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Transparent and Flexible Mayan-
Pyramid-based Pressure Sensor 
using Facile-Transferred Indium 
tin Oxide for Bimodal Sensor 
Applications
Minhyun Jung1, Sujaya Kumar Vishwanath1, Jihoon Kim   2, Dae-Kwan Ko3, Myung-Jin Park3, 
Soo-Chul Lim3 & Sanghun Jeon1

Transparent and conducting flexible electrodes have been successfully developed over the last few 
decades due to their potential applications in optoelectronics. However, recent developments in 
smart electronics, such as a direct human-machine interface, health-monitoring devices, motion-
tracking sensors, and artificially electronic skin also require materials with multifunctional properties 
such as transparency, flexibility and good portability. In such devices, there remains room to develop 
transparent and flexible devices such as pressure sensors or temperature sensors. Herein, we 
demonstrate a fully transparent and flexible bimodal sensor using indium tin oxide (ITO), which is 
embedded in a plastic substrate. For the proposed pressure sensor, the embedded ITO is detached from 
its Mayan-pyramid-structured silicon mold by an environmentally friendly method which utilizes water-
soluble sacrificial layers. The Mayan-pyramid-based pressure sensor is capable of six different pressure 
sensations with excellent sensitivity in the range of 100 Pa-10 kPa, high endurance of 105 cycles, 
and good pulse detection and tactile sensing data processing capabilities through machine learning 
(ML) algorithms for different surface textures. A 5 × 5-pixel pressure-temperature-based bimodal 
sensor array with a zigzag-shaped ITO temperature sensor on top of it is also demonstrated without 
a noticeable interface effect. This work demonstrates the potential to develop transparent bimodal 
sensors that can be employed for electronic skin (E-skin) applications.

One form of new electronic technology to monitor human health in the form of smart robots or humanoids with 
a range of different electronic sensors is known as electronic skin, or E-skin. Artificial skin is being developed to 
mimic the functionalities of human skin. Similar to human skin, artificial skin is typically integrated with various 
sensors, such as pressure, humidity, tactile, and temperature sensors. Moreover, these sensors should be flexible 
and soft1–6. However, pressure and temperature sensors, the key components in electronic skin, have been contin-
uously developed and currently have large areas and high sensitivity levels7–12. To utilize pressure sensors, many 
different materials and architectures are used with a range of devices schemes. These include conductive nano-
structures (e.g., nanoparticles, carbon nanotubes, and nanosheets), conducting polymers, and graphene mixed 
with polymeric materials13–16. Pan et al. used a hollow-sphere microstructured resistive pressure sensor with 
conductive polymer films and achieved the highest sensitivity of 137 K Pa−1 13. Tian et al. showed wide working 
range from 0 to nearly 50 kPa with laser-scribed flexible graphene pressure sensors14, and Lee et al. demonstrated 
feasible tunable sensitivity using different microstructured rubber dielectric layers15. Similarly, high-performance 
and flexible temperature sensors for E-skin consisting of different materials were demonstrated11,12,16.
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For practical E-skin, integration with multiple sensors with different sensing mechanisms into a single chip 
must be realized. Few attempts have been made to utilize bimodal or multimodal sensors17–20. In our previous 
reports, we showed that assimilating independent sensors into a single pixel is a convenient tactic by which 
to assess a bimodal sensor7–9. However, doing so requires different material systems to fabricate the different 
sensors. For example, in one study7, we used multiwall carbon nanotubes (MWCNTs) for a pressure sensor and 
PEDOT:PSS and silver nanoparticles (AgNP) for temperature sensors. To avoid the need to prepare multiple 
materials separately, a suitable material is required for a transparent multi-pixel bimodal sensor.

