A meta-analysis of single base-pair substitutions in translational termination codons ('nonstop' mutations) that cause human inherited disease

Stephen E. Hamby, ${ }^{\prime}$ Nick S.T. Thomas, ${ }^{2}$ David N. Cooper ${ }^{2}$ and Nadia Chuzhanova ${ }^{*}$
'School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
${ }^{2}$ Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
*Correspondence to: Tel: +44 (0) 0115848 8304; E-mail: nadia.chuzhanova@ntu.ac.uk

Date received (in revised form): 2nd March 2011

Abstract

'Nonstop' mutations are single base-pair substitutions that occur within translational termination (stop) codons and which can lead to the continued and inappropriate translation of the mRNA into the 3^{\prime}-untranslated region. We have performed a meta-analysis of the 119 nonstop mutations (in 87 different genes) known to cause human inherited disease, examining the sequence context of the mutated stop codons and the average distance to the next alternative in-frame stop codon downstream, in comparison with their counterparts from control (nonmutated) gene sequences. A paucity of alternative in-frame stop codons was noted in the immediate vicinity ($0-49$ nucleotides downstream) of the mutated stop codons as compared with their control counterparts ($p=7.81 \times 10^{-4}$). This implies that at least some nonstop mutations with alternative stop codons in close proximity will not have come to clinical attention, possibly because they will have given rise to stable mRNAs (not subject to nonstop mRNA decay) that are translatable into proteins of near-normal length and biological function. A significant excess of downstream in-frame stop codons was, however, noted in the range 150-199 nucleotides from the mutated stop codon $\left(p=8.55 \times 10^{-4}\right)$. We speculate that recruitment of an alternative stop codon at greater distance from the mutated stop codon may trigger nonstop mRNA decay, thereby decreasing the amount of protein product and yielding a readily discernible clinical phenotype. Confirmation or otherwise of this postulate must await the emergence of a clearer understanding of the mechanism of nonstop mRNA decay in mammalian cells.

Keywords: human inherited disease, stop codon, 3^{\prime}-untranslated region, nonstop mutation, nonstop mRNA decay

Introduction

There are currently in excess of 60,000 missense and nonsense mutations (in nearly 4,000 different genes) listed in the Human Gene Mutation Database (HGMD) that are known to cause, or to be associated with, human inherited disease. ${ }^{1}$ In addition, there are 119 examples of mutations (in 87 different genes) that occur within stop codons, a category of mutation which therefore constitutes $\sim 0.2 \%$ per
cent of codon-changing mutations. ${ }^{1}$ Such lesions have been termed 'nonstop', 'nostop' or 'readthrough' mutations on the basis that the loss of the normal translational termination (stop) codon is likely to lead to continued translation of the mRNA further downstream into the 3^{\prime}-untranslated region (UTR).

Although many authors tacitly assume that the normal open reading frame will simply be extended
until the next in-frame stop codon is encountered, too few human nonstop mutations have so far been characterised to allow any general conclusions to be drawn as to their likely phenotypic consequences at either the mRNA or the protein level. In three reported cases, however (namely, those nonstop mutations in the gene encoding ribosomal protein S19 [RPS19], causing Diamond-Blackfan anaemia, ${ }^{2}$ the F10 gene causing factor X deficiency ${ }^{3}$ and the foxhead box E3 [FOXE3] gene causing anterior segment dysgenesis ${ }^{4}$), the levels of the mutant mRNA transcripts were found to be dramatically lower than those of their wild-type counterparts. By contrast, the mRNA level associated with a nonstop mutation in the 3-beta-hydroxy-delta-5-steroid dehyrogenase (HSD3B2) gene causing adrenal hyperplasia was found to be near normal, although both HSD3B2 enzymatic activity and antigen (associated with a predicted 467 amino-acid protein, extended by 95 residues beyond the wild-type length) were found to be dramatically reduced. ${ }^{5}$ Similarly, in the case of a nonstop mutation in the thymidine phosphorylase (TYMP) gene responsible for mitochondrial neurogastrointestinal encephalomyopathy, the mRNA level was not found to be reduced, even although the thymine phosphorylase protein product it encoded was undetectable. ${ }^{6}$

In yeast, nonstop mRNAs generated from mRNAs lacking translational termination codons are recognised, by the protein Ski7, on ribosomes that have become stalled at the 3^{\prime} ends of the $m R N A s$; these RNAs are then targeted for exosome-mediated degradation. ${ }^{7-9}$ While this process of 'nonstop mRNA decay' is fairly effective at removing nonstop mRNAs, any protein products generated by translation of residual nonstop mRNAs are degraded by the proteasome. ${ }^{10,11}$ Although few such studies have so far been attempted in mammalian cells, the expression level of nonstop mRNAs generally appears unaltered while ribosome stalling at the 3^{\prime} end of the elongated nonstop mRNA blocks translation before the completion of synthesis of full-length polypeptides. ${ }^{12-14}$

Precisely how nonstop mRNA decay impacts upon naturally occurring human nonstop mutations
is unknown but, as is clear from the five disease-associated examples mentioned above, the evidence acquired to date suggests that this may be a gene- and mutation-dependent process. ${ }^{15}$ Thus, although not uncommon, remarkably little is as yet known about the nature and consequences of this type of mutation. In this paper, we report a first meta-analysis of naturally occurring nonstop mutations causing human inherited disease. With a view to exploring the various possible factors that could impact upon the likelihood of a given nonstop mutation coming to clinical attention, we have performed an analysis of the sequence context of the mutated stop codons and the average distance to the next in-frame downstream stop codon in comparison with control (non-mutated) gene sequences.

Methods

Mutation and control datasets

A total of 119 naturally occurring nonstop mutations from 87 human genes (Supplementary Table S1) were identified from the HGMD. ${ }^{1}$ The majority of these nonstop mutations were single examples identified in specific genes but 18 genes harboured a total of 50 examples of this type of lesion. Since the multiple inclusion of identical sequences flanking mutated stop codons would have introduced considerable bias into the subsequent analysis, only one mutation per gene was considered in the analysis of the sequence context.

A control dataset was established which comprised 1,692 genes listed in the HGMD (for which both coding and 3^{\prime}-UTRs were obtainable from Ensembl [Build 37] but for which no termination codon [nonstop] mutations have so far been recorded). Data from the Transterm database (http://uther.otago.ac.nz/Transterm.html), ${ }^{16}$ representing a total of 29,210 stop codons associated with annotated human genes, were used as genome-wide controls.

Analysis of nonstop mutations

The relative frequency of each type of stop codon (ie TAG, TAA and TGA) in the mutated (nonstop
mutation-bearing) sequences and non-mutated wild-type control gene sequences was assessed. Stop codons harbouring single and multiple mutations were examined separately.

To detect any bias in the pattern of stop codon mutability, the mutability of the dinucleotides within a pentanucleotide spanning the stop codon and including one flanking nucleotide on either side was assessed. The number of mutations occurring in each of the 12 possible dinucleotides (note that four dinucleotides [CC, CA, CG and TC] cannot occur in conjunction with any stop codonspanning pentanucleotide and were therefore omitted) was counted. In the HGMD control dataset, one nucleotide position within each stop codon was randomly mutated and the numbers of mutations in each possible dinucleotide were then counted. Statistical significance was determined using Fisher's exact test with a Bonferroni correction being applied to allow for multiple testing.

Since the identity of the nucleotides immediately flanking the stop codon may influence the susceptibility of the stop codon to mutation, the frequencies of each DNA base in each of the six positions upstream and downstream of the normally used stop codon were obtained for both the mutated sequences and the controls. The expected frequency E of the DNA bases at each position was calculated based on the probability of observing this nucleotide in the HGMD control sequences:

$$
E_{i j}=\frac{F_{i j} N_{m}}{N_{c}}
$$

where $E_{i j}$ is the expected frequency of the base $I=$ $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ at position $j, F_{i j}$ is the observed frequency of base i at position j in the HGMD control dataset, N_{m} is the total number of mutated sequences and N_{c} is the number of sequences in the HGMD control dataset. Under the assumption that the data follow a binomial distribution, we considered that an increase or decrease in the observed frequency of a particular nucleotide in a specified position was statistically significant if the corresponding p value was <0.01. In addition, to investigate whether any particular stop codon (ie TGA,

TAG or TAA) was associated with any specific flanking nucleotides, we placed both the mutated and control sequences into separate datasets for each of the three stop codons and repeated the above analysis for each of the new datasets.

Determining the distance to the next downstream in-frame stop codon

The distance to the next downstream stop codon in the required reading frame is likely to determine the length of any extended protein product. For each mutated (nonstop mutation-bearing) DNA sequence and each sequence in the HGMD control dataset, we therefore determined the distance to the next in-frame stop codon downstream. Sequences in the HGMD control dataset, for which the next downstream stop codon was beyond the 3^{\prime}-UTR sequence available from Ensembl, were not used in this analysis. Distances between 0 and 500 base pairs (bp) from the original stop codon were divided into 'bins', each 50 bp long, the final bin containing all sequences where the distance was greater than 500 bp . The number of sequences which fell into each bin was recorded for both the mutated sequences and the HGMD control sequences. The same procedure was repeated for those sequences with single mutations and for those sequences harbouring two or more mutations. To assess the statistical significance of our findings, we employed Fisher's exact test using a Bonferroni correction to allow for multiple testing. p values of <0.05 were considered to be statistically significant.

Using the same method as for the original stop codons, we also investigated the frequency of occurrence of specific nucleotides surrounding the next in-frame stop codon downstream. It is possible that at least a proportion of these downstream in-frame stop codons are associated with naturally occurring splice isoforms of the gene, ${ }^{17}$ and might therefore possess comparable sequence characteristics to the stop codons involved in the mutational events. The flanking sequence may also affect the likelihood of a mutation coming to clinical attention.

Results and discussion

Relative frequency of stop codon involvement in nonstop mutation

We have performed a meta-analysis of the 119 nonstop mutations (in 87 different genes) known to cause human inherited disease (Supplementary Table S1) and recorded in the HGMD. ${ }^{1}$ HGMD is a comprehensive collection of germline mutations causing (or associated with) human inherited disease and is an invaluable source of data for meta-analyses of human gene mutations.

The termination of synthesis of every human protein is effected by one of three stop codons, TAG, TAA and TGA, listed in increasing order of usage in human genes. We posed the question as to whether one of these stop codons might be more susceptible to mutation, or alternatively might be more likely to come to clinical attention once mutated, than the others. We noted that a majority of the nonstop mutations (57 per cent) in our dataset occurred within TGA codons (Table 1). Since 49.4 per cent and 48.6 per cent of stop codons in the HGMD control gene dataset and human genome dataset, respectively, were of this type, however, this finding did not attain statistical significance (Table 1; p values 0.107 and 0.066 , respectively).

The proportion of mutations in the other two types of stop codon was also not significantly different from the corresponding proportions in the set of HGMD control gene sequences (p values, 0.674 for TAA and 0.201 for TAG) and in the human genome at large (p values, 0.753 for TAA and 0.88 for TAG).

The above notwithstanding, we speculated whether TAA codons flanked on the 3^{\prime} side by A might be hypermutable, since this would in effect constitute a short polyadenine run. It has been reported that bases adjacent to mononucleotide runs in the human genome are characterised by an increased single nucleotide polymorphism frequency. ${ }^{18}$ We therefore assessed whether the nucleotide A following the TAA stop codon might influence the mutability of this codon. In agreement with our postulate, the presence of an A adjacent to a TAA stop codon was indeed found to increase the mutability of this codon by 1.4 fold ($p=0.016$).

Genes exhibiting an abundance of missense/ nonsense mutations do not harbour a disproportionate number of nonstop mutations

As we have noted above, a total of 18 human genes are known to harbour multiple nonstop mutations. We therefore sought to determine whether this was simply due to a particularly large number of mutations having been reported from these genes. At the time this analysis was performed (October 2010), the HGMD contained mutation data from a total of 2,249 human genes, for which a total of 55,813 missense or nonsense mutations had been reported. No correlation was found, however, between the probability of finding multiple nonstop mutations in a given gene and the total number of missense and nonsense mutations reported for that gene (Pearson's correlation $-0.108 ; p=0.67$). Thus, for example, the largest

Table I. The proportion of nonstop mutations harboured by each type of stop codon in mutated gene sequences, HGMD control gene sequences and the human genome at large

Stop codon type	Proportion of stop codons harbouring nonstop mutations causing human genetic disease $(\%)^{\text {a }}$	Proportion of stop codons in HGMD control gene sequences $(\%)^{\mathbf{b}}$	Estimated proportion (number) of stop codons in the human genome (\%)
TAA	26.05	28.60	$27.8(8106)$
TAG	16.81	21.99	$23.6(6901)$
TGA	57.14	49.40	$48.6(14203)$

[^0]number of missense/nonsense mutations was reported from the F8 gene $(1,217)$ but only one nonstop F8 mutation has been reported. Conversely, no missense/nonsense mutations have been recorded for the $H R$ gene, even though two nonstop mutations have been identified. Hence we may conclude that the observation that some genes harbour multiple nonstop mutations is unrelated to the number of reported missense and nonsense mutations for those genes.

Gene ontology analysis for genes harbouring nonstop mutations

The Database for Annotation, Visualization and Integrated Discovery (DAVID; http://david.abcc. ncifcrf.gov/) was used to identify enriched biological themes within the group of 87 genes harbouring either multiple or single nonstop mutations. ${ }^{19} \mathrm{~A}$ total of 13 terms were found to be significantly enriched ($p<0.001$, without correction for multiple testing) for single mutations (see Supplementary Table S2). One of the most significantly enriched terms was 'oxidoreductase' ($p=$ 0.005 after Bonferroni correction), which was associated with 11 of the 67 nonstop mutationharbouring genes identified in the DAVID database. ${ }^{20}$ Six terms were found to be significantly enriched ($p<0.001$ without correction for multiple testing) for genes harbouring multiple nonstop mutations (Supplementary Table S3); however, no significant bias in gene function was noted for these genes after correction for multiple testing. A search using all nonstop mutation-containing genes revealed an association with the protein information resource (PIR) term 'deafness' ($p=0.0248$), corresponding to six of 86 sequences, although the biological relevance of this observation remains unclear.

Mutability of the DNA sequence encompassing the mutated stop codons

The dinucleotide mutabilities within the pentanucleotides flanking the naturally mutated stop codons and the randomly mutated HGMD control stop codons were calculated in order to determine whether there was any bias in the mutability of the
various dinucleotides that occur within the three types of stop codon, taking the flanking nucleotides into consideration. A strong positive correlation was noted between the distributions of mutationharbouring dinucleotides and randomly simulated mutations within the stop codons of HGMD control sequences (Pearson's correlation $r=0.975$; $p=8.04 \times 10^{-8}$) with respect to the frequencies of 12 dinucleotides. No significant differences were found in dinucleotide-wise comparisons (Table 2), however, indicating that there is no evidence for a nearest nucleotide-directed bias in stop codon mutability.

Sequence context around stop codons that have been subject to nonstop mutations

In eukaryotic cells, the translational efficiency and readthrough potential of the three different stop

Table 2. The proportion of mutations found within dinucleotides in the mutated stop codon-flanking pentanucleotides as compared with randomly generated HGMD controls

Dinucleotide	Occurrence of nonstop mutations in mutated sequence dataset (\%)	Occurrence of random mutations within HGMD control sequences (\%)	p value (after correction for multiple testing)
AA	$25(21.00)$	$348(20.57)$	0.907
AC	$6(5.04)$	$71(4.196)$	0.636
AG	$18(15.13)$	$303(17.91)$	0.534
AT	$16(13.44)$	$238(14.066)$	1.0
CT	$23(19.33)$	$318(18.79)$	0.903
GG	$32(0.84)$	$35(2.07)$	NA*
GA	$1(0.84)$	$224(25.06)$	0.663
GC	$21(17.65)$	$259(15.31)$	0.511
GT	$10(8.4)$	$155(9.16)$	1.0
TT	$36(30.25)$	$606(35.82)$	0.235
TA	$49(41.18)$	$602(35.58)$	0.236
TG			

*Sample size of mutated sequences too small to generate p values. (Note that four dinucleotides (CC, CA, CG and TC) cannot occur in conjunction with any stop codon-spanning pentanucleotide and were therefore omitted from this analysis.)
codons have been reported to vary as a consequence of the influence of the surrounding nucleotide sequence. ${ }^{21-26}$ With respect to human gene sequences, Ozawa et al. reported that the first three nucleotide positions after the stop codon are highly conserved, with G and A predominating at the +1 position, and C at the +4 position. ${ }^{24}$ Again in the context of human genes, Liu reported a preponderance of C immediately upstream of the stop codon (at position -1) and G or T at position $+1 .{ }^{26}$ Our HGMD control dataset exhibits similar sequence characteristics to those stop codon datasets reported by Ozawa et al. ${ }^{24}$ and Liu. ${ }^{26}$ This sequence bias flanking human stop codons represents, in effect, a consensus sequence for the translational termination signal that extends beyond the confines of the stop codon itself. With this in mind, we next examined the flanking sequences of the mutated stop codons in order to ascertain whether the local DNA sequence context could influence the likelihood that the associated nonstop mutations would come to clinical attention.

We first examined the frequencies of six nucleotides on either side of the stop codon in both 87 mutated and 1,692 control sequences. When considering the entire stop codon dataset (which includes sequences flanking the TAA, TAG and TGA stop codons on the 5^{\prime} side at positions -1 to -6 , and on the 3^{\prime} side at positions +1 to +6), we observed a significant paucity in G at the -2 position ($p=0.0063$) (Supplementary Table S4). When considering the three types of stop codon separately, there was a significant excess ($p=$ 0.0016) of G and a significant paucity of A ($p=$ 0.0047) two nucleotides downstream of TAA stop codons (Table 3). Similarly, in the regions flanking TGA stop codons, we noted a significant excess of T at the +6 position $(p=0.0094)$ (Supplementary Table S5). Although it is conceivable that TAA stop codons with a G at +2 and TGA stop codons with a T at +6 may be more prone to mutate than other sequences, we prefer the alternative explanation, that mutations occurring in TAA and TGA stop codons embedded within these sequence contexts are more likely, for whatever reason, to come to clinical attention. No significant difference was

Table 3. Frequency of nucleotides present in regions flanking the mutated TAA stop codon $(N=40)$. Position 0 , corresponding to the stop codon, is not shown. Nucleotide frequencies that are significantly higher/lower ($p<0.0 \mathrm{I}$) in comparison with the HGMD control dataset are shown underlined

$\begin{array}{lllllllllllll}\text { Base } & -6 & -5 & -4 & -3 & -2 & -1 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

A	14	13	7	10	10	5	17	6	11	7	18	11
C	7	9	15	10	13	13	9	10	12	13	9	14
G	8	10	11	5	12	12	11	15	9	9	7	8
T	11	8	7	15	10	10	3	9	8	11	6	7

noted between the flanking regions of mutated and control TAG stop codons (data not shown).

The nucleotide frequencies of the flanking regions of the stop codons that harboured single and multiple mutations were also analysed separately, and compared both with the HGMD control dataset and with each other. Supplementary Table S6 presents the comparison of sequences containing only single mutations with sequences in the HGMD control dataset. These sequences exhibit a significant paucity of G at the $-2(p=$ $0.0078)$ and $-3(p=0.0096)$ positions relative to the controls. However, no significant difference was apparent between those sequences harbouring multiple mutations and controls (data not shown).

Sequence context around the next in-frame stop codon downstream of the stop codons that have been subject to nonstop mutations

The DNA sequences around the next downstream in-frame stop codon were analysed using the same method as described above. The regions flanking the next in-frame stop codons located downstream of the mutated stop codons were compared with their counterparts in the HGMD control sequences. This analysis was performed for each of the three codon types (TAA, TAG and TGA) separately and for all the mutated stop codons combined. When analysing all downstream in-frame stop codons together, a significant excess of T was observed at the +6 position ($p=0.0051$; Supplementary Table S7). When the three types of stop codon were examined separately, the only
significant difference noted was in the sequences surrounding the next in-frame TGA stop codons, where an excess of C was found at the +6 position ($p=0.0019$; Supplementary Table S8), as compared with the TGA codons in the control dataset. Taken together, these findings suggest that, in general, there is no obvious difference between the sequences surrounding the next downstream in-frame stop codons and their counterparts in the HGMD control sequences. However, it is possible that the nucleotide occurring at position +6 relative to the downstream alternative in-frame stop codon could influence the likelihood that a given nonstop mutation might come to clinical attention.

The distance to the next stop codon is a key determinant of whether a given nonstop mutation will come to clinical attention

We next explored the possibility that the distance from the mutated stop codon to the next in-frame stop codon downstream might influence the likelihood that a given nonstop mutation would come to clinical attention. We reasoned that the greater the distance between the mutated stop codon and the next viable alternative downstream stop codon, the more likely it would be that the mRNA/ protein would be unstable/degraded and hence that the nonstop mutation would give rise to a deleterious and clinically observable phenotype. Conversely, the presence of an alternative in-frame stop codon in the immediate vicinity of the mutated natural stop codon could yield a nearnormal or at least ameliorated clinical phenotype. Since such phenotypes would be less likely to come to clinical attention, we might therefore expect there to be a paucity of alternative in-frame stop codons in the immediate vicinity of the mutated stop codons as compared with their counterparts derived from the HGMD control sequences. This was, indeed, what was found when mutated and control sequences were compared. Although a relatively strong correlation was noted between the distributions of the distances (Pearson's correlation $0.75 ; p=0.008$), the number of alternative in-frame stop codons was found to be
significantly lower among the mutated sequences than in the controls, but only in the range $0-49$ nucleotides downstream of the mutated stop codon $\left(p=7.81 \times 10^{-4}\right)$. This implies that at least some stop codon mutations with alternative stop codons $0-49$ nucleotides downstream of the mutated stop codon will not have come to clinical attention, possibly because they will have given rise to stable mRNAs that were (i) not subject to nonstop mRNA decay and (ii) consequently translated into proteins of near-normal length and biological function.

Although the number of in-frame stop codons in the HGMD control dataset approximates to a Zipfian distribution, and steadily decreases with increasing distance from the original stop codon (Figure 1), we noted a significant excess (by comparison with the controls) of downstream in-frame stop codons within 150-199 nucleotides of the mutated stop codon $\left(p=8.551 \times 10^{-4}\right)$. A significant ($p=6.558 \times 10^{-6}$) excess of in-frame stop codons within 100-299 nucleotides was also noted as compared with the HGMD controls. One possible explanation could be that the recruitment of these alternative stop codons at an intermediate distance from the mutated stop codon may serve to trigger nonstop mRNA decay, thereby dramatically decreasing the amount of protein product produced and giving rise to a clinical phenotype that is more

Distance (base pairs)
Figure I. Distribution of distances (in nucleotides) to the next in-frame stop codon in mutated and HGMD control DNA sequences.

Figure 2. Distribution of distances to the next in-frame stop codon in DNA sequences harbouring single $(N=69)$ and multiple ($N=18$) mutations.
likely to come to clinical attention. Confirmation or otherwise of this postulate must await the emergence of a clearer understanding of the mechanism of nonstop mRNA decay in mammalian cells.

Figure 2 depicts a comparison of the single $(N=$ 69 in 69 genes) and multiple ($N=18$ in 18 genes) nonstop mutations with respect to the distribution of distances to the next downstream in-frame stop codon in each sequence. If those nonstop mutations which occurred within sequences lacking alternative in-frame stop codons in the range 0-49 nucleotides from the mutated codon did indeed display an increased likelihood of coming to clinical attention, then we might reasonably expect those sequences harbouring multiple nonstop mutations to exhibit an even greater paucity of alternative downstream in-frame stop codons in this size range relative to those sequences harbouring only one nonstop mutation. Although only 18 sequences harboured multiple nonstop mutations (yielding very small sample sizes in each distance category and precluding formal statistical assessment), only one (corresponding to 5.5 per cent of the total number of multiple nonstop mutations) of these sequences bearing multiple nonstop mutations was characterised by an alternative in-frame stop codon within 50 nucleotides downstream of the mutated stop codon, as opposed
to 21 sequences with single mutations (30.9 per cent of the total number of single nonstop mutations) (Figure 2). This finding is therefore wholly compatible with our postulate that nonstop mutations occurring within DNA sequences lacking alternative in-frame stop codons in the immediate vicinity of the mutated stop codon display an increased likelihood of coming to clinical attention, possibly because the resulting extended mRNAs are more likely to be subject to nonstop mRNA decay.

References

1. Stenson, P.D., Mort, M., Ball, E.V., Howells, K. et al. (2009), 'The Human Gene Mutation Database: 2008 update', Genome Med. Vol. 1, p. 13.
2. Chatr-Aryamontri, A., Angelini, M., Garelli, E., Tchernia, G. et al. (2004), 'Nonsense-mediated and nonstop decay of ribosomal protein S19 mRNA in Diamond-Blackfan anemia', Hum. Mutat. Vol. 24, pp. 526-533.
3. Ameri, A., Machiah, D.K., Tran, T.T., Channell, C. et al. (2007), 'A nonstop mutation in the factor (F)X gene of a severely haemorrhagic patient with complete absence of coagulation FX', Thromb. Haemost. Vol. 98, pp. 1165-1169.
4. Doucette, L., Green, J., Fernandez, B., Johnson, G.J. et al. (2011), 'A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly', Eur. J. Hum. Genet. Vol. 9, pp. 293-299.
5. Pang, S., Wang, W., Rich, B., David, R. et al. (2002), 'A novel nonstop mutation in the stop codon and a novel missense mutation in the type II 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene causing, respectively, nonclassic and classic 3beta-HSD deficiency congenital adrenal hyperplasia', J. Clin. Endocrinol. Metab. Vol. 87, pp. 2556-2563.
6. Torres-Torronteras, J., Rodriguez-Palmero, A., Pinós, T., Accarino, A. et al. (2011), 'A novel nonstop mutation in TYMP does not induce nonstop decay in a MNGIE patient with severe neuropathy'. Hum. Mutat. Vol. 32, pp. E2061- E2068.
7. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. and Parker, R. (2002), 'Exosome-mediated recognition and degradation of mRNAs lacking a termination codon', Science Vol. 295, pp. 2262-2264.
8. Frischmeyer, P.A., van Hoof, A., O'Donnell, K., Guerrerio, A.L. et al. (2002), 'An mRNA surveillance mechanism that eliminates transcripts lacking termination codons', Science Vol. 295, pp. 2258-2261.
9. Schaeffer, D. and van Hoof, A. (2011), 'Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs', Proc. Natl. Acad. Sci. USA Vol. 108, pp. 2366-2371.
10. Inada, T. and Aiba, H. (2005), 'Translation of aberrant mRNAs lacking a termination codon or with a shortened $3^{\prime}-$ UTR is repressed after initiation in yeast', EMBO J. Vol. 24, pp. 1584-1595.
11. Wilson, M.A., Meaux, S. and van Hoof, A. (2007), 'A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism', Genetics Vol. 177, pp. 773-784.
12. Akimitsu, N., Tanaka, J. and Pelletier, J. (2007), 'Translation of nonSTOP mRNA is repressed post-initiation in mammalian cells', EMBO J. Vol. 26, pp. 2327-2338.
13. Isken, O. and Maquat, L.E. (2007), 'Quality control of eukaryotic mRNA: Safeguarding cells from abnormal mRNA function', Genes Dev. Vol. 21, pp. 1833-1856.
14. Akimitsu, N. (2008), 'Messenger RNA surveillance systems monitoring proper translation termination', J. Biochem. Vol. 143, pp. 1-8.
15. Danckwardt, S., Hentze, M.W. and Kulozik, A.E. (2008), ' 3 ' end mRNA processing: Molecular mechanisms and implications for health and disease', EMBO J. Vol. 27, pp. 482-498.
16. Jacobs, G.H., Chen, A., Stevens, S.G., Stockwell, P.A. et al. (2008), 'Transterm: A database to aid the analysis of regulatory sequences in mRNAs', Nucleic Acids Res. Vol. 37, pp. D72-D76.
17. Nakao, M., Barrero, R.A., Mukai, Y., Motono, C. et al. (2005), 'Large-scale analysis of human alternative protein isoforms: Pattern classification and correlation with subcellular localization signals', Nucleic Acids Res. Vol. 33, pp. 2355-2363.
18. Siddle, K.J., Goodship, J.A., Keavney, B. and Santibanez-Koref, M.F (2011), 'Bases adjacent to mononucleotide repeats show an increased single nucleotide polymorphism frequency in the human genome', Bioinformatics, Vol. 27, pp. 895-898.
19. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009), 'Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources', Nature Protoc. Vol. 4, pp. 44-57.
20. Dennis, G., Jr, Sherman, B.T., Hosack, D.A., Yang, J. et al. (2003), 'DAVID: Database for Annotation, Visualization, and Integrated Discovery', Genome Biol. Vol. 4, p. P3.
21. McCaughan, K.K., Brown, C.M., Dalphin, M.E., Berry, M.J. et al. (1995), 'Translational termination efficiency in mammals is influenced by the base following the stop codon', Proc. Natl. Acad. Sci. USA Vol. 92, pp. 5431-5435.
22. Cassan, M. and Rousset, J.P. (2001), 'UAG readthrough in mammalian cells: Effect of upstream and downstream stop codon contexts reveal different signals'. BMC Mol. Biol. Vol. 2, p. 3.
23. Namy, O., Hatin, I. and Rousset, J.P. (2001), 'Impact of the six nucleotides downstream of the stop codon on translation termination', $E M B O$ Rep. Vol. 2, pp. 787-793.
24. Ozawa, Y., Hanaoka, S., Saito, R., Washio, T. et al. (2002), 'Comprehensive sequence analysis of translation termination sites in various eukaryotes', Gene Vol. 300, pp. 79-87.
25. Cridge, A.G., Major, L.L., Mahagaonkar, A.A., Poole, E.S. et al. (2006), 'Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms', Nucleic Acids Res. Vol. 34, pp. 1959-1973.
26. Liu, Q. (2005), 'Comparative analysis of base biases around the stop codons in six eukaryotes', BioSystems Vol. 81, pp. 281-299.
Table SI. Nonstop mutations recorded in the Human Gene Mutation Database

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids		
							Transcript size	Number of Exons						
58	ACTAI	cTAG-CAG	Term-Gln	376	1942.13	ACTAI	NM_001100.3	1509bp	106-1239	1378-1380	1465..1470	tcgtccaccgcaaatgcttctagcacactccacctcagcaag		
58	ACTAI	TAG-TGG	Term-Trp					7 exons	TAG	TAA	ATTAAA	tgc ttc tag $=$ C F ${ }^{*}$		
58	ACTAI	TAGa-TAT	Term-Tyr											
326	AIRE	TGAc-TGT	Term-Cys	546	21 q22.3	AIRE	NM_000383.2	2257bp 15 exons	$\begin{aligned} & \text { I28-1765 } \\ & \text { TGA } \end{aligned}$	1943-1945 TAA	1941..1946 ATTAAA	cggcggcccccttcccctcctgaccccagatggccgggacatg ccc tcc $\operatorname{tga}=\mathrm{PS}$ *		
336	APOA2	gTGA-AGA	Term-Arg	78	\|q21-q23	APOA2	NM_001643.1	473bp	59-361	422-424 TAA	454.459	gaacaagagctgccacccagtgaagtgttcagaccattgtct		
336	APOA2	gTGA-CGA	Term-Arg					4 exons	TGA		AATAAA	acc cag tga $=$ T Q *		
336	APOA2	gTGA-GGA	Term-Gly											
336	APOA2	TGA-TCA	Term-Ser											
353	APRT	TGA-CGA	Term-Arg	181	16924	APRT	NM_000485.2	807bp	36-578	790-792 TAA	Not	tctttctcetgcagtatgagtgaccacagggcttcccagccca		
353	APRT	TGA-TCA	Term-Ser					5 exons	TGA		identified	tat gag tga $=Y \mathrm{E}^{*}$		
411	ARSB	gTAG-CAG	Term-GIn	534	5q\|	-q	3	ARSB	NM_000046.2	6076bp 9 exons	1287-2888	3036-3038	3485. 3490	gggtgtggggccettggatgtaggatttcagggaggctagaa
									TAG	TAA	AATAAA	tgg atg tag $=W$ M *		
											4564-4569			
											AATAAA			
											5804-5809			
											AATAAA			
											6039.6044			
											AATAAA			
											6043.6048			
											AATAAA			
435	ASL	TAGg-TAC	Term-Tyr	465	7cen-q I 1.2	ASL	NM_000048.3	1937bp 16 exons	112-1506TAG	1654-1656TAA	1528-1533	tactgcaggcaagagcaggcctaggtctctccacacctgccccc$\mathbf{c a g} g \mathrm{cc} \underline{\operatorname{tag}}=\mathrm{Q} \mathrm{~A} *$		
											AATAAA			
											1752-1757			
											AATAAA			
											1913-1918			
											AATAAA			
											1921-1926			
											AATAAA			
											1932-1937			
											AATAAA			

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA Flanking nucleotide sequence signals Terminal amino-acids AATAAA ATTAAA				
							Transcript size	Number of Exons							
443	ASPA	TAG-TGG	Term-Trp	314	17pter-pl3	ASPA	NM_000049.2	1435bp $6 \text { exons }$	$\begin{aligned} & 159-1100 \\ & T \Delta G \end{aligned}$	$\begin{aligned} & \text { I233-1235 } \\ & \text { TAA } \end{aligned}$	1364-1369 AATAAA	gtattcgctgctgttacattagaaatcacttccagcttacat tta cat $\boldsymbol{t a g}=\mathrm{LH}$ *			
472	ATM	gTGA-GGA	Term-Gly	3057	11q22-q23	ATM	NM_000051.3	13147 bp	386-9556	9641-9643	10215-10220	caggatggaaagcttgggtgtgatcttcagtatatgaattacc			
472	ATM	TGA-TCA	Term-Ser					63 exons	TGA	TAG	ATTAAA 10514-10519 ATTAAA 13129-13134 AATAAA	$\operatorname{tgg} \operatorname{gtg} \operatorname{tg} \mathbf{a}=W Y^{*}$			
477	ATPIA2	cTGA-CGA	Term-Arg	1021	\|q21-q23	ATPIA2	NM_000702.2	5496bp 23 exons	133-3195 TGA	$\begin{aligned} & 3277-3280 \\ & \text { TAA } \end{aligned}$	5195-5200 AATAAA 5434.5439 AATAAA	tggagaaggagacatactactgaccccattggaagaagaacca tac tac tga $=Y Y^{*}$			
50617	ATP6VOA4	gTAG-CAG	Term-Gln	841	7q33-q34	ATP6VOA4	NM_020632.2	$\begin{aligned} & 3152 \mathrm{bp} \\ & 23 \text { exons } \end{aligned}$	$284-2806$ TAG	$\begin{aligned} & \text { 2963-2965 } \\ & \text { TGA } \end{aligned}$	3039-3044 AATAAA 3\|	6-3	2	AATAAA	tggatggcacagccgaggagtaggctgagggctgcacctccca gag gag tag $=\mathrm{E}$ E *
540	ATP7B	cTGA-CGA	Term-Arg	1466	13q14.3	ATP7B	NM_000053.2	6644bp 21 exons	$\begin{aligned} & \text { I58-4555 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 4556-4558 } \\ & \text { TGA } \end{aligned}$	3788-3793 ATTAAA 4831-4836 ATTAAA 4892-4897 AATAAA	gggatgaggagcagtacatctgatgacttcaggcaggcgggcc $\text { tac atc } \underline{\operatorname{tg} a}=Y I^{*}$			
166379	BBSI2	TAGt-TAC	Term-Tyr	711	4q27	BBS 12	NM_152618.2	$\begin{aligned} & 3260 \text { bp } \\ & 2 \text { exons } \end{aligned}$	194-2326 TAG	$\begin{aligned} & \text { 2375-2377 } \\ & \text { TAA } \end{aligned}$	2379-2384 AATAAA 3220-3225 AATAAA	taacgggctttctatttttgtagtgttactggctaagtctttg $\mathrm{ttt} \operatorname{ttg} \mathbf{t a g}=\mathrm{T}$ L *			
120329	CASPI2	gTGA-CGA	Term-Arg	125	11 q 22.3	CASPI2	AY358222.I		$\begin{aligned} & 3-1057 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 1064-1066 \\ & \text { TAA } \end{aligned}$	1227.. 1232 AATAAA	ctatctctttcctgggaattaaactcataagaagcaactca ggg aat taa $=G N$			
846	CASR	aTAA-CAA	Term-GIn	1079	3 q 13	CASR	NM_000388.2	?!bp ? exons	$\begin{aligned} & \text { 439-3609 } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 363 I-3633 \\ & \text { TAG } \end{aligned}$	5831-5836 ATTAAA 6126-6131 AATAAA $6615 . .6620$ AATAAA	$\begin{gathered} \text { agaaaacgtagtgaattcataaaatggaaggagaagactg } \\ \text { aat tca taa }=\text { NS * } \end{gathered}$			

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids			
							Transcript size	Number of Exons							
1027	CDKNIB	gTAA-CAA	Term-Gln	199	12p\|3.1-p	2	CDKNIB	NM_004064.2	$\begin{aligned} & 2422 \mathrm{bp} \\ & 3 \text { exons } \end{aligned}$	$\begin{aligned} & 466-1062 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { I } 240-1242 \\ & \text { TGA } \end{aligned}$	1836-184\| ATTAAA 1948-1953 ATTAAA 2382-2387 AATAAA	ctcagaagacgtcaaacgtaaacagctcgaattaagaatatg caa acg taa $=$ Q T *		
120329	CFTR	TAG-TGG	Term-Trp	1481	7q31.2	CFTR	NM_000492.3	6132bp 27 exons	$\begin{aligned} & \text { I33-4575 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { 4585-4587 } \\ & \text { TAA } \end{aligned}$	6108.6113 AATAAA	aggtgcaagatacaaggctttagagagcagcataaatgttgac $\mathrm{agg} \mathrm{ctt} \operatorname{tag}=\mathrm{RL} \mathrm{*}^{*}$			
1080	COLIA2	aTAA-CAA	Term-Gln	1277	7q22.1	COLIA2	NM_000089.3	541 lbp 52 exons	$\begin{aligned} & 472-4572 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 4585-4587 } \\ & \text { TAA } \end{aligned}$	4848-4853 AATAAA 4861-4866 AATAAA 5357-5362 AATAAA 5378. 5383 AATAAA	ttggcccagtctgttccaaataaatgaactcaatctaaattaa ttc aaa $\operatorname{taa}=\mathrm{FK}$ *			
1378	CRYBBI	gTGA-CGA	Term-Arg	253	22q12.1	CRYBBI	NM_001887.3	92 lbp 6 exons	$\begin{aligned} & \text { 71-829 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 905.907 \\ & \text { TAA } \end{aligned}$	903.908 AATAAA	tggccacagagccccccaagtgagtccacacttcactctgcta ccc aag tga $=$ P K *			
1414	CRYM	TAAa-TAT	Term-Tyr	315	16p\|3.11-p	2.3	CRYM	NM_001888.2	$\begin{aligned} & \text { I303bp } \\ & 9 \text { exons } \end{aligned}$	$\begin{aligned} & 86-1030 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 1043-1045 \\ & \text { TGA } \end{aligned}$	1267..1272 AATAAA	attcctggtcatctggtaaataaaacaaaggaacttgatgttg ggt aaa taa $=$ GK*		
1428	CTSK	TGAc-TGG	Term-Trp	330	\|q21	CTSK	NM_000396.2	$\begin{aligned} & \text { I702bp } \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & \|25-\|\|\| \| 4 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \|169-\|\|7\| \\ & \text { TAA } \end{aligned}$	1650-1655 AATAAA 1680-1685 AATAAA	tggccagcttccccaagatgtgactccagccagccaaatccat $\text { aag atg } \operatorname{tga}=K M^{*}$			
1513	CYP2C19	TGAa-TGC	Term-Cys	491	10q24.1-q24.3	CYP2C19	NM_000769.1	$\begin{aligned} & \text { 1473bp } \\ & 9 \text { exons } \end{aligned}$	$\begin{aligned} & \text { I-1473 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { \|549-155\| } \\ & \text { TGA } \end{aligned}$	1617-1622 ATTAAA 1733-1738 ATTAAA	agctgtgcttcattcctgtctgaagaagcacagatggtctggc $\operatorname{cct} \operatorname{gtc} \underline{\operatorname{tg} \mathbf{a}}=\mathrm{P} \mathrm{~V}^{*}$			
1557	DBT	TGA-TTA	Term-Leu	422	\|p31	DBT	NM_001918.2	1083 lbp II exons	$\begin{aligned} & \text { 34-1482 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I501-1503 } \\ & \text { TGA } \end{aligned}$	Multiple polyA sites 10794-10799 AATAAA	ttatgctactagatctgaaatgaagactgataagacattcttg ctg aaa $\operatorname{tga}=$ LK *			
1629	DHCR7	cTAA-CAA	Term-GIn	476	\|	q	3.2-q	3.5	DHCR7	NM_001360.2	$\begin{aligned} & 2665 b p \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 274-I70I } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 1852-1854 } \\ & \text { TAA } \end{aligned}$	2099-2 105 AATAAA 2642-2648 ATTAAA	gcttgctgcctggaatcttctaagggcacgccttagggagaag atc ttc taa $=1 \mathrm{~F} *$

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids
							Transcript size	Number of Exons				
1717	DOK7	tTGA-CGA	Term-Arg	505	4 P16.2	DOK7	NM_173660.3	2566bp $7 \text { exons }$	$\begin{aligned} & 71-1585 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 2130-2132 \\ & \text { TGA } \end{aligned}$	$2547-2553$ AATAAA	tcaaggtaaacccccctccttgagagccgcagatcccgccccg $\operatorname{cct} \operatorname{cct} \operatorname{tga}=P P^{*}$
285489	EDA	cTAG-CAG	Term-GIn	392	X I 1	EDA	NM_001399.4	5296bp 10 exons	$\begin{aligned} & 243-1418 \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { I503-\|505 } \\ & \text { TGA } \end{aligned}$	$5251-5256$ AATAAA	tgggtgaagcccctgcatcctagattccccccatttgcctct gca tcc tag = A S *
2110	ETFDH	gTAA-CAA	Term-Gln	618	4 q 32 q 35	ETFDH	NM_004453.2	2349bp 13 exons	$\begin{aligned} & 333-2186 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 2223-2225 } \\ & \text { TAA } \end{aligned}$	2307-23I2 AATAAA	acctgcttacaatggaatgtaaactgcagctagccagttct gga atg taa $=G M^{*}$
1896	EYAI	TAAC-TAC	Term-Tyr	593	8 ¢ 13.3	EYAI	NM_000503.3	4326bp 18 exons	$\begin{aligned} & \text { 64I-2419 } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 2435-2437 } \\ & \text { TGA } \end{aligned}$	3014-3020 ATTAAA 3585-3591 AATAAA 3849-3855 AATAAA 4299-4304 AATAAA	ccttggaactggagtacctgtaacagcgcttggcacttgaca tac ctg taa $=Y$ L*
2138	F8	cTGA-CGA	Term-Arg	2333	X $\mathbf{2}^{28}$	F8	NM_000132.2	9030bp 27 exons	$\begin{aligned} & \text { I72-7227 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 7327-7329 } \\ & \text { TAG } \end{aligned}$	7637-7643 AATAAA 8004-8010 AATAAA 8048-8054 AATAAA 9010-9015 AATAAA	gcgaggcacaggacctctactgagggtggccactgcagcacct ctc tac $\underline{\operatorname{tg}} \mathbf{a}=\mathrm{LY} *$
2157	FGB	aTAG-AAG	Term-Lys	462	4q28	FGB	NM_005141.2	$\begin{aligned} & 1949 \text { bp } \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 26-1501 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { I535-1537 } \\ & \text { TGA } \end{aligned}$	1649-1655 AATAAA 1913-1918 AATAAA	ggcccttcttcccacagcaatagtccccaatacgtagattttt cag caa tag $=$ Q Q *
2244 2261	FGFR3 FGFR3	gTGA-AGA	Term-Arg	807	4p16.3	FGFR3	NM_000142.2	4093bp 18 exons	$\begin{aligned} & \text { 40-2460 } \\ & \text { TGA } \end{aligned}$	2759-276। TAA	4238-4243 AATAAA	gcagtgggggctcgcggacgtgaagggccactggtccccaaca $\operatorname{cgg} \operatorname{acg} \operatorname{tg} \mathbf{a}=R T^{*}$
2261	FGFR3	TGA-TCA	Term-Ser									
2261	FGFR3	TGA-TTA	Term-Leu									
2261	FGFR3	TGAa-TGC	Term-Cys									
2261	FGFR3	TGAa-TGG	Term-Trp									
2261	FGFR3	TGAa-TGT	Term-Cys									

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids		
							Transcript size	Number of Exons						
2273	FHLI	gTAA-GAA	Term-Glu	281	X ${ }^{2}$ 2	FHLI	NM_001449.3	2398bp $8 \text { exons }$	$\begin{aligned} & \text { 209-1051 } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { I205-1207 } \\ & \text { TAA } \end{aligned}$	2360.2365 AATAAA	cactgcaaaaaatgctccgtgaatctggccaacaagcgctt $\operatorname{gct} \operatorname{ccg} \operatorname{tg} \mathbf{a}=A P^{*}$		
2261	FKRP	cTGA-AGA	Term-Arg	496	19q13.32	FKRP	NM_024301. 3	$\begin{aligned} & 3349 \text { bp } \\ & 4 \text { exons } \end{aligned}$	$\begin{aligned} & 2980-1785 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I846-1848 } \\ & \text { TGA } \end{aligned}$	2489-2494 AATAAA 2540-2545 AATAAA	tgagtctgacgggaagcggctgaagccctgataacctcgcctt $\operatorname{agc} \operatorname{ggc} \operatorname{tga}=S G *$		
79147	FMO2	tTAG-CAG	Term-GIn	472	1q23-q25	FMO2	NM_001460.2	518 lbp 10 exons	$\begin{aligned} & \text { II8-1533 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { I723-1725 } \\ & \text { TAG } \end{aligned}$	Multiple polyA sites !!!?!? AATAAA	tcggaccetgcaactcctattagtatcgcctggttgggcctgg tcc tat tag $=S Y^{*}$		
2301	FOXE3 FOXE3	gTGA-CGA TGA-TCA	Term-Arg	320	1 P 32	FOXE3	NM_012186.2	2000bp SINGLE exon	$\begin{aligned} & 245-1204 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \|4\| 8-1420 \\ & T G A \end{aligned}$	1939-1944 ATTAAA 1954-1959 ATTAAA	$\begin{gathered} \text { cggggctggagcgctacctgtgagcctgcgccgcgcgggcag } \\ \operatorname{tac} \operatorname{ctg} \operatorname{tga}=Y \mathrm{~L} \end{gathered}$		
2294	FOXFI	gTGA-CGA	Term-Arg	380	16q24	FOXFI	NM_001451.2	$\begin{aligned} & 2579 \mathrm{bp} \\ & 3 \text { exons } \end{aligned}$	$\begin{aligned} & 44-1183 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I400-1402 } \\ & \text { TAG } \end{aligned}$	3218-3223 AATAAA 3301-3306 AATAAA	acatcaagccttgcgtgatgtgaggctgccgccgcaggccet $\operatorname{gtg} \operatorname{tg} \operatorname{tga}=V M^{*}$		
2327	FOXHI	gTGA-CGA	Term-Arg	366	8q24.3	FOXHI	NM_003923.1	$\begin{aligned} & 1793 b p \\ & 3 \text { exons } \end{aligned}$	$\begin{aligned} & 580-1677 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I684-1686 } \\ & \text { TAA } \end{aligned}$	Not found	tgctctcctggtgcagcctgtgaggctcttaagacaggggcca $\operatorname{agc} \operatorname{ctg} \operatorname{tg} \mathbf{a}=S L^{*}$		
8928	FUCAI	gTAA-AAA	Term-Lys	462	Ip34	FUCAI	NM_000147.3	$\begin{aligned} & \text { 2095bp } \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 46-1446 } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 1681-1683 \\ & \text { TGA } \end{aligned}$	\|575-	58	ATTAAA 2044-2049 AATAAA	taaagctgacaggagtgaagtaatcatttgagtgcaagaagaa gtg aag taa $=V$ K *
2517 2592	GALT	CTGA-CGA	Term-Arg	380	$9 \mathrm{pl3}$	GALT	NM_000155.2	1347bp II exons	$\begin{aligned} & \text { 68-1207 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1352-1354 \\ & \text { TAA } \end{aligned}$	$13 \mid 5-1320$ AATAAA	gggagacagcaaccatcgcctgaccacgccgaccacagggcct atc gcc $\operatorname{tga}=1 \mathrm{~A}$ *		
2623	GATAI	aTGA-CGA	Term-Arg	414	Xpl I 23	GATAI	NM_002049.2	$\begin{aligned} & 1522 b p \\ & 6 \text { exons } \end{aligned}$	$\begin{aligned} & 113-1354 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { \|475-1477 } \\ & \text { TAA } \end{aligned}$	1478-\| 484 AATAAA	gtggctccgctcagctcatgagggcacagagcatggcct $\operatorname{agc} \operatorname{tca} \operatorname{tg} \mathbf{a}=S_{S}^{*}$		
2592	GCDH	TGAg-TGG	Term-Trp	439	19p\|3.2	GCDH	NM_000159.2	1839bp 12 exons	$\begin{aligned} & \text { 78-1394 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I473-1475 } \\ & \text { TGA } \end{aligned}$	1802..1807 AATAAA	aggcgttcacggccagcaagtgagccgctccatcaggggcccg agc aag tga $=S K *$		

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids	
							Transcript size	Number of Exons					
2639	GCHI	cTGA-CGA	Term-Arg	251	14q22.1-q22.2	GCHI	NM_000161.2	$\begin{aligned} & 294 \mathrm{lbp} \\ & 6 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 162-914 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1017-1019 \\ & T G A \end{aligned}$	Multiple polyA sites 2896-2901 ATTAAA	tcctgactctcattaggagctgagcttcattcagtgtgtgtgc $\operatorname{agg} \operatorname{agc} \operatorname{tg} \mathbf{a}=\text { R S* }$	
2645 2645	GCK	gTGA-CGA TGA-TTA	Term-Arg	466	7pl 5.3 -pl 5.1	GCK	NM_000162.2	2759bp 10 exons	$\begin{aligned} & 487-1884 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 2314-2316 \\ & T G A \end{aligned}$	$2724-2729$ ATTAAA	aggcctgtatgctgggccagtgagagcagtggccgcaagcgcag ggc cag $\operatorname{tga}=\mathrm{G} Q *$	
55806	$H R$ $H R$	cTAG-CAG TAG-TGG	Term-Gln	35	8p21.2	HR	NM_005I44.3	498 lbp 19 exons	$\begin{aligned} & \text { \|31-3700 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & 4\|51-4\| 53 \\ & T G A \end{aligned}$	4311-4316 ATTAAA 4952-4957 ATTAAA 4956-4961 AATAAA	caggaggccaaatagagggatgctaggtg gcc aaa tag = A K *	
2643 3040	HBA2 HBA2	TAAg-TAT tTAA-AAA	Term-Tyr	142	16p13.3	HBA2	NM_000517.3	$\begin{aligned} & \text { 575bp } \\ & 3 \text { exons } \end{aligned}$	$\begin{aligned} & 38-466 \\ & \text { TAA } \end{aligned}$	557-559 TAA	555-560 AATAAA	tgctgacctccaaataccgttaagctggagcctcggtagccgt tac cgt taa $=Y R$ *	
3040	HBA2	tTAA-CAA	Term-GIn										
3040	HBA2	tTAA-GAA	Term-Glu										
3040	HBA2	tTAA-TCA	Term-Ser										
3081	HGD	tTGA-CGA	Term-Arg	446	$3 q 13.33$	HGD	NM_000187.2	$\begin{aligned} & \text { 1920bp } \\ & 14 \text { exons } \end{aligned}$	$\begin{aligned} & 371-1708 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I778-1780 } \\ & \text { TAG } \end{aligned}$	1892..I898 AATAAA	ccagcagaacctaattgagactggaacattgctaccataa $\operatorname{cct} \text { aat } \operatorname{tga}=P N^{*}$	
3284	HSD3B2	TGAt-TGC	Term-Cys	373	\|p	3.1	HSD3B2	NM_000198.2	$\begin{aligned} & \text { 1669bp } \\ & 4 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 143-1261 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 1544-1546 } \\ & \text { TGA } \end{aligned}$	1649..1654 AATAAA	ccctgaagtccaagactcagtgatttaaggatgacagagatgt act cag $\operatorname{tga}=T Q$ *
3425 3425	IDUA IDUA	aTGA-GGA	Term-Gly	654	4p16.3	IDUA	NM_000203.3	2203bp 14 exons	$\begin{aligned} & 89-2050 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 2231-2233 \\ & T G A \end{aligned}$	$2145-2150$ AATATA	ccccatccccgggcaatccatgagcctgtgctgagccccagtg aat cca $\operatorname{tga}=N P$ *	
8517	IKBKG	TAG-TGG	Term-Trp	420	X \mathbf{q}^{28}	IKBKG	NM_001099856.1	2073bp 10 exons	$\begin{aligned} & \text { 225-1483 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { 1563-1565 } \\ & \text { TAG } \end{aligned}$	2049-2054 AGTAAA	atgtcatggagtgcattgagtagggccggccagtgcaaggcca att gag tag $=I E^{*}$	

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids			
							Transcript size	Number of Exons							
9445	ITM2B	tTGA-AGA	Term-Arg	267	13q14.3	ITM2B	NM_021999.3	$\begin{aligned} & 1870 \text { bp } \\ & 6 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 1874-987 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1018-1020 \\ & \text { TAA } \end{aligned}$	\|	3	-1	36 ATTAAA 1440-1445 ATTAAA 1664-1669 AATAAA 1785-1790 AATAAA 1834-1839 ATTAAA	tggaaactttaatttgttcttgaacagtcaagaaaaacattat $\operatorname{tgt} \operatorname{tct} \operatorname{tga}=\text { C K }^{*}$
169522	KCNV2 KCNV2	tTAG-TAT tTAG-CAG	Term-Tyr	546	9 P 24.2	KCNV2	NM_133497.2	$\begin{aligned} & \text { 1882bp } \\ & 2 \text { exons } \end{aligned}$	$215-1852$ TAG	$\begin{aligned} & \text { 203I-2033 } \\ & \text { TAG } \end{aligned}$	$2142-2147$ AATAAA	tcaccccaagacaagagaattagtattttataggacatgtggc $\text { gag aat tag }=\mathrm{EN} \text { * }$			
84634	KISSIR	cTGA-AGA	Term-Arg	399	19p\|3.3	KISSIR	NM_032551.4	$\begin{aligned} & \text { 1607bp } \\ & 5 \text { exons } \end{aligned}$	$\begin{aligned} & 146-1342 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { \|839-\|84\| } \\ & \text { TAA } \end{aligned}$	\|554-	559 ATTAAA	$\begin{gathered} \text { gggagga caacgcccctctctgagcggaccoggtgggaatccg } \\ \text { cct ctc tga }=\text { P L * } \end{gathered}$		
3914	LAMB3	TGAt-TGG	Term-Trp	1173	$1 q 32$	LAMB3	NM_000228.2	4093bp 23 exons	$\begin{aligned} & \text { I45-3663 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 3829-383। } \\ & \text { TGA } \end{aligned}$	4008-4013 AATGAA 4020-4025 AATAAA	tctactatgccacctgcaagtgatgctacagcttccagcccgt $\operatorname{tgc} \operatorname{aag} \operatorname{tg} \mathbf{a}=\text { C K * }$			
9388	LIPG	cTGA-CGA	Term-Arg	501	18q21.1	LIPG	NM_006033.2	$\begin{aligned} & \text { 4143bp } \\ & \text { ? exons } \end{aligned}$	$\begin{aligned} & \text { 253-1755 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 1900-1902 } \\ & \text { TGA } \end{aligned}$	4094-4099 ATTAAA 4\|	8-4	23 AATAAA	actgtggagcttccctgagggtgcccgggcaagtcttg $\operatorname{ctt} \operatorname{ccc} \operatorname{tg} a=L P *$	
4143	MATIA	TAGa-TAT	Term-Tyr	396	10q22	MATIA	NM_000429.2	$\begin{aligned} & 34 \text { I9bp } \\ & 9 \text { exons } \end{aligned}$	256-1443 TAG	$\begin{aligned} & \text { I645-1647 } \\ & \text { TAA } \end{aligned}$	3382-3387 AATAAA	ttcccaggaagcttgtattttagagccagggggagctgggcct gta ttt tag $=V$ F *			
4159	MC3R	TAG-TCG	Term-Ser	361	20q\|3.2-q13.3	MC3R	NM_019888.2	$\begin{aligned} & 1 \mid 12 \text { 2bp } \\ & 1 \text { exon } \end{aligned}$	$\begin{aligned} & \text { I-1083 } \\ & \text { TAG } \end{aligned}$	$\begin{aligned} & \text { I 102-\| } 104 \\ & \text { TGA } \end{aligned}$	Not found	gcaacggcatgaacttgggataggatgcagggccatggaaatg ttg gga $\operatorname{tag}=$ L G *			
64087	MCCC2	gTAA-CAA	Term-Gln	564	5q\|2-q	3	MCCC2	NM_022132.3	2329bp $17 \text { exons }$	$\begin{aligned} & 100-1791 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 17987-1800 } \\ & \text { TAA } \end{aligned}$	\|796-	80	 AATAAA	acttcggtatcttcaggatgtaactggaataaaggatgtttc $\operatorname{agg} \operatorname{atg} \underline{\text { taa }}=R M^{*}$

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids
							Transcript size	Number of Exons				
5080	MECP2	cTGA-TGG	Term-Trp	487	X \mathbf{q}^{28}	MECP2	NM_004992.2	10241 bp	227-1687	1766-1768	1790-1795	ccgtgaccgagagagttagctgacttacacggagcggattge
5080	MECP2	cTGA-CGA	Term-Arg					4 exons	TGA	TGA	AATAAA	$\mathrm{gtt} \operatorname{agc} \operatorname{tga}=\mathrm{V}$ S*
		CTGA-CGA	Term-Arg								$7191-7196$	
5080	MECP2	cTGA-TTA	Term-Leu								TATAAA	
5080	MECP2	cTGA-TGC	Term-Cys								AATAAA	
											9490-9495	
											AATAAA	
4338	MOCS2	TAAt-TAC	Term-Tyr	189	5q11	MOCS2	NM_004531.3	$\begin{aligned} & 1347 \mathrm{bp} \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & 40-793 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \text { 845-847 } \\ & \text { TGA } \end{aligned}$	1238-1243	gctttgggcatccaacagttaaatcacttatgttttagagca$\text { aac agt taa }=\text { N S* }$
											ATTAAA	
											1289-1294	
											ATTAAA	
											1299-1304	
											AATAAA	
4524	MTHFR	TGA-TCA	Term-Ser	657	Ip36.3	MTHFR	NM_005957.3	7105bp 12 exons	$\begin{aligned} & \text { I85-2155 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 2303-2305 } \\ & \text { TGA } \end{aligned}$	3833-3838	cgagagaaacggaggctccatgaccctgcgtcctgacgccctg gct cca $\operatorname{tga}=A P^{*}$
											?????	
											7086-7091	
											AATAAA	
55651	NHP2	aTGA-AGA	Term-Arg	154	5q35.3	NHP2	NM_017838.3	867bp 4 exons	144-605	756-758	802-805	agtccctgcccctacccctatgaggggctccggtagcacctgg ccc cta $\operatorname{tga}=P$ L*
									TGA	TGA	ACTAAA	
											836-841	
											AGTAAA	
4878	NPPA	cTGA-CGA	Term-Arg	152	Ip36.2\|	NPPA	NM_006172.2	840bp 3 exons	$\begin{aligned} & \text { 95-550 } \\ & \text { TGA } \end{aligned}$	554-556 TAA	768-773	ctgtgttctctttgcagtactgaagataacagccagggaggac cag tac tga $=Q Y^{*}$
											ATTAAA	
											819-824	
											AATAAA	
190	NROBI	aTAA-GAA	Term-Glu	471	Xp21.3-p21.2	NROBI	NM_000475.3	$\begin{aligned} & \text { 1555bp } \\ & 2 \text { exons } \end{aligned}$	13-1424	1447-1479	1475-1480	aaatgctctgtacaaagatataaagtcatgtgggccacacaag$\text { aag ata } \underline{\text { taa }}=K I^{*}$
									TAA	TAA	AATAAA	
											1514-1519	
											AATAAA	
4939	OAS2	TAG-TGG	Term-Trp	720	12q24.2	OAS2	NM_016817.2	3539bp	141-2300	2322-2324	3015-3020	ataattctaaaagaaacttctagagatcatctggcaatcgett aac ttc $\mathbf{t a g}=$ N F *
								11 exons	TAG	TAA	AATAAA	
											3340-3345	
											AATAAA	
											3513-3518	
											AATAAA	

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids		
							Transcript size	Number of Exons						
4976	OPAI	TAAA-TAC	Term-Tyr	961	3q28-q29	OPAI	NM_015560.1	5864bp 31 exons	$\begin{aligned} & \text { 56-2938 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 2975-2977। } \\ & \text { TGA } \end{aligned}$	3046-305। AATAAA	aagctcttcatcaggagaaataaattaagtgagtaaaaattct gag aaa taa $=$ E K *		
5009	OTC	TGAt-TGG	Term-Trp	355	Xp21.1	OTC	NM_000531.4	1647bp 10 exons	$\begin{aligned} & 215.1279 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1319-1321 \\ & \text { TAA } \end{aligned}$	1365-1370 AATAAA 1622-1627 AATAAA	agctccagaagcctaaattttgatgttgtgttacttgtcaaga aaa $\operatorname{ttt} \operatorname{tga}=$ K F *		
5080 5080	PAX6 PAX6	TAA-TTA TAA-TAT	Term-Leu	423	\|	p	3	PAX6	NM_000280.2	2816bp 15 exons	513-178\| TAA	$\begin{aligned} & 1821-1823 \\ & \text { TAA } \end{aligned}$	$2269-2274$ ATTAAA 2495-2500 AATAAA	aatactggccaagattacagtaa aaaaaaaaaaaaaaaaaaaaaggaaaggaaa tta cag taa $=L Q$ *
5189	PEXI	aTAA-CAA	Term-GIn	1284	7q21.2	PEXI	NM_000466.2	4390bp 24 exons	$97-3948$ TAA	$\begin{aligned} & \text { 4030-4032 } \\ & \text { TGA } \end{aligned}$	4261-4266 AATAAA 4356-4361 AATAAA	gacagaaagtaactttagcataaaatatacttcttttgattt tta gca taa $=L A *$		
8929	PHOX2B	TGAt-TGG	Term-Trp	315	4pl2	PHOX2B	NM_003924.2	3033bp $3 \text { exons }$	$\begin{aligned} & 361-1305 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1426-1428 \\ & \text { TGA } \end{aligned}$	1452-1457 AATAAA	tagtgaagagcagtatgttctgatctggaatcctgcggcggcg $\operatorname{atg} \operatorname{ttc} \operatorname{tga}=M F *$		
8929	PHOX2B	TGAt-TGC	Term-Cys								1766-1771 AATAAA 1798-1803 ATTAAA I86I-I866 ATTAAA			
55163	PNPO	tTAA-CAA	Term-Gln	262	17q21.32	PNPO	NM_018129.2	$\begin{aligned} & 3482 b p \\ & 7 \text { exons } \end{aligned}$	$\begin{aligned} & \text { I54-939 } \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 1021-1023 \\ & \text { TAA } \end{aligned}$	1405-1410 ATTAAA 24I2-2417 ATTAAA 3438-3443 AATAAA	tctatgagagacttgcaccttaactctgggacctgctggccca $\text { gca cct taa }=A P^{*}$		
5627	PROSI	TAAg-TAT	Term-Tyr	636	3q11.2	PROSI	NM_000313.1	3309bp 15 exons	$\begin{aligned} & \text { 147-2177 } \\ & \text { TAA } \end{aligned}$	$2217-2219$	2636-264I ATTAAA 2735-2740 ATTAAA 3289-3294 AATAAA	ggaaaaagacaaagaattcttaaggcatcttttctctgcttat aat tct taa $=\mathrm{NA}^{*}$		

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids			
							Transcript size	Number of Exons							
10594	PRPF8	cTGA-CGA	Term-Arg	2336	17p\|3.3	PRPF8	NM_006445.3	731 lbp 43 exons	$\begin{aligned} & 115-7122 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 7243-7245 \\ & \text { TGA } \end{aligned}$	7261-7266 AATAAA 7274-7279 AATAAA	atcgggaggacctgtatgcctgaccgtttccctgcctcctgct tat gcc tga $=Y A$ *			
5744	PTHLH	TGAa-TGG	Term-Trp	178	\|2p	2.1-p		2	PTHLH	NM_198965.1	133 lbp 5 exons	$\begin{aligned} & 323-856 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1013-1015 \\ & \text { TGA } \end{aligned}$	1304-1309 AATAAA	ttcacggaggcattgaaattttcagcagagaccttc $\text { agg cat tga }=\text { R H }$
10111	RAD50	TAAa-TAT	Term-Tyr	1313	5q31	RAD50	NM_005732.2	589 lbp 25 exons	$\begin{aligned} & 388-4326 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 4522-4524 \\ & \text { TGA } \end{aligned}$	5836-584। AATAAA	tgggattcaatgttcattaaaaatatccaagatttaaatg gtt cat taa $=\mathrm{VH}$ *			
6066	RHCE	TAAg-TAC	Term-Tyr	418	Ip36.11	RHCE	NM_020485.3	$\begin{aligned} & 1635 \mathrm{bp} \\ & 9 \text { exons } \end{aligned}$	$\begin{aligned} & 87-1340 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & 14\|6-14\| 8 \\ & T G A \end{aligned}$	\|482-1487 ATTAAA 1490-I495 ATTAAA \|536-I54	 AATAAA 1596-160\| ATTAAA	atttggctgttggattttaagcaaaagcatccaagaaaaa $\text { gga ttt taa }=G F^{*}$		
6010	RHO	cTAA-CAA	Term-Gln	349	3q21-q24	RHO	NM_000539.2	2768bp	96-1142	1293-1295	1239-1244	gccaggtggccecggcctaagacctgcctaggactttgtg			
6010	RHO	cTAA-GAA	Term-Glu					5 exons	TAA	TAA		ggcc taa $=P A$			
860	RUNX2	TGA-TCA	Term-Ser	522	6p21	RUNX2	NM_001024630.2	5572bp $9 \text { exons }$	$\begin{aligned} & 7-1776 \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { I853-1855 } \\ & \text { TAG } \end{aligned}$	2761-2666 ATTAAA 3073-3078 ATTAAA 3892-3897 AATAAA 4183-4188 ATTAAA 4448-4453 ATTAAA 4591-4596 ATTAAA	aatctgttggcgaccatattgaaattcctcagcagtggccca $\text { cca tat tga }=P Y$			

Table SI. Continued

Entrez Gene ID	Gene	Base change	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		CDS	Next STOP codon	polyA signals AATAAA ATTAAA	Flanking nucleotide sequence Terminal amino-acids		
							Transcript size	Number of Exons						
710	SERPINGI	cTGA-AGA	Term-Arg	479	\|1q	2-q	3.1	SERPINGI	NM_000062.2	$\begin{aligned} & 1984 \mathrm{bp} \\ & 8 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 192-1694 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1830-1832 \\ & \text { TGA } \end{aligned}$	1940-1945 AATAAA	gagtatatgaccccagggcctgagacctgcaggatcaggttag agg gec tga $=$ RA*
4068	SH2DIA	aTGA-AGA	Term-Arg	129	Xq25-q26	SH2DIA	NM_002351.2	$\begin{aligned} & 2507 \mathrm{bp} \\ & 4 \text { exons } \end{aligned}$	$\begin{aligned} & 346-732 \\ & \text { TGA } \end{aligned}$	766-768 TAA	738-743 AATAAA 1036-I04\| AATAAA	atgtctgcctgaaagccccatgaagaaaaataaaacaccttgt gcc cca tga $=A P^{*}$		
6473	SHOX	cTGA-CGA	Term-Arg	293	Xp22.33	SHOXa	NM_000451.3	$\begin{aligned} & 3757 \mathrm{bp} \\ & 6 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 692-1570 } \\ & \text { TGA } \end{aligned}$	$1712-1715$ TAG	2486-2491 ATTAAA	gcggaggccctggggctctgacccgccgcgcagccc $\operatorname{ggg} \mathrm{ctc} \underline{\operatorname{tg} \mathbf{a}}=\mathrm{GL} \mathrm{~L}^{*}$		
6473	SHOX	aTGA-CGA	Term-Arg	226		SHOXb	NM_006883.2	$195 \mathrm{lbp}$ $6 \text { exons }$	$\begin{aligned} & \text { 692-1369 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1433-1436 \\ & \text { TAG } \end{aligned}$	Not found			
5172	SLC26A4	TGAa-TGG	Term-Trp	781	7q31	SLC26A4	NM_00044I.I	4930bp 21 exons	$\begin{aligned} & \text { 225-2567 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & \text { 2691-2693 } \\ & \text { TAA } \end{aligned}$	2719-2724 AATAAA 3014-3019 AATAAA 3038-3043 AATAAA 3066-3071 AATAAA 3229-3234 AATAAA	ctatgcgtacacttgcatcc tgaaagtgggttcgggaggtctc $\text { gca tcc tga }=\text { A S * }$		
54977	SLC25A38	cTGA-CGA	Term-Arg	305	3 p 22.1	SLC25A38	NM_017875.2	$\begin{aligned} & 2124 \mathrm{bp} \\ & 7 \text { exons } \end{aligned}$	$\begin{aligned} & \text { 402-1316 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1398-1400 \\ & \text { TAA } \end{aligned}$	1897-1902 AATAAA 1965-1670 ATTAAA 2092-2097 AATAAA	gggcctgaagtcttgaccaagagaggactgg aag tcc tga $=K$ S *		
6663	S0X10 50×10	cTAA-TAC cTAA-AAA	Term-Tyr	467	22q13.1	S0x10	NM_006941. 3	$\begin{aligned} & 2882 \mathrm{bp} \\ & 4 \text { exons } \end{aligned}$	279-1679 TAA	$\begin{aligned} & \text { 1935-1937 } \\ & \text { TGA } \end{aligned}$	2840-2845 AATAAA 2846-285I ATTAAA	atacgacactgtcccggccctaaagggggccctgtcgccacca $\operatorname{cgg} \operatorname{ccc} \underline{\text { taa }}=R P^{*}$		
6716	SRD5A2	TAA-TCA	Term-Ser	255	2 p 23	SRD5A2	NM_000348.3	$\begin{aligned} & 2446 \mathrm{bp} \\ & 5 \text { exons } \end{aligned}$	$\begin{aligned} & 72 . .836 \\ & \text { TAA } \end{aligned}$	918-920 TAA	846-85। ATTAAA 1235-I240 ATTAAA 2426-2431 ATTAAA	cccttattccattcatctttaaaggaaccaaattaaaaagga $\text { atc ttt taa }=1 \mathrm{~F}^{*}$		

Table SI. Continued

$\begin{aligned} & \text { Entrez } \\ & \text { Gene } \end{aligned}$ID	Gene	$\begin{gathered} \text { Base } \\ \text { change } \end{gathered}$	Amino acid change	Codon	Chromosome	Gene	Ref_Seq mRNA Acc Num (Longest)		cDs	Next STOP codon	polyA signals AATAAAATTAAA	Flanking nucleotide sequence Terminal amino-acids	
							Transcript size	Number of Exons					
7170	TPM 3	TAA-TCA	Term-Ser	286	1 q 21.2	TPM3	NM_152263.2	$\begin{aligned} & 71166 \mathrm{bp} \\ & 12 \text { exons } \end{aligned}$	$\begin{aligned} & 116-973 \\ & \text { TAA } \end{aligned}$	$\begin{aligned} & \\|\|42-\| \| 44 \\ & \text { TAA } \end{aligned}$	1140-1145 ATTAAA 1414-1419 ATTAAA 1894-1899 ATTAAA	tccttactttttcatacagataattatcaccgtttctgctctg tac aga taa $=Y \mathrm{R}$ *	
7454	WAS	CTGA-AGA	Term-Arg	503	Xpl I.4-p I . 21	was	NM_000377.1	1806bp 12 exons	$35-1543$ TGA	1805-1807 TAA	1777-1782 AATAAA	aagatgatgaatggatgactgagtggctgagtacttgctgc $\text { gat gac tga }=D D^{*}$	
7454	was	TGA-TCA	Term-Ser										
7490	WTI	TGAg-TGG	Term-Trp	450	$11 p 13$	WTI	NM_024424.2	$\begin{aligned} & 3020 \mathrm{bp} \\ & 10 \text { exons } \end{aligned}$	$\begin{aligned} & \text { T97-1741 } \\ & \text { TGA } \end{aligned}$	$\begin{aligned} & 1805-1807 \\ & T G A \end{aligned}$		ccaaactccagctggcgetttgaggggtctccctcggggaccg $\mathrm{gcg} \operatorname{ctt} \operatorname{tga}=A L^{*}$	

Table S2. Major enriched ($p<0.00 \mathrm{I}$) categories for genes harbouring single mutations in stop codons

Category	Term	Count	\%	p value	Genes
SP_PIR_KEYWORDS	Oxidoreductase	11	16.42	$2.03 \mathrm{E}-05$	HSD3B2, DBT, GCDH, MTHFR, CYP2CI9, DHCR7, FMO2, ETFDH, HGD, PNPO, SRD5A2
GOTERM_BP_FAT	GO:004427I ~ nitrogen compound biosynthetic process	9	13.43	1.40E-04	MOCS2, OTC, SLC25A38, ATPIA2, ASL, ATP6VOA4, NPPA, ATP7B, GCHI
GOTERM_BP_FAT	GO:00080 5 ~ blood circulation	7	10.45	2.4IE-04	MTHFR, COLIA2, SERPINGI, CFTR, ATPIA2, NPPA, GCHI
GOTERM_BP_FAT	GO:0003013 ~ circulatory system process	7	10.45	2.4IE-04	MTHFR, COLIA2, SERPINGI, CFTR, ATPIA2, NPPA, GCHI
GOTERM_MF_FAT	GO:0050662 ~ coenzyme binding	7	10.5	$2.59 \mathrm{E}-04$	DBT, GCDH, FMO2, ETFDH, PNPO, CRYM, GCHI
SP_PIR_KEYWORDS	Blood coagulation	4	5.97	4.62E-04	FGB, F8, SERPINGI, PROSI
SP_PIR_KEYWORDS	Flavoprotein	5	7.46	5.00E-04	GCDH, MTHFR, FMO2, ETFDH, PNPO
GOTERM_CC_FAT	GO:003I 093 ~ platelet alpha granule lumen	4	5.97	$6.78 \mathrm{E}-04$	FGB, F8, SERPINGI, PROSI
GOTERM_BP_FAT	GO:0006694 ~ steroid biosynthetic process	5	7.46	6.92E-04	HSD3B2, DHCR7, CFTR, SRD5A2, NROBI
GOTERM_BP_FAT	GO:0042592 ~ homeostatic process	12	17.91	7.17E-04	PTHLH, SLC26A4, CTSK, CASR, OTC, IKBKG, SLC25A38, LIPG, ATPIA2, ATP6V0A4, RAD50, ATP7B
GOTERM_BP_FAT	GO:0055 II4 ~ oxidation reduction	11	16.42	7.76E-04	HSD3B2, GCDH, MTHFR, CYP2CI9, DHCR7, FMO2, ETFDH, F8, HGD, PNPO, SRD5A2
GOTERM_CC_FAT	GO:0060205 ~ cytoplasmic membrane-bounded vesicle lumen	4	5.97	8.35E-04	FGB, F8, SERPINGI, PROSI
GOTERM_CC_FAT	GO:0031983 ~ vesicle lumen	4	5.97	$9.52 \mathrm{E}-04$	FGB, F8, SERPINGI, PROSI

Table S3. Major enriched ($p<0.00 \mathrm{I}$) categories for genes harbouring multiple mutations in stop codons

| Category | Count | \% | p value | Genes | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| SP_PIR_KEYWORDS | DNA-binding | 8 | 42.11 | $9.77 \mathrm{E}-04$ | SOXIO, PHOX2B, MECP2,
 PAX6, HR, SHOX, ATM, FOXE3 |
| SP_PIR_KEYWORDS | Peters' anomaly | 2 | 10.53 | 0.0047 | PAX6, FOXE3 |

Table S4. Frequency of nucleotides present in regions flanking the 87 mutated stop codons. Position 0, corresponding to the stop codon, is not shown. Nucleotide frequencies that are significantly higher/lower ($p<0.01$) in comparison to the HGMD control dataset are shown underlined

| Base | $\mathbf{- 6}$ | $\mathbf{- 5}$ | $\mathbf{- 4}$ | $\mathbf{- 3}$ | $\mathbf{- 2}$ | $\mathbf{- 1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 25 | 25 | 12 | 25 | 29 | 16 | 31 | 20 | 19 | 13 | 28 | 20 |
| C | 18 | 20 | 27 | 26 | 24 | 27 | 15 | 26 | 26 | 25 | 22 | 28 |
| G | 24 | 23 | 28 | 14 | $\underline{7}$ | 24 | 28 | 28 | 19 | 21 | 21 | 19 |
| T | 20 | 19 | 20 | 22 | 27 | | 20 | 13 | 23 | 28 | 16 | 20 |

Table S6. Frequency of nucleotides occurring within regions flanking mutated stop codons harbouring single nonstop mutations. Position 0 corresponding to the stop codon is not shown. Frequencies which are significantly higher/lower ($p<0.0 \mathrm{I}$) in comparison with corresponding HGMD controls are shown underlined

| Base | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 21 | 19 | 11 | 21 | 21 | 14 | 26 | 15 | 16 | 11 | 23 | 16 |
| C | 14 | 17 | 19 | 19 | 19 | 19 | 11 | 19 | 22 | 21 | 18 | 23 |
| G | 19 | 18 | 22 | $\underline{9}$ | $\underline{5}$ | 17 | 21 | 23 | 13 | 14 | 14 | 14 |
| T | 14 | 14 | 16 | 19 | 23 | 18 | 10 | 11 | 17 | 22 | 13 | 15 |

Table S5. Frequency of nucleotides present in regions flanking the mutated TGA stop codon $(N=35)$. Position 0 corresponding to the stop codon is not shown. Nucleotide frequencies that are significantly higher/lower ($p<0.0 \mathrm{I}$) in comparison to the HGMD control dataset are shown in bold

Base	$\mathbf{- 6}$	$\mathbf{- 5}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$	1	2	3	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
A	9	9	4	12	12	9	12	9	8	6	10	6
C	7	8	10	13	10	11	4	12	8	9	8	9
G	12	10	11	7	5	9	13	10	9	9	8	8
T	7	8	10	3	8	6	6	4	10	11	9	12

Table S7. Frequencies of nucleotides flanking the next downstream in-frame stop codon in mutated sequences. Position 0 , corresponding to the stop codon, is not shown. Frequencies which are significantly higher/lower ($p<0.01$) in comparison with the corresponding HGMD controls are shown underlined

Base	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
A	9	10	14	16	8	9	13	10	17	14	16	15
C	13	11	7	7	12	17	12	17	11	16	9	15
G	8	15	11	9	8	10	12	12	9	9	10	12
T	16	10	14	15	19	11	11	9	10	8	12	5

Table S8. Frequencies of nucleotides flanking the next downstream in-frame TGA stop codon. Position 0 , corresponding to the stop codon, is not shown. Frequencies which are significantly higher/lower ($p<0.0 \mathrm{I}$) in comparison with the corresponding HGMD controls are shown in bold

Base	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
A	4	6	9	9	3	1	5	6	7	6	9	4
C	7	8	4	3	6	11	7	10	8	10	5	12
G	6	8	6	4	5	7	8	4	4	4	4	6
T	8	3	6	9	11	6	6	6	6	5	7	3

[^0]: ${ }^{\text {a }}$ Mutations and sequences were taken from the HGMD.'
 ${ }^{\text {b }}$ The control dataset comprises 1,692 genes listed in the HGMD but for which no nonstop mutations have been recorded to date.
 ${ }^{c}$ Based on a total of 29,210 stop codons associated with annotated human genes. Data from the Transterm database (http://uther.otago.ac.nz/Transterm.html) ${ }^{16}$

