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In autonomous driving and Intelligent transportation systems, pedestrian detection is vital in reducing traffic accidents. However,
detecting small-scale and occluded pedestrians is challenging due to the ineffective utilization of the low-feature content of small-
scale objects. (e main reasons behind this are the stochastic nature of weight initialization and the greedy nature of non-
maximum suppression. To overcome the aforesaid issues, this work proposes a multifocus feature extractor module by fusing
feature maps extracted from the Gaussian and Xavier mapping function to enhance the effective receptive field. We also employ a
focused attention feature selection on a higher layer feature map of the single shot detector (SSD) region proposal module to blend
with its low-layer feature to tackle the vanishing of the feature detail due to convolution and pooling operation. In addition, this
work proposes a decaying nonmaximum suppression function considering score and Intersection Over Union (IOU) parameters
to tackle highmiss rates caused by greedy nonmaximum suppression used by SSD. Extensive experiments have been conducted on
the Caltech pedestrian dataset with the original annotations and the improved annotations. Experimental results demonstrate the
effectiveness of the proposed method, particularly for small and occluded pedestrians.

1. Introduction

Pedestrian detection is a fundamental task in computer
vision applications such as surveillance, robotics, and au-
tomotive safety. Specifically, pedestrian detection in trans-
portation is significant because it can save countless lives [1].
Despite extensive research on pedestrian detection, new
studies show significant advances, signaling that a maximum
threshold has yet to be reached, i.e., small-scale pedestrian
detection and occlusion are two of the current state-of-the-
art constraints. Insufficient feature strength in small objects
and the stochastic nature of kernel initialization are the
leading cause of incapability in detecting small objects [2, 3].

Occlusion is another challenging issue in pedestrian
detection because it is difficult to compromise miss rate and

accuracy when detectors are sensitive to the nonmaximum
suppression (NMS) threshold in crowded environments [4].
(e technology for detecting pedestrians is advancing all the
time. Although the occlusion problem can be solved, there is
still a significant barrier to overcome.

Videos taken by businesses such as banks and shopping
malls obscure the majority of people on the street [5]. When
pedestrians are hidden by background clutter or other ob-
jects, it can be more difficult to detect them. In the field of
smart cities, pedestrian detection under occlusion has be-
come a popular method of tracking people. Occupied pe-
destrian detection is useful in a wide range of fields, such as
automated driving, intelligent video surveillance, robotics,
human-computer interaction, and security. Assisted driving
and self-driving vehicles are two of the most important
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aspects of intelligent transportation. It is essential to detect
humans even when they are partially obscured by objects.
Drivers need to be aware of pedestrians and give them the
benefit of the doubt when it comes to pedestrian detection
under occlusion.

(ere are four levels of occlusion between pedestrians
[6]: zero, one to 35%, 35 to 80%, and above 80%. Depending
on the detection framework, occupied pedestrian detection
can be broken down into two approaches: (1) traditional
methods [7, 8] and (2) deep learning methods [9–12].

Traditional methods for dealing with occluded pedes-
trians include combining hand-engineered kernel features
such as the Histogram of Oriented Gradient (HOG) de-
scriptor [8], Scale Invariant Feature Transform (SIFT) [13],
and aggregated channel feature [14] with linear support
vector machine [15] or random forests [16]. (e ability of
HOG and SIFT to represent distinguishing characteristics of
a pedestrian makes them popular algorithms. Many pe-
destrian detection frameworks have been presented to ad-
dress a wide range of detection challenges, from the occluded
to the visible and small to large scale.

Dollar et al. [17] presented Integral Channel Feature
(ICF), which uses integral images to extract features from
HOG and LUV color channels (HOG + LUV) and employs
boosted decision forests for pedestrian detection to boost
detection accuracy. Moreover, Dollar et al. developed three
opposing cascaded modules (soft cascade, excitatory cas-
cade, and inhibitory cascade) to maximize the inference
rate. After ICF, handcrafted features with improved LUV
color channels (Aggregated Channel Features (ACF), Ro-
tated Filters [18], Locally Decorrelated Channel Features
(LDCF) [19], Checkerboards [20], and SquaresChntrs [21])
were used to improve low-resolution image detection and
enable detector invariance to changes in lighting
conditions.