However, less interest has been shown with regard to transparent and conducting metal oxides in flexible 
bimodal sensors due to their requirement of high-temperature processing and their rigidness21,22. Despite the 
rigidness of crystalline ITO, it has several advantages, such as its use of a commercially established process for 
large-area applications, high conductivity, and high transparency23–25. However, the lack of flexibility of ITO is not 
fully utilized in all applications, especial in flexible electronic applications. Instead, these applications use alter-
native materials such as conductive polymers, nanowires (metal oxide, Ag and Cu), and multilayer graphene26–29. 
However, the long-term stability of these materials remains unknown. To overcome the lack of flexibility of inor-
ganic thin metal oxides and ITO, few reports have suggested embedding these inorganic metal oxide materials 
into soft plastic substrates30–32. For example, Kang et al. demonstrated polycrystalline ITO embedded into a trans-
parent polyimide substrate using silver thin film as a sacrificial layer30. Yang et al. embedded a hybrid structure of 
Ag/ITO from copper sacrificial layers into soft polydimethylsiloxane (PDMS)31. Yao et al. transferred ITO/Si into 
PDMS by means of a type of transfer technology32. However, in these cases, harmful chemical etchants were used 
to transfer the required inorganic thin films. An obvious improvement would be an environmentally friendly 
method to transfer all types of inorganic metal oxide materials onto plastic substrates.

In the present work, ITO is detached from a silicon substrate using an environmentally friendly method which 
utilizes water-soluble sacrificial layers. In this case, ITO is deposited by radio-frequency sputtering (RF sputter-
ing) onto water-soluble sacrificial layers and then separated from this substrate using hot water. Using this simple 
technique, we fabricated Mayan-pyramid-shaped ITO which was embedded into PDMS as a piezo-resistive pres-
sure sensor. These pressure sensors show an excellent working range of pressure detection (100 Pa to 10kPa), high 
endurance of 10000 cycles, and rapid response and recovery times of approximately 120 ms and 80 ms, respec-
tively. To realize a bimodal sensor, we employed a temperature sensor vertically on top of the Mayan-pyramid 
pressure sensor, which also allows the bimodal sensor to be transparent and flexible. As noted in our earlier 
reports, with this approach, an external signal is transduced into distinct electric signs, and the noise is reduced 
upon data decoupling when dissimilar physical stimulations are applied at one time. To realize a thermal sen-
sor, we prepared zigzag-patterned ITO using a photolithography technique. It showed sensitivity of −9.08% per 
degree (°C) with a thermal change of 5 °C. Additionally, we demonstrated a 5 × 5 pixel transparent and flexible 
bimodal sensor array by applying both pressure and temperature simultaneously in real time.

Results and Discussion
Transparent triple layer pyramid pressure sensor.  In many reports, microstructure pressure sensors 
are fabricated by the direct deposition of conducting materials onto a PDMS mold7–9,33,34, possibly leading to an 
adhesion problem between the conducting material and the PDMS. In the present work, we embedded ITO into 
PDMS. The ITO acts as a bottom electrode for the pressure sensor. Figure 1 shows a schematic view of the fabri-
cation process used to create the transparent Mayan-pyramidal pressure sensor.

Water-soluble sacrificial layers (sodium chloride (NaCl): 200 nm and germanium (Ge): 50 nm) are deposited 
using a thermal evaporator under a vacuum onto a patterned silicon mold. Subsequently, 250-nm-thick tin-doped 
indium oxide (ITO) is deposited onto these layers by means of RF sputtering. We transferred the ITO onto poly-
dimethylsiloxane (PDMS) by dissolving the sacrificial layers in hot water. Both NaCl and Ge dissolved less than 
15 mins in water at a temperature of 70 °C. Finally, the flexible, transparent and conducting triple layer on the 
Mayan-pyramid-structured ITO is transferred from the rigid silicon mold. This flexible and patterned ITO 
showed transparency which exceeded 80% (as shown in Fig. S1 in the Supporting Information) and sheet resist-
ance up to 2 kΩ/ϒ. We confirmed that there were negligible amounts of Ge and/or NaCl residue on the embedded 
flexible ITO substrate via energy dispersive X-ray spectroscopy measurements, as shown in Fig. S2 (Supporting 
Information). The flexible integrity of the film with the ITO embedded into the PDMS substrate compared to ITO 
film directly deposited onto PDMS was estimated by outer and inner bending and then by measuring the relative 
resistance change R Ro( / ), where R is the resistance change after bending and Ro is the initial resistance.

As shown in Fig. 2a,b, the films with embedded ITO were found to be more stable than those with directly 
deposited ITO according to both the outer and inner bending measurements because less strain is induced on the 
ITO film when it is embedded into the soft PDMS substrate rather than being directly deposited30,35,36. In both 
films, cracks were observed after bending the films by more than 0.5 cm, as shown in Fig. 2c,d. However, the films 
with embedded ITO showed fewer cracks, implying that these films in PDMS can be utilized for pressure sensor 
applications.

Figure 3a depicts the scanning electron microscope (SEM) microstructure of the Mayan-pyramid ITO embed-
ded into the PDMS substrate, which acts as a piezoresistive electrode with ITO-coated PET used as a counter elec-
trode in a pressure sensor. Generally, a piezoresistive sensor works on the principle of a change in the resistance 
caused by an applied force. In other words, when force is applied to the counter electrode or top electrode of the 
pressure sensor, the resistance changes with respect to the bottom electrode due to the deformation of the soft 
PDMS37–39. However, the architecture of the piezoresistive electrode plays an important role in the pressure sens-
ing response33,40,41. The Mayan-pyramid ITO bottom electrode can access six different types of slope responses, 
as shown in Fig. 3b,c. Slope 1 corresponds to the first contact between the counter electrode and the tip of the 
Mayan-pyramid pressure sensor; slope 1 is sharp due to the change in the contact area. At slope 2, the counter 
electrode is in contact with the base of the first layer of the Mayan pyramid and shows a slight saturation current; 
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however, we noted that the current increased at slope 3 because the counter electrode comes into contact with 
the tip of the second layer of the Mayan pyramid. Later we observed similar responses from slopes 4, 5 and 6. In 
addition, we compared the current responses from pressure sensors with single- and double-pyramid structures, 
as shown in Fig. 3c. The sensing mechanism of the triple-layer or Mayan-pyramid structure pressure sensor 
functions depending on changes of the current induced by structural stress. At slope 1, the change in the current 
at the pressure sensor can be simply explained by Ohm’s law, (as shown in Eq. (1)) with the operation voltage (V), 
the contact area between the top and bottom electrode (A), the resistivity (ρ), and the compressed thickness of 
the pyramid structure (d).
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Figure 1.  Schematic of the fabrication process of the transparent conductive substrate for a pressure sensor, and 
schematic images showing each step when transferring the ITO onto the flexible PDMS substrate.
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Therefore, if the operation voltage and resistivity of the coated material are constant, the change in the current 
shows inverse dependency on the compressive stress and elastic modulus, leading to a change in the thickness of 
the PDMS.

The response time is another key factor when evaluating a pressure sensor when low pressure is applied. In this 
case, the Mayan-pyramid-structured sensor showed rapid responses of the rise and fall times of approximately 
130 ms and 80 ms, respectively, as shown in Fig. 3d. In addition, 105 cycles of stable loading and unloading cycles 
were observed under 1k Pa of force, as shown in Fig. 3e, which provides evidence of the excellent reproducibility 
of pressure sensing in the Mayan-pyramid pressure sensor. Moreover, we confirmed the relative current changes 
at different applied pressures ranging from 2 K Pa to 8 K Pa, as shown in Fig. 3f, suggesting the feasibility of the 
device under a wide range of pressures.

Pressure sensor applications.  Human health nursing is one area where pressure sensors can be applied. 
Here, we demonstrated real-time wrist pulse measurements to provide cardiovascular monitoring in cases such 
as atherosclerosis and hypertension. To do this, the sensor is attached to the wrist with the help of polyimide (PI) 
tape, as shown in Fig. 4a. The corresponding wave forms are replotted in Fig. 4b,c. The obtained pulse rate is about 
71 ~72 beats/min. The replotted regular wrist pulse wave represents the blood pressure in the form of a P-wave 
(percussion) and a T-wave (tidal). The D-wave (diastolic or dicrotic) denotes the heart beat and the valleys42,43, 
as shown in Fig. 4c.

Pressure sensor applications.  Human health nursing is one area where pressure sensors can be applied. 
Here, we demonstrated real-time wrist pulse measurements to provide cardiovascular monitoring in cases such 
as atherosclerosis and hypertension. To do this, the sensor is attached to the wrist with the help of polyimide (PI) 
tape, as shown in Fig. 4a. The corresponding wave forms are replotted in Fig. 4b,c, respectively. The obtained pulse 
rate is about 71 ~72 beats/min. The replotted regular wrist pulse wave represents the blood pressure in the form 
of a P-wave (percussion) and a T-wave (tidal). The D-wave (diastolic or dicrotic) denotes the heart beat and the 
valleys42,43, as shown in Fig. 4c. Identification of the material properties is one of the most important cues that 
a robot has successfully interacted with its surroundings or with a human44. Strain gauges and force sensors or 
tactile sensors are used to detect vibrations during object-sensor interaction for material classification purposes. 
Surface recognition usually involves learning through a frequency-domain analysis of vibrations detected by 
an accelerometer with machine learning algorithms, such as the support vector machine (SVM) or a k-nearest 

Figure 2.  Mechanical integrity of the 200 nm ITO film embedded into a PDMS substrate: (a) outer bending 
and (b) inner bending test compared to 200 nm of ITO film deposited on to PDMS. SEM images of Flexible ITO 
embedded in PDMS (c) and deposited on PDMS.
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neighbor (k-NN) algorithm45. Recently, deep learning has been used for surface material classification using an 
accelerometer and visual information when a rigid tool slides on a surface46. Deep-learning methods such as 
the convolutional neural network and recurrent neural network (RNN) are useful for increasing the classifica-
tion accuracy47. In this research, we demonstrated texture sensing and classification using the Mayan-pyramid 
sensor with the help of deep learning. From current data captured as the sensor slid across the texture, a LSTM 
(long-short time memory)48,49 network, which is an artificial neural network that recognize patterns in data in the 
form of time series data, was used for texture classification without a frequency domain analysis. Figure 5 shows 

Figure 3.  Overview of the flexible and transparent Maya pyramid pressure sensor: (a) SEM image of the Maya 
pyramid structure ITO. Inset shows a zoomed-in image. The scale bar is 1 mm. (b) Schematic image of each 
Maya pyramid structure pressure sensor. (c) Electrical characteristics of the pressure sensor as a function of the 
applied pressure with various layer structures. (d) Response times of the pressure sensor. (e) Endurance test 
results of the pressure sensor under 1k Pa. (f) Reproducibility of the electrical properties at various pressures.

Figure 4.  Electrical characteristics of the Maya pyramid pressure sensor: (a) image of the measurement setup, (b) 
data from the blood pressure monitoring assessment using the pressure sensor, and (c) a replot of a single pulse.
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surface SEM images of the materials (rough sandpaper, fabric, rough side of a corrugated board, smooth side of a 
corrugated board, bark, leaf, smooth sandpaper, glass, paper) used here for texture classification in a tactile sens-
ing test. Figure 6 shows the electric current when rubbing a texture with the developed pressure sensor as well as 
the structure of the proposed network for texture classification.

Table 1 summarizes the detailed architecture of the proposed network. The network inputs are the electrical 
information, which is given as the input to the LSTM structure using a total of ten instances of sequentially sam-
pled data. Texture classification outcomes are obtained using the output of two layer-based LSTMs as the input 
of the FC (fully connected) layer and SoftMax47. The total number of collected signals is 32544 for each sample 
for training and for the test. We utilized ten-fold cross validation with the collected database. The final output 
is measured by averaging the outputs from the ten-fold cross-validation set. Figure 7 shows a confusion matrix 
of the texture classification outcome using architecture in which the recognition results are in general good, as 
indicated by the clear diagonal. An overall classification accuracy rate of 98.1% is achieved when the sensor is 
rubbed on nine different textures. In contrast to previous research, by sensing only tactile information without 
using visual information, it was possible to classify textures easily and with only a light computational burden 

Figure 5.  Surface SEM images of different textures for tactile sensing.

Figure 6.  Texture Classification architecture using LSTM and FC layered of neural network from electric signal 
during rubbing on the texture with the triple layer pyramid structure pressure sensor.
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due to the small network size. When a tactile sensor is used for robot interaction, it is expected that a plurality of 
tactile sensors can be attached to various places and that the sensing environment will be similar to human tactile 
sensing with a light computational burden.

ITO temperature sensor.  To avoid the requirement of different materials to mimic a transparent bimodal 
sensor, we utilized ITO as a temperature sensor with a zigzag shape using lithography. A schematic view of the 
ITO temperature sensor is shown in Fig. 8a, and the SEM microstructure is depicted in Fig. 8b. Similar to many 
semiconductors, ITO also shows a negative temperature coefficient (NTC) due to the availability of more free 
carriers upon an increase of the temperature50–52. The temperature dependence of the relative resistance change 
for the zigzag-shaped ITO is shown in Fig. 8c, indicating identical and negative resistance dependence on the 
temperature (dρ/dT < 0) regardless of any cooling or heating processes, indicative of semiconductor behavior. 
The temperature-dependent electrical properties of the zigzag ITO are depicted in Fig. 8d. The sensitivity of the 
temperature sensor is approximately −9 °C, making it feasible for use as a temperature sensor for transparent 
bimodal sensors.

Transparent bimodal sensor.  A schematic view of the transparent bimodal sensor with the 5 × 5 array is 
shown in Fig. 9a. The electrical interference physiognomies are demonstrated with the help of two small magnets 
and a hot water droplet. The bimodal sensor only responds to pressure when the magnets are placed on the array 
due to the negligible temperature gradient between the temperature sensor and the magnets. The corresponding 
electrical curves are shown in Fig. 9b. When a hot water droplet is dropped onto the sensor array, we observed 
both the pressure and temperature responses, as shown in Fig. 9c. We also undertook real-time mapping from 
both the magnet and the water drop on the bimodal sensor array, as shown in Fig. 9d,e, respectively. The above 
outcomes suggest that our transparent bimodal sensor is applicable for use in electronic skin, or E-skin, which 
requires multi-functional sensing.

Conclusion
In summary, we present an ITO-based transparent bimodal sensor for E-skin applications which relies on 
a combination of a triple-layer or Mayan-pyramid structure as a pressure sensor and a zigzag-shaped trans-
parent temperature sensor. An environmentally friendly method is adopted to fabricate the flexible ITO 
Mayan-pyramid-based pressure sensor using water-soluble germanium and NaCl as sacrificial layers. This 

Texture Classification Analysis

Layer name Layer description

Input 9 Mini-batch, 10 Sequence, 1 Channel values

RNN (LSTM Layer 1) Input = 1, Output = 256, Activation = tanh

RNN (LSTM Layer 2) Input = 256, Output = 256, Activation = tanh, Dropout = 0.7

FC layer 1 Input = 512, Output = 512, Activation = Leaky_relu (alpha 0.2), Dropout = 0.7

FC layer 2 Input = 512, Output = 1024, Activation = Leaky_relu (alpha 0.2)

Softmax Input = 1024, Output = 9

Table 1.  Proposed Network Configuration.

Figure 7.  Confusion matrix of the texture classification results.
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pressure sensor has a wide range of 100 Pa to 10 K Pa for pressure sensing with a quick response time of 80 ms, 
making it suitable for human health care applications. Tactile sensing is demonstrated from texture classifications 
of different materials using the output of two-layer-based long-short time memory (LSTM) as the input of the FC 
(fully connected) layer and SoftMax machine learning (ML) algorithms. In addition, a 5 × 5 pixel bimodal sensor 
was verified by vertically staging both the pressure sensor array and temperature sensor array using transparent 
ITO to produce a transparent bimodal sensor for application to E-skin for processes on a larger scale.

Methods
Fabrication of a silicon mold for maya pyramids.  First, a four-inch thermally oxidized silicon wafer 
(SiO2, 300 nm/P-type boron-doped silicon) with the <100> crystal structure was cleaned by sonication in ace-
tone, ethyl alcohol, and deionized (D.I.) water for five minutes each. Subsequently, negative photoresist (PR) 
(DNR-L300-30, Dongjin Semichem Co. Ltd.) was spin-coated onto a Si wafer at 1200 rpm for two minutes. Next, 
square patterns 500 µm long were patterned with photolithography. To etch the silicon oxide (SiO2) layer on 
the silicon wafer, it was wet etched in buffered oxide etchant (BOE). The wafer was then cleaned to remove the 
remaining PR, after which 44:56 wt% of potassium hydroxide (KOH) in the form of an aqueous solution was used 
to etch the silicon wafer. Due to the natural characteristics of <100> crystalline silicon, it was etched with a neg-
ative pyramid structure at 90 degrees with the KOH solution for two hours. Before being fully etched in the form 
of a pointed pyramid, the wafer was washed with D.I. water and a SiO2 layer 300 nm thick was deposited with a 
furnace in a water vapor ambient condition. Lastly, we repeated the previous steps two times to fabricate square 
patterns with dimensions of 300 µm by 100 µm (length). As the size of the square pattern for the formation of the 
pyramid structure became smaller, a pyramid mold with a multilayer structure could be manufactured.

Fabrication of the bimodal sensor.  500 nm of NaCl and 200 nm of Ge were deposited on the 
Mayan-pyramid-structured silicon mold with a thermal evaporator as a sacrificial layer which could be dissolved 
in water. Next, an indium tin oxide (ITO) conductive layer was deposited at 200 nm. Subsequently, PDMS was 
poured onto the silicon mold. To cure the PDMS, we used an oven at 60 °C for 30 minutes, and in order to detach 
the PDMS from the silicon mold, we used hot water as an etching solution for the NaCl/Ge sacrificial layer. After 
15 mins of etching, the sacrificial layer was fully removed and the ITO-embedded PDMS was detached from the 
prepared pyramidal-structured Si-mold. This ITO-embedded PDMS in the form of a pyramid structure will serve 
as the bottom electrode of the pressure sensor in the bimodal sensor. For the counter electrode of the pressure 

Figure 8.  Electrical characteristics of a transparent temperature sensor: (a) schematic of the temperature sensor 
and (b) SEM image of the temperature sensor array. The inset shows a single temperature sensor. The scale bar  
is 2.5 mm. (c) Electrical hysteresis upon heating and cooling on the relative resistance change of ITO, and  
(d) negative temperature coefficient of the resistance (NTCR) with ITO for the temperature sensor.
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sensor, we used ITO-deposited PET. At the same time, on the backside of the counter electrode, we fabricated an 
ITO temperature sensor with a zigzag pattern through photolithography.

Characterization.  The electrical characteristics of the transparent bimodal sensor were assessed using a uni-
versal measured probe system (Tera Leader UMP-1000). The measurement of the pressure sensor was evaluated 
using a custom-built pressure-application system. While a wide range of pressures was applied, from 500 Pa to 
11 kPa, the electrical characteristics were assessed with a semiconductor parameter analyzer (Agilent 4156 C). At 
the same time, a parameter analyzer (Keithley 4200A-SCS) was used to measure the resistance change of the ITO 
temperature sensor. Because the electrical signals of the pressure sensor and the temperature sensor are separate 
from each other, we could ignore the possibility of mutual interference effects. Surface profiles for a detailed 
material analysis of the Mayan-pyramid structure and the zigzag temperature sensor pattern were observed by 
field-emission scanning electron microscopy (Tescan MIRA3).
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