). Comparing sequencing coverage

at SCNA loci of a tumor sample against that of its matching normal

sample constitutes a statistical differentiation. The second type is

single nucleotide variants (SNVs). Comparing allelic sequencing

coverage at SNV loci of a tumor sample against that of its matching

normal sample constitutes a second statistical differentiation. Based

on how coverage information of these two types of events are uti-

lized in estimating tumor purity and ploidy, existing computational

methods can be broadly grouped into three categories. Category one

utilizes coverage information of SCNAs only (Gusnanto et al., 2012;

Oesper et al., 2013). Category two utilizes coverage information of

SNVs only (Larson and Fridley, 2013; Su et al., 2012). Category

three utilizes both information (Li and Xie, 2014; Yu et al., 2014).

One issue shadowing methods of category one and two is the

identifiability issue, where different combinations of tumor purity

and tumor cell ploidy can explain the observed data equally well

(Carter et al., 2012; Oesper et al., 2013). For a method that utilizes

coverage information of SCNAs only, a combination of (30%, 3),

tumor purity¼30% and tumor cell ploidy¼3, can explain the

sequencing coverage of this tumor sample equally well as a combin-

ation of (15%, 4) (and many others combinations) because these

combinations result in the same tumor sample ploidy¼2.3, accord-

ing to Equation 1. Similarly, a method that only utilizes coverage in-

formation of SNVs suffers the same issue (Equation 17). To

circumvent the identifiability issue, these methods made explicit or

implicit assumptions that help to narrow candidates down to one so-

lution. For example, PurityEst (Su et al., 2012), a method that uses

B-allele frequencies (BAFs) at somatic mutations (one type of SNVs)

to estimate tumor purity, effectively assumes tumor cell ploidy is

equal to 2. CNAnorm (Gusnanto et al., 2012) prefers a solution

closest to diploid. ABSOLUTE (Carter et al., 2012) incorporates

karyotype data in addition to coverage information of SCNAs.

Oesper et al. (2013) outputs all optimal solutions or limits to solu-

tions with a baseline copy number of the clonal tumor population.

As in basic algebra that two equations are required to solve a

two-variable system, by combining coverage information of SCNAs

and SNVs, methods in category three can fundamentally solve this

identifiability issue (Favero et al., 2015; Li and Xie, 2014; Yu et al.,

2014). Some of these methods, i.e. MixClone (Favero et al., 2015),

even take intra-tumor heterogeneity (IRH) (Navin et al., 2011) into

account. As demonstrated by direct comparisons with these methods

(Fig. 4 and Supplementary Fig. S5), Accurity differentiates from

them by its accuracy, robustness and speed.

The idea of Accurity is based on recent cancer biology research

(Wang et al., 2014), cancer subclones evolve from a common ances-

tral cancer clone and thus a significant portion of their cancer gen-

omes inherits a common copy number profile. We use one

hypothetical cancer genome to represent all cancer cells in a tumor

sample and there will be two types of genomic regions in this cancer

genome. At genomic regions of the first type, all cancer subclones

have the same integral copy number. These regions are inherited from

the ancestral clone and no new SCNA has been introduced at these re-

gions since divergence from the ancestral clone. We call these regions

clonal. At genomic regions of the second type, new SCNAs have

occurred in some cancer subclones during their course of divergence

from the ancestral clone. The copy number at such a region varies

among different subclones and its copy number representation as a

weighted average is non-integral. We call these regions subclonal.

Based on this understanding, Accurity first used an autocorrelation-

based algorithm to separate the integral-copy-number clonal regions

from the non-integral-copy-number subclonal ones. During the se-

cond stage of analysis, Accurity used a Hierarchical Gaussian

Mixture (HGM) model to fit coverage information of SCNAs and

heterozygous germline single-nucleotide-variants (HGSNVs) at clonal

regions to estimate tumor purity and ploidy (Fig. 1).

Knowledge of tumor purity and ploidy can have a significant im-

pact on the detection of SCNAs, which are important to cancer pro-

gression (Beroukhim et al., 2010; Shah et al., 2012; Zack et al.,

2013). Power to detect SCNAs is highly dependent on the tumor pur-

ity. In a low-purity tumor sample, a large fraction of copy-neutral

DNA from non-cancerous cells significantly decreases the signal/noise

ratio of SCNAs. A tumor-purity-agnostic SCNA caller, assuming

100% tumor purity, is almost certain to be underpowered (Alkodsi

et al., 2015; Liu et al., 2013; Yadav and De, 2015). Knowledge of

tumor ploidy is also crucial to detect SCNAs. Ploidy of some aneu-

ploidy cancer samples could be far from two. Methods that use the

genome-wide average copy number as a baseline could call copy-

neutral regions as deletions and amplifications as normal. Inversely,

when tumor ploidy is low, such methods could call copy-neutral re-

gions as amplifications and intermediate deletions as normal.

We applied Accurity (Fig. 1) to simulated data and demonstrated

that Accurity can produce accurate and robust estimates under a

wide variety of settings: focal SCNAs or chromosomal SCNAs or

whole-genome duplications (WGDs), low-coverage or high-

coverage. We also applied Accurity to real sequencing data from

dozens of TCGA samples. Purity estimates by Accurity were highly

concordant with histological estimates. Accounting for tumor purity

and ploidy, Accurity significantly increased signal/noise gaps be-

tween different copy numbers and can help to identify complex

SCNAs, which is of keen interest to cancer diagnostic community.

2 Materials and methods

2.1 Tumor purity and ploidy
We define the fraction of cancer cells in a tumor sample as the tumor

purity c and the fraction of normal cells is 1� c. We assume that the

ploidy of normal cells is two and denote the ploidy of cancer cells as
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j (tumor cell ploidy). Tumor sample ploidy x is a weighted average

of that of normal and cancer cells, expressed in c and j as follows:

x ¼ ð1� cÞ � 2þ c� j (1)

We denote the copy number of a chromosomal segment s in can-

cer cells as Cs (tumor cell copy number). Similarly, the copy number

of segment s for the entire tumor sample Ct (tumor sample copy

number) is as follows:

Ct ¼ ð1� cÞ � 2þ c� Cs (2)

Note the difference between tumor cell ploidy and tumor sample

ploidy. The latter includes ploidy contribution from normal cells in

a tumor sample while the former is only about tumor cells. The two

are identical for a 100% pure tumor. Similarly, the tumor cell copy

number of a segment is different from tumor sample copy number of

the same segment. The observed sequencing coverage of a tumor

sample is directly proportional to the tumor sample ploidy, thus de-

pendent on tumor purity and tumor cell ploidy.

2.2 GC-correction for sequencing coverage
Dependency between GC content in a region and its coverage from

Illumina sequencing data is widely documented (Benjamini and

Speed, 2012; Boeva et al., 2014). As observed in Benjamini and

Speed (2012), the GC effect for human genomes is largely unimodal.

In AT-rich (GC-fraction<0.5) regions, coverage increases with

increasing GC. In GC-rich (GC-fraction>0.5) regions, coverage de-

creases with increasing GC. The peak coverage can be different for

different samples and bin sizes, but is usually located between 0.4

and 0.55 GC-fraction. We adopted the full-fragment model from

Benjamini and Speed (2012) and chose a bin size of 500 bp to match

the usual fragment length in NGS sequencing. For each sample,

Accurity calculates GC fraction for every bin, and fits a loess model

to the coverage data (smoothness parameter of 0.3, R package

loess). The normalized coverage for one bin is as follows:

y ¼ l� y

lgc

¼ l� 1þ �

lgc

 !
(22)

where y is the normalized coverage, y is the observed coverage, lgc

is the predicted coverage given observed GC-fraction gc of this bin,

and l is the genome-wide average of coverage. In calculating cover-

age y, Accurity requires: (i) read mapping quality larger than or

equal to 30, (ii) reads properly paired and their mates mapped, (iii)

more than half of the fragment (its length inferred by the alignment

algorithm) to be in the bin. The bin size 500 bp is adjustable by a

user in a configuration file. We suggest the bin size to be the median

fragment length of the sequencing library.

After the binned sequencing coverage data is normalized, seg-

mentation of the tumor genome is achieved by applying BIC-seq to

the normalized coverage data, step B of Figure 1. Accurity then cal-

culates TRE for all bins and conducts model selection.

2.3 Tumor Read Enrichment (TRE) for a chromosomal

segment bin
Denote the number of reads covering a genomic segment bin s for a

tumor sample and its matching normal sample as ns
t and ns

n, respect-

ively, and a total number of Nt and Nn reads for a tumor sample

and its matching normal sample. The Tumor Read Enrichment

(TRE) for segment bin s, es, is defined as follows:

es ¼
ns

t

Nt

ns
n

Nn

(3)

TRE is a normalized read enrichment of a chromosomal segment

bin in a tumor sample relative to its matching normal sample.

Factors that influence both tumor and normal samples, such as read

mappability and GC bias, are canceled out.

2.4 Expected TRE and Normal TRE (NTRE) and their

relationship with tumor purity and ploidy
For a chromosomal segment bin s, assuming independence between

local and global coverage, the expected TRE of segment bin s can be

approximated as follows:

Es ¼ E esð Þ ¼ E
ns

t

Nt
=

ns
n

Nn

� �
¼ E

ns
t

Nt

� �
=E

ns
n

Nn

� �
� Eðns

tÞ
Eðns

nÞ
� EðNnÞ

EðNtÞ
(4)

We define a few nuisance parameters to illustrate the further der-

ivation of Es, during which all these nuisance parameters will cancel

Fig. 1. Workflow of Accurity. (A) DNA from a pair of matching tumor-normal

samples is extracted and profiled using a WGS technology. In the tumor sam-

ple, about 2/3 of all cells are cancerous. About 3=4 of all cancer cells belong to

clone C1 and the rest belong to clone C2. Clone C1 and C2 share substantial

SCNAs as they evolve from a single ancestral clone. (B) We i) normalize the

sequencing coverage data to correct the GC bias; ii) use BIC-seq to partition

the 22 autosomes of the cancer genome into segments according to sequenc-

ing coverage; iii) call heterozygous germline single nucleotide variants

(HGSNVs) for the normal sample using our approximate variant caller. We

calculate tumor read enrichment (TRE) for all cancer genome segments in

bins of 500 bp and the normalized major allele fraction (NMAF) of all

HGSNVs. (C) Accurity conducts an autocorrelation analysis on the TRE distri-

bution to derive an initial periodicity estimate and fits a joint Hierarchical

Gaussian Mixture (HGM) model on TRE and NMAF data according to

Bayesian Information Criterion (BIC). (D) Accurity outputs tumor purity and

tumor cell ploidy estimates, an absolute copy number profile and a major al-

lele copy number profile for the cancer genome. Clonal segments are as-

signed with integers (solid bars) and subclonal segments are assigned with

non-integers (hollow bars)
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out. The length of segment bin s is denoted as Ls. The length of the

reference genome, which is roughly three billions, is Lgw. The

genome-wide average sequencing coverage is VT
gw for tumor sample

T and VN
gw for its matching normal sample N. The average sequenc-

ing coverage for segment bin s from a tumor sample is ks �VT
gw,

which adds a sequence-specific factor ks to the genome-wide

sequencing coverage. The average sequencing coverage for segment

bin s from the matching normal sample is ks � VN
gw. There is an im-

plicit assumption that ks is the same in both tumor and normal sam-

ples, which is well approximated because identical normalization

procedures (correcting GC-bias, etc. details in GC-correction sec-

tion) are applied to both samples. With all these definitions, we can

derive the expected TRE, Es, as a statistic only dependent on tumor

purity, c, tumor cell ploidy, j and the copy number of the segment

bin in cancer cell, Cs:

Es ¼
Eðns

tÞ
Eðns

nÞ
� EðNnÞ

EðNtÞ
¼

Ct � Ls � ks �VT
gw

2� Ls � ks � VN
gw

�
2� Lgw � VN

gw

x� Lgw � VT
gw

¼ Ct

x

¼ ð1� cÞ � 2þ c�Cs

ð1� cÞ � 2þ c� j

(5)

All bins inside each segment (output of BIC-seq) are assumed to

have the same copy number, and thus the same expected TRE based

on the equation above. It is also clear that if a tumor sample is

100% pure and tumor cell ploidy is 2, for a cancer cell segment with

copy-number¼2, its expected TRE, Esj Cs ¼ 2; c ¼ 1; j ¼ 2ð Þ ¼ 1.

We drop subscript s of Es and add superscript i to denote the ex-

pected TRE for all segments with copy number i as Ei:

Ei ¼ ð1� cÞ � 2þ c� i

ð1� cÞ � 2þ c� j
(6)

For all segments with copy number iþ 1; the corresponding Eiþ1 is

Eiþ1 ¼ ð1� cÞ � 2þ c� ðiþ 1Þ
ð1� cÞ � 2þ c� j

(7)

Forms of Ei and Eiþ1 can explain the periodicity we observed

from a GC-corrected TRE histogram. We define periodicity P of a

TRE histogram as the interval between two copy numbers (Fig. 2)

and its expected value is

P ¼ Eiþ1 � Ei ¼ c
ð1� cÞ � 2þ c� j

(8)

In a histogram of TREs (Fig. 2), periodicity P is the interval be-

tween two adjacent major peaks. Each major peak in a TRE histo-

gram represents one group of clonal segments with the same integral

copy number. Usually periodicity of a tumor sample decreases with

low purity or high ploidy.

Further, we define a Normal TRE (NTRE) Q, as the TRE corres-

ponding to segments of copy number 2, then

Q ¼ Eij i ¼ 2ð Þ ¼ ð1� cÞ � 2þ c� i

ð1� cÞ � 2þ c� j
j i ¼ 2ð Þ

¼ 2

ð1� cÞ � 2þ c� j

(9)

Solving equation 8 and 9 above rewrites tumor sample purity c
and tumor cell ploidy j in terms of P and Q.

c ¼ 2� P

Q
(10)

j ¼ 2þ 1�Q

P
(11)

2.5 Normalized major allele fraction (NMAF)

for HGSNVs
A read with a non-reference allele is less likely to be mapped cor-

rectly to the reference genome than a reference-allele read because a

non-reference allele introduces a mismatch (Degner et al., 2009).

This allelic mapping bias causes the non-reference allele to have less

read coverage than the reference allele. Denote nR
t , nA

t , nR
n and nA

n as

the read counts for a reference allele (R) and an alternative allele (A)

in a tumor (t) and normal (n) sample. For each allele of a tumor sam-

ple, we normalize its read count by dividing it with its corresponding

read count of the matching normal sample to minimize the allelic

mapping bias.

cR ¼ nR
t

nR
n

(12)

cA ¼ nA
t

nA
n

(13)

The normalized allele fraction for each allele is as follows:

f R ¼ cR

cR þ cA
(14)

f A ¼ cA

cR þ cA
(15)

The NMAF of an HGSNV is the larger number of f R and f A.

f ¼ maxðf R; f AÞ (16)

HGSNVs are called using our approximate HGSNV calling

method. Our approximate method does not strive for accuracy, but

get good summary information for HGSNVs over the whole gen-

ome. It starts from a candidate set of 44 million SNPs from the 1000

Genomes project. At any locus, if (i) the normal sample is covered

by eight or more reads, (ii) the minor allele is covered by 3 or more

reads and (iii) the tumor sample is covered by four or more reads,

one HGSNV is called. HGSNVs are discovered from a normal sam-

ple but its NMAF contains information from both normal and

tumor sample.

2.6 Expected NMAF
Given a segment of copy number i, purity c and major allele copy

number j, the expected NMAF Fi;j is

Fig. 2. The histogram of tumor read enrichment (TRE) from the example in

Figure 1. Auto-correlation analysis can identify periodicity P as the interval

between neighboring major peaks and Q is the TRE value corresponding to

copy-number-two segments. Two minor peaks with circles are subclonal seg-

ments. Subclonal segments are excluded during model fitting and selection

because our HGM model is designed for clonal segments
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Fi;j ¼ E fð Þ ¼ E
cM

cR þ cA

� �
¼ EðnM

t Þ
EðnR

t þ nA
t Þ
¼ 1� cð Þ þ c� j

2� 1� cð Þ þ c� i
(17)

where i
2 � j � i; cM ¼ max cR; cA

� �
; nM

t ¼ max nR
t ; nA

t

� �
and E

nR
n

� �
¼ EðnA

n Þ for an HGSNV in a normal sample.

2.7 An HGM Model for TRE and NMAF and its BIC score
We designed a two-level HGM model: the first level of Gaussian mix-

ture models modelling coverage data of SCNAs (including normal

copy number regions) shared by all cancer cells (clonal segments); the

second one modelling major-allele coverage data of all HGSNVs

within clonal segments. Each first-level Gaussian distribution models

segments with the same copy number and acts as a parent distribution

to a set of second-level Gaussian distributions which model HGSNVs

that fall inside these segments but are of different major allele copy

numbers (Fig. 1). Given a pair value of tumor purity and ploidy ðc; jÞ,
for all segment bins with the same copy number i, we calculate their

expected TRE Ei and for all HGSNVs that fall inside these segments

and have the same major allele copy number j, we calculate their ex-

pected NMAF Fi;j. Then the likelihood functions for observed TRE

data L es; c; jð Þ and major-allele fraction data L fs; c; jð Þ are

L es; c;jð Þ ¼
YN
s¼1

XI

i¼0

pi �
1ffiffiffiffiffiffi

2p
p

ri

exp �
es � Ei
� �2

2 r2
i

 !" #
(18)

L fs; c;jð Þ ¼
YM
s¼1

XI

i¼0

pi �
Xi

j¼i=2

pi;j �
1ffiffiffiffiffiffi

2p
p

ri;j

exp �
fs � Fi;j
� �2

2r2
i;j

 !24 358<: (19)

where ri and ri;j are the standard deviations of Ei and Fi;j respect-

ively, pi is the mixture weight of each first-level Gaussian distribu-

tion, pi;j is the mixture weight of each second-level Gaussian

distribution, I is the number of first-level Gaussian distributions, J is

the number of second-level Gaussian distributions (approximately

I2=4), N is the number of 500 bp (size adjustable by user) bins from

all clonal segments, and M is the number of HGSNVs within all clo-

nal segments. We use 500 bp segment bins to account for the size

variation of segments (information from long segments will be

underrepresented if every segment is treated as a single data point).

We use Bayesian Information Criterion (BIC) to gauge model fitness

and select the best model that fits the data. BIC strikes a balance between

model fitness and model complexity by adding a term of K� lnðNÞ to

one log likelihood function, where K is the number of parameters in the

model and N is the number of data points. In our case, the BIC score is

BIC es; fs; c; jð Þ ¼ � 2logL es; c; jð Þ � 2logL fs; c; jð Þ
þ I � log Nð Þ þ J � log Mð Þ

(20)

The best estimates of purity and ploidy ðbc; bjÞ are obtained by

minimizing the BIC score:

bc;bjð Þ ¼ arg minc;j BIC es; fs; c; jð Þ (21)

In our tests without BIC, using the pure likelihood score alone

tends to prefer models with more first-level Gaussian clusters (more

parameters), which leads to a smaller-than-truth periodicity estimate

and an inflated tumor ploidy estimate. This is why ABSOLUTE (not

using BIC) tends to overestimate the ploidy and the number of

WGD events in our simulation study. We observed that adoption of

BIC greatly reduced the occurrences of model overfitting.

2.8 Grid search over P and Q to find optimal tumor

purity and ploidy
Instead of calculating the BIC score for every possible tumor purity c
2 0; 1½ � and tumor cell ploidy j 2 ½0;1�, which are infinite,

Accurity grid search starts from a limited range of P and Q that are

interchangeable with c and j according to Equations 10 and 11. The

search ranges of P and Q can be extracted from a TRE histogram via

an autocorrelation analysis. Autocorrelation analysis is ideal to dis-

cover periodic patterns in a TRE histogram.

Before an autocorrelation analysis is conducted, Accurity applies

a GC correction methodology to normalize read coverage and calcu-

lates TREs for every segment bin, and applies a kernel smoothing

method to the TRE histogram. A real-life TRE histogram still dis-

plays substantial noise after GC-correction. To reduce the effect of

noise on initial periodicity inference, Accurity smooths the TRE

histogram by a 1D Gaussian kernel (variation of mean TRE is the

width).

Accurity then calculates an auto-correlation function for a TRE

histogram. The non-zero lag at which the auto-correlation function

achieves its maximum value becomes the initial periodicity estimate

P0. Accurity further identifies major peaks in the TRE histogram

that are P0 apart, which represent clonal segments of integral copy

numbers, and filters out segments that do not belong to any major

peak, which are classified as subclonal segments (Fig. 1). TRE and

NMAF data of clonal segments from major peaks are then used

to calculate the BIC score. The search range of P is ½P0 � 2� dP;P0

þ2� dP� in step of 1�10�4, where dP is the variance of P0 estimated

by autocorrelation analysis.

The search range for NTRE Q are the TRE values of all the

major peaks identified through the autocorrelation analysis. The

major peaks correspond to clonal segments of integral copy num-

bers. Without knowing which one corresponds to clonal segments of

copy number two, we include all of them in the search range of Q.

Once the search ranges of P and Q are obtained, we employ a

grid search strategy to find optimal bP; bQ� �
. After finding optimal bP

and bQ, Accurity converts them to tumor purity and ploidy estimatesbc and bj.

2.9 Generate in silico tumor normal sequencing data
To compare Accurity with ABSOLUTE, and CNAnorm, we gener-

ated in silico tumor-normal WGS data using NGS simulation soft-

ware Eagle (https://github.com/sequencing/EAGLE) at three

coverage settings: high coverage (30�), low coverage (5�) and high

coverage (30�) with two cancer subclones. For each coverage set-

ting, we simulated three CNA profiles: focal CNAs of length 5MB,

mixture of focal and chromosomal (whole-chromosome) CNAs, and

mixture of focal, chromosomal, and WGD CNAs. In WGD simula-

tion, we randomly choose 10MB genomic segments that in total

cover about half of the genome and set their copy numbers at two,

and the rest of genome at three. We used 1.5 million heterozygous

SNPs from the 1000Genome project as HGSNVs in all simulations

unless otherwise stated. For each coverage and CNA setting, we gen-

erated nine samples with purity ranging from 10 to 90%.

Additionally, we generated nine 10� tumor sequencing data

with purity from 10 to 90% by mixing different amounts of

HCC1187 cell line data with its matched normal data. The Illumina

whole genome sequencing data of the tumor HCC1187 and its

matched normal HCC1187BL cell lines was downloaded from

Illumina BaseSpace (https://basespace.illumina.com). HCC1187 is

at 104� coverage and HCC1187BL is at 54� coverage. We first

downsampled the matched normal to generate a normal sample at

10�. By mixing different amounts of reads from the pure tumor

sample (HCC1187) and the normal sample, a series of mixed tumor

samples were created at 10� coverage with 10, 20, 30, 40, 50, 60,

70, 80 and 90% of tumor DNA.
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3 Results

3.1 Evaluation of Accurity on in silico data
We tested Accurity in a wide spectrum of simulation settings which

cover three different types of SCNAs: focal amplifications and dele-

tions, chromosome-level amplifications and deletions, and whole-

genome duplication events (WGD or polyploidy), and two levels of

sequencing coverage: 30� (high-coverage) and 5� (low-coverage).

Further details are in Methods section. Figure 3 shows that Accurity

estimates are highly concordant with the true values in all scenarios.

The mean squared errors (MSEs) between estimates and the true val-

ues are 0.01 in the high-coverage single-clone and two-clone simula-

tion settings (Fig. 3A and C). This showed that Accurity successfully

distinguished clonal regions from subclonal regions. In the low-

coverage setting, Accurity deteriorates but manages to produce re-

spectable estimates with an MSE of 0.041 (Fig. 3B). Accurity had

equally good results with different types of SCNAs, indicating that it

is highly robust to different levels of disruption to a cancer genome

(Fig. 4). Accurity has also performed well on nine pairs of mixed

HCC1187 cell line data (Supplementary Fig. S7).

We also ran ABSOLUTE (Carter et al., 2012), ABSOLUTE_CNV

(ABSOLUTE without using karyotype prior information) and

CNAnorm (Gusnanto et al., 2012) on the single-clone high-coverage

in silico WGS data to estimate tumor purity and ploidy (Fig. 4).

ABSOLUTE performed poorly if no WGD event is introduced to the

cancer genome, which suggests that ABSOLUTE was designed for big

SCNA events such as WGDs. For several ABSOLUTE-low-

performing samples in Figure 4A and B, ABSOLUTE_CNV had

slightly better results than ABSOLUTE, suggesting that incorporating

extra karyotype information could adversely affect tumor purity infer-

ence when only focal or chromosomal SCNAs disrupt a cancer gen-

ome. CNAnorm performed poorly in most cases, indicating that read

count data alone is not sufficient for accurate tumor purity and ploidy

inference.

For ploidy inference, Accurity estimates were consistently within

10% of the true ploidy level in all settings. Ploidy estimates by

ABSOLUTE were often much higher than the truth. It also tended to

predict many false WGD events. It predicted 14 WGD events out of

17 WGD-free samples, which translates to a false positive rate of

82.3%. We suspect the lack of a robust model selection criterion

such as BIC causes ABSOLUTE to fit data with models more com-

plex than the truth and hence the very high rate of WGD false posi-

tives (further discussed in Methods). Overall, utilizing a greater

amount of information from both SCNAs and HGSNVs and robust

modelling enables Accurity to outperform other methods in tumor

purity and ploidy inference.

3.2 Purity and ploidy estimates for TCGA samples

by Accurity
We applied Accurity to 172 pairs of TCGA tumor-normal samples.

For 61 samples, the TRE histogram were so noisy that no valid

period could be detected by Accurity. As a result, Accurity suc-

ceeded for 111 samples, with 32 high-coverage (coverage>10), 49

medium coverage (5–10), 30 in low coverage (<5). We compared

Accurity estimates with those of ABSOLUTE, ESTIMATE and

LUMP, as reported in Aran et al. (2015) (Supplementary Table S1).

The overall performance of Accurity (spearman correlation q¼0.328

n¼111) (Fig. 5) is on par with ABSOLUTE (q¼0.368 n¼153,

q¼0.315 if restricted to the 111 samples that Accurity succeeded in).

Both outperformed ESTIMATE and LUMP substantially.

There is a performance decline for Accurity once coverage is below

10. In high coverage (coverage>10) samples (Supplementary Table

S2), Accurity is on par with ABSOLUTE, outperforming the other

two. In lower-coverage (<10) samples, the Accurity performance

declined. With coverage 5–10, Accurity (q¼0.187) did not compare

Fig. 3. Performance of Accurity on (A) single-clone high-coverage 30�, (B)

single-clone low-coverage 5�, (C) two-clone 30�. FOCAL: focal amplifications

and deletions. CHR: whole-chromosome amplifications and deletions. WGD:

whole genome duplications

Fig. 4. Comparison of true and estimated tumor purity by Accurity,

ABSOLUTE, ABSOLUTE_CNV and CNAnorm on a simulated tumor sample

(single-clone, 30� coverage) and its matching normal sample. ABSOLUTE es-

timates purity by combining the SCNA data with a predefined karyotype prior

distribution (default option). ABSOLUTE_CNV estimates purity from SCNA

data alone. The diagonal straight line indicates Estimated purity¼True purity.

(A) Only focal SCNAs were present. (B) Focal and chromosomal SCNAs were

present. (C) Focal and chromosomal SCNAs and WGDs were present
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favorably with the other methods. With coverage below 5, Accurity

performed similarly as coverage 5–10, with slight improvement,

(q¼0.291) and outperformed the other three by a big margin since

ABSOLUTE, ESTIMATE and LUMP all performed quite poorly.

We further confirmed the dependency of Accurity’s performance

on coverage using more simulation data (Supplementary Fig. S8).

The deviation of the Accurity estimate from the true purity level

increased to more than 0.1 once coverage is below 10. Although the

Accurity performance declined in samples of lower coverage (<10),

its performance in respectable, esp. in samples of coverage below 5.

This validates our idea of leveraging the periodicity in the TRE

histogram to estimate purity. As long as a clear period in TRE histo-

gram can be detected, Accurity can produce a reasonable estimate.

3.3 Enhanced SCNA detection after accounting for

purity and ploidy
Each Gaussian distribution in the first level of the Accurity HGM

model corresponds to a certain copy number. Once Accurity infers

the best tumor purity and ploidy estimates, the copy number of each

segment is determined through its peak membership in Figure 2, in

which every peak corresponds to a copy number. This is by no

means a perfect solution. A complete probabilistic model for copy

number assignments is lacking. We use an example (Fig. 6) to illus-

trate the potential power of Accurity in calling copy numbers.

The ability to incorporate tumor purity and ploidy in calling

SCNAs gives Accurity an advantage over purity-ploidy-agnostic

CNA callers that effectively assume tumor purity to be 100% and

tumor ploidy close to 2. The advantage of Accurity is especially clear

in analyzing tumor samples of low purity or high ploidy. Figure 6 is

a comparison of copy number profiles generated by a widely used

software VarScan (Koboldt et al., 2012) and Accurity, using a mixed

HCC1187 sample (Methods). The SKY (spectral karyotyping) result

of HCC1187 (Fig. 6A) is regarded as the ground truth showing that

chromosome 10 contains three segments of copy number 2, 3 and 5,

respectively. SKY also determines HCC1187 to be a triploid (ploidy

close to 3). In an unmixed (purity¼100%) sample (Fig. 6C)

VarScan failed to call copy number in some segments but the overall

picture is good. It correctly inferred the greater signal separation be-

tween copy number 3 and 5 than the separation between 2 and 3.

However, its signal/noise separation completely collapsed in a 40%

mixed HCC1187 sample (Fig. 6D). Accurity, on the other hand,

produced the same copy number profile on a 40% mixed HCC1187

(Fig. 6B) as that on the unmixed HCC1187. It also infers the ploidy

of HCC1187 to be around 2.67. Even with its good signal/noise sep-

aration in the unmixed HCC1187, VarScan has difficulty in trans-

lating log2-ratio to copy numbers because the elevated ploidy

(�2.67) of HCC1187 moved the usual baseline (copy number¼2)

log2-ratio away from 0 to below 0 in this case (Fig. 6C). By compre-

hensively modelling both tumor purity and ploidy, Accurity signifi-

cantly increased the signal/noise gap between different copy

numbers and was able to call more SCNAs (Fig. 6B).

3.4 Implementation and performance
Accurity is implemented in Cþþ and RUST and can be built for vir-

tually all Linux distributions. In theory, it can be compiled and run

on the Windows and Mac platforms but we have not tested.

Average runtime of Accurity is about 45 min for a 5� tumor/normal

matched pair; about three hours for a 30� tumor/normal matched

pair on a single core of Intel(R) Xeon(R) CPU E5-2670 v3 @

2.30 GHz; with a peak RAM consumption of under 4 GB. Owing to

its Cþþ/RUST implementation, Accurity is faster than tested meth-

ods and occupies less memory.

We provided all methods with the same tumor-normal pair of

bam files. We ran all programs with default parameters (versions as

downloaded on August 15, 2016) and the same computational en-

vironment as stated above.

4 Discussion

In this article, we describe Accurity, an accurate, fast and fully auto-

mated method that infers tumor purity and ploidy from tumor-normal

WGS data. Accurity is accurate because its HGM model is based on

the most up-to-date knowledge about cancer biology, i.e. IRH, and

encompasses SCNAs and HGSNVs, both highly abundant in a tumor

sample. The second factor contributing to its accuracy is its adoption

of noise reduction techniques from the signal processing field and a ro-

bust statistical evaluation criteria, Bayesian Information Criteria.

Accurity is fast because of its two-stage optimal-search algorithm.

During the first guiding stage, Accurity uses auto-correlation analysis

to obtain rough estimates of tumor purity and ploidy. In the second

Fig. 5. Tumor purity estimates by Accurity on TCGA samples versus other

methods. ABSOLUTE q is 0.315 if restricted to the 111 samples that Accurity

succeeded in

Fig. 6. Improvement in power to detect SCNAs. Each panel is a copy number

profile of chromosome 10 for HCC1187. X-axis is the chromosomal position.

Horizontal red bars in each plot are chromosomal segments. Y-axis is copy

number in A and B, log2-ratio in C and D. (A) Copy number profile on

HCC1187 (100% purity) by spectral karyotyping (SKY), regarded as the

ground truth. (B) Copy number profile on 40% purity HCC1187 by Accurity.

(C) Copy number profile on 100% purity HCC1187 by VarScan. (D) Copy num-

ber profile on 40% purity HCC1187 by VarScan
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refining stage, Accurity refines the rough estimates through a rigorous

statistical search. Accurity is fully automated, does not require user in-

put on the likely range of tumor purity and ploidy, and works under a

wide range of settings because the noise reduction and auto-correlation

techniques from the first guiding stage can significantly enhance statis-

tical signals to estimate tumor purity and ploidy, even in noisy low-

coverage settings. Through in silico experiments, we demonstrated its

ability to infer purity and ploidy accurately even at low-purity (10%)

and low-coverage (5�) and its superior performance over two other

methods, ABSOLUTE (Carter et al., 2012) and CNAnorm (Gusnanto

et al., 2012). Analysis on TCGA samples shows that Accurity purity es-

timates are highly concordant with TCGA histological estimates.

Accurity is also fast and finishes analyzing one sample in a few minutes.

For tumor samples harboring so few SCNAs that the periodic

pattern in the coverage data cannot be confidently recognized

through autocorrelation analysis, Accurity would fail to yield purity

and ploidy estimates. Another hypothetical factor that could cause

Accurity to fail is an extremely high level of intra-tumor heterogen-

eity, which can reduce the fraction of clonal segments to such a low

degree that there are not enough clonal segments for Accurity to

infer purity and ploidy.

Many studies have shown that taking tumor purity into account

can impact genomic analyses significantly (Aran et al., 2015;

Yoshihara et al., 2013). We demonstrated that accounting for tumor

purity and ploidy, Accurity has the potential of revealing SCNAs

that are missed by methods assuming 100% tumor purity and near-

normal tumor ploidy, which can benefit the broad cancer research

community to uncover cancer driving amplifications and deletions.

However, its statistical model for copy numbers is incomplete and

comprehensive power comparison is lacking. Our handling of sub-

clonal segments, assigning a copy number averaged across all cancer

subclones, suffices for producing a crude tumor genome-wide copy

number profile, but is far from satisfactory to understand clonal

evolution during tumor progression. Next iteration of Accurity will

focus on disentangling subclonal segments to reconstruct tumor sub-

clonal structure.
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