(e alternative approach to tackle occluded pedestrians
is the component-based method. Even if a portion of the
pedestrian to be detected is obscured, the remaining parts
can be used to determine the pedestrian’s location.
According to Leibe et al. [22], pedestrian detection algo-
rithms in crowded scenes are equivalent to the prototype of
pedestrian detection under occlusion. A key component of
their approach is the use of probabilistic top-down seg-
mentation to combine local and global cues. To better deal
with pedestrians, Mohan et al. [23] found that pedestrians
can be divided into four sections: head and shoulder, leg, left
hand, and right hand. It is more effective to deal with oc-
clusion. Occlusion-aware pedestrian detection frameworks
were devised using a deformable part-based model (DPM)
[24], which generalizes global appearance from local ap-
pearance. (e first method produces acceptable detection
results with minimal computational effort. Despite this, it
has a high miss rate, has difficulty determining the proper
aspect ratio between image pyramids and sliding window
step size, and kernels are not learnable, meaning they must
be constructed manually.

(e second approach is based on deep learning and
significantly boosts detection accuracy and response time.
(e approach to deep learning is primarily divided into two

categories. First, there is the two-stage detector algorithm,
which separates target recognition and location into two
parts. For example, the family of recurrent convolutional
neural networks (R-CNNs) has been used in [25, 26] for
object detection. R-CNN is one of the most prominent deep
learning-based object detection frameworks. Since then, the
R-CNN family has been subjected to various studies to
increase detection accuracy and response time. A super-
resolution algorithm, a combination of handcrafted features
with convolutional neural network (CNN) feature maps
[11, 27–31] and CNN’s layer fusion are the leading ap-
proaches built on top of the R-CNN family to deal with low-
resolution, occlusion, and normal (fully visible and large
scale) pedestrian detection.

Tian et al. [32] proposed the Deep-Parts, using Deep
Part, they can automatically select critical body parts for
occlusion handling from a part pool that includes parts of all
sizes. An ensemble of detectors is learned and the output of
the ensemble is integrated as a strategy for dealing with
occlusion in these methods. However, the procedure is
difficult and extensive. Furthermore, by combining a faster
R-CNN with an attention mechanism composition [33], this
method has a minimal training burden, making it easy to
train. (e overhead for this approach is minimal, making it
simple to train. (e use of attention mechanisms in CNN
object detection has been widespread. In order for the de-
tector to focus more on visible body parts, an additional
mechanism has been added.(e primary method for dealing
with small-scale or low-resolution pedestrian detection is to
increase the feature’s resolution.

Tesema et al. [34] blends handcrafted features with con-
volutional feature maps to detect a low-resolution pedestrian.
Chu et al. [35] synthesized high-level features using features
from all levels. By adaptively merging multilayer features, Liu
et al. [36] suggested a gated feature extraction module. Wang
et al. [37] proposed a multiscale area proposal network with a
decision forest for categorization to deal with scale-invariance
differences. Inspired by the human detection and recognition
mechanism, attention models have been developed and inte-
grated on R–CNN for different tasks. For example, Zhang et al.
[38] observed that individual streams depict different regions of
an object and employed channel-wise attention [39] to detect
occluded pedestrians. (e maximum detection accuracy is
achieved by all pedestrian detection frameworks built on top of
the R-CNN family. However, they are complicated, with many
moving parts, and can only be used for offline deep learning-
based object detection.

Second (class-aware), it is a one-stage detector algorithm
that includes the single shot detector (SSD) [40] and You
Only Look Once (YOLO) [12, 41] object detection frame-
work has been developed to address these concerns.(e SSD
object detector is entirely end-to-end, has no complex
moving parts, and can perform in real time. (e current
state-of-the-arts built on top of class-aware frameworks
yields a good result in the best conditions, such as a pe-
destrian with a comparable scale (above 80 pixels height)
and complete visibility. However, detection and recognition
capabilities for small-scale pedestrian and partial occlusion
are severely compelled.
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(e poor performance of the state-of-the-art works in
detecting small-scale or obstructed pedestrians is primarily due
to the stochastic nature of kernel initialization, fading of an
object resolution as feature maps traverse through deep layers,
and the greedy nature of the SSD’s nonmaximum suppression
approach.(e SSD begins with a base network (VGG-16). Later,
convolution and pooling layers are replaced with a set of new
convolution layers. (e output fully connected (FC) layer is
connected to each CONV layer. (e most common complaint
of SSDs is that they do not function well for small items because
small objects do not always exist on all feature maps. Hence, the
curse of this approach for small-scale pedestrian detection is that
there is a high probability of losing all of the features of an object,
i.e., reduction of resolution.

In other words, SSDs do not function well for small items
because small objects’ attributes do not always exist on all layers
of the region proposal module. Besides, occlusion creates a
challenge in detecting pedestrians, especially in a crowded sit-
uation. In the Caltech pedestrian dataset [5], for example, notes
that other pedestrians occlude 70 percent of pedestrians. It is
challenging to compromise miss rate and accuracy when de-
tectors are sensitive to the threshold of nonmaximum sup-
pression (NMS) in crowded settings.

We propose a solution to overcome the challenges men-
tioned above; we offer a new architecture with a channel-aware
attention feature fusion and nonmaximum suppression that
considers score and IOU parameters to reduce a miss rate and
increase accuracy. Our architecture adopts VGG-16 [42] by
adding a new branch with the same kernel size as the original
architecture. However, we employ Xavier [43] weight initiali-
zation, which diffuses the concentration in the center out to the
periphery, unlike normal Gaussian distribution [44] used by
VGG-16weight initialization. So, a combination of features from
both branches can magnify the effective receptive field. We also
propose a channel-aware attention feature fusion between each
CONV layer of the region proposal module, as shown in Fig-
ure 1, to overcome the vanishing of features on a small scale. In
addition, to handle pedestrians with occlusion, we propose
nonmaximum suppression which is a modified version of Soft-
NMS. Specifically, we consider the difference between the ob-
jects proposals score parameter and an intersection (IOU) used
by soft-NMS to reduce themiss rate caused by the greedy nature
of nonmaximum suppression. (e main contributions made in
this work are as follows:

(1) We propose a framework that incorporates
channel-aware feature fusion with a heteroge-
neous mapping function to efficiently employ all
features in a receptive field while avoiding van-
ishing gradients generated by a small-scale object.

(2) We explore how the field of view of a unit value in
a particular layer in the network is affected by the
kernels’ weight initialization. Our experiments
show that Gaussian random weight initialization
assigns a large scale at the center of the kernel and
a small value for the outermost; as a result, only
the central receptive field has a high impact on
unit out. We find that equal levels of the relevance
of features within the receptive field enable a
framework to attain maximum effective receptive
field without a shallow layer.

(3) We find that applying greedy nonmaximum
suppression to crowded pedestrian detection re-
duces precision by excluding detection with high
scores that are likely to be false positives. To
overcome these limitations, we employ an
adaptive bounding box suppression.

(4) Experiments and analyses are conducted on the
Caltech pedestrian dataset [5] with the original and
new annotations. Our approach achieves the miss-
rate (MR) of 9.1 and 6.08, outperforming detection
with occlusion performance.

(e remainder of this article is organized as follows:
Section 2 goes through the related work. Section 3 goes
through the proposed architecture and its components in
detail. In Section 4, we conduct experiments, analyze the
result, and conduct an ablation study. Finally, we sum up
our work and make some recommendations for further
research.

2. Related Works

So far, pedestrian detection studies have yielded positive
results in ideal conditions such as large scale, full visibility,
and high resolution. Despite its great success, pedestrian
detection still faces a number of challenges under certain
conditions, as discussed below.

Input Image 3×3 with
Xavier
rand

3×3 with
Xavier
rand

3×3 with
Xavier
rand

conv 4-3
38×383×33×33×3

C C C

Figure 1: Our proposed backbone module. It has two branches i.e., the bottom branch is a sample layer of the VGG-16, and the top
component is a new integrated layer in which the kernel size is equal in size to the bottom one except for weight initialization which is Xavier.
At the end of each layer, feature maps are extracted from both branches, and combined C in-depth wise.
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2.1. Scale Aware Pedestrian Detection. (e current state-of-
the-art in small-scale pedestrian detection methods focuses
on enhancing weak signals in small-scale objects and pre-
serving that signal while applying feature extraction oper-
ations such as convolution and pooling. Hybrid channel
fusion and pure CNN feature maps are the two main ap-
proaches to small-scale pedestrian detection. (ey merged
the advantages of handmade and CNN kernels in hybrid
approaches, integrating high-resolution, and easy-to-com-
pute handcrafted feature channels with low resolution and
computationally expensive CNN feature channels.

On the other hand, some approaches use the handcrafted
feature for region proposals. CNN for categorization applies
CNN for bounding boxes generation while based on the
extracted feature shallow classifier. (e handcrafted filtered
channel features (FCF) [20] were proposed to be replaced by
convolutional channel features (CCF), in which each pixel in
the final convolutional layer is treated as a single feature by
Yan et al. [45].

Hu et al. [46] trained an ensemble of boosted decision
forests using features from different layers of a CNN. Zhang
et al. [47] and Tesemaa et al. [34] used the region proposal
network (RPN) as an initial pedestrian detector, then trained
a shallow classifier with in-depth features to refine detection
results. Li et al. [48] proposed extracting multi-resolution in-
depth features from different convolutional networks. Sheng
et al. [48] created a filtered channel framework that com-
bined deep semantic segmentation features with shallow
handcrafted channel features. Wang et al. [37] created a
multi-scale region proposal network that included a decision
forest for classification to deal with scale differences.

(e other approach is detecting objects on multiple
scales [21] suggests a cohesive multiscale CNN (MS-CNN)
that detects objects at multiple intermediate layers and up
samples to avert feature map resolution issues when dealing
with small instances. Instead of a single downstream clas-
sifier, the fused deep neural network (F-DNN+SS) method
[49] employs a derivation of the faster R-CNN framework
fusing multiple parallel classifiers using soft-rejection, such
as Resnet and Google net, as well as pixel-wise semantic
segmentation in postprocessing to suppress background
proposals. (e other problem is related to pose and learning
method, for example, Wiedemer et al. and Tang et al. [50, 51]
demonstrate that the combination of supervised domain
adaptation with fine-tuning is effective in tackling settings
posses caused by geometric distortions, perspective changes,
and the scarcity of training samples. (is paper suggests a
multifocus feature extractor base module that combines
feature maps extracted from the Gaussian and Xavier
mapping functions in order to improve the effective re-
ceptive field which results in a signal of small-scale object to
be used effectively.

2.2. Occlusion Aware Pedestrian Detection. (e occlusion of
pedestrians is a typical problem. For instance, 53% of pe-
destrians are obscured in the Caltech pedestrian dataset. (e
two types of pedestrian occlusions are interclass and
intraclass occlusions. When other objects obstruct

pedestrians, this is known as interclass occlusion (not pe-
destrians). Intraclass occlusion occurs when other pedes-
trians obstruct pedestrians. To handle interclass occlusion,
emphasize the unoccluded part’s characteristics while
repressing the occluded part’s attributes. To cover occlusion
patterns [32, 52, 53], for example, learn different parts of
body detectors. (e challenging part of this multipart de-
tector is combining the results. For the proposed model,
taking into account the aspect ratio of a human’s height and
width, we structure a region proposal scheme.

(e algorithm generates multiple bounding boxes with
varying scales and aspect ratios, each centered on a single
pixel. (is configuration of human-based anchors enables
the model to perform exceptionally well when determining
whether a particular type of pedestrian appears in an image.
We also include a small aspect ratio with equal height and
width to enable the model to detect a pedestrian that is
visible only above the neck. In addition, in the Caltech
pedestrian dataset [5], the occlusion statistics indicate the
number of occlusions caused by a pedestrian (intraclass).
(erefore, the preceding setup enables the proposed model
to predict a higher detection precision for intraclass
occlusion.

Annotating the visible part of a body [54–59] is the other
method; this technique consumes resources for annotation.
NMS must remove duplicate bounding boxes when
detecting pedestrians. As an adverse effect, NMS merges the
bounding boxes of different pedestrians in a crowd scene
(intra-class occlusion). Improved NMS strategies, such as
dynamic NMS threshold, are one solution to this problem.
To combat high miss rates caused by greedy nonmaximum
suppression, we propose an adaptive bounding box sup-
pression that takes score and Intersection Over Union (IOU)
parameters into account.

3. The Proposed Architecture

(is section introduces our proposed architecture, its
components, a few fundamental design principles, and ex-
periments and analysis. (e proposed framework incor-
porates three submodules: the backbone module, the dense
multiscale region proposal module, and the adaptive
bounding box suppression module. (e complete pipeline is
presented in Algorithm 1.

3.1. -e Backbone Module. (e backbone-network extracts
salient features from the input image. Using the pretrained
ImageNet [60] model as the basis network offers multiple
benefits. (e benefit includes the flexibility to incorporate
several cutting-edgemodels, the elimination of the need for a
powerful machine to train, and a faster training period.
However, the ImageNet dataset contains objects of “me-
dium” size, spanning from 60 to 140 pixels, outside the
intended domain, such as when a dataset is in small scale or
occlusion. In addition, A single-scale kernel feature extractor
like VGG16 has few parameters compared with a multiscale
feature, but the signal strength at the end of a layer is low
when compared with a multiscale feature.
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As a result, we propose a new architecture that adopts
VGG-16 by appending a new branch layer with the same
kernel size as the original architecture. However, we apply
Xavier [43] weight initialization, which diffuses the con-
centration in the center out to the periphery, unlike normal
Gaussian distribution [44] used by VGG-16 weight initial-
ization. Our base network is a multi-feature extraction
model like Google net [61], mobileNet [62], and ResNet [63].
(ey can capture salient features of an image, enabling us to
get a maximum effective receptive field with a shallow layer
and enabling the region proposal regression module to get a
sufficient signal. However, they contain many parameters
when compared with our proposed base network. Finally, we
combine feature maps from an integrated branch layer and
original feature maps into channel dimensions as shown in
Figure 1.

3.2. Dense Multiscale Region Proposal Module. (is module
shares a similar structure with the SSD region proposal
module. (e SSD detection framework uses the VGG-16
Conv4-3 feature map as its first scale, which has a scale of a
different feature compared to other layers. (e remaining
five scales of the SSDs framework are generated by applying
convolution operations on VGG-16 Conv5-3 feature maps.
Our experiment found that the feature detail of a small-scale
object does not propagate through all hierarchical scales
with such a framework.

(e vanishing of the feature detail results in poor per-
formance causing hurting bounding box learning, and the
bounding boxes proposal layer has a high miss rate. Hence,
to tackle this limitation we apply a focused attention se-
lection mechanism [64, 65] on the VGG-16 Conv4-3 layer to
blend with the Conv5-3 feature, that preserves a long-term
dependence between layers. It results in the propagation of
more detailed information about an object to a layer that
contains semantic information while avoiding background
clutter and semantic ambiguity. All hierarchies of the feature
layer receive feature maps of their previous layer which
makes an object’s feature pass-through all layers. Figure 2
shows how a lower-layer feature maps integrated with a
higher layer feature. In this combination, a feature map of a
Conv5-3 pass-through attention score (FE) is learned by 1 ×

1 kernel as follows:

FE � Wg ∗Y, (1)

where ∗ denotes a convolution operation, Wg is the learned
weight matrices implemented as a 1 × 1 convolution, and Y

is the feature map of conv5-3. (en, the soft-max nor-
malization is applied on a value of FE to get the feature
selector, which assures non-negative selection of feature
map.

SMi,j �
expFEi,j

􏽐
W
i 􏽐

H
j expFEi,j

, (2)

where, SM ∈ RW×H×1 and Si,j are the score at position (i, j).
A new lower-layer features is given by Xs

i,j,c � SMi,j ∗Xi,j,c.
(is operation gives a more relevant lower-layer feature.

Here, Xi,j,c denote the value in X with a spatial location (i, j)

at channel c.
(ere are six hierarchical convolution layers in the re-

gion proposal module. To improve layer feature map res-
olution and enable minor object features to reach the end of
the feature proposal region, we combine feature maps from
higher layers with feature maps from lower layers so that
they can be detected. Background features propagate for-
ward due to direct integration of layer’s feature maps, re-
ducing detection accuracy and increasing miss rate. As a
result, we only use the feature selector to forward important
feature maps from the lower layer to the higher layer.

(is feature selector assigns attention scores to each local
position on the low-layer feature map, indicating the low-
layer features’ importance. (e attention score selector is
learned by 1 × 1 × c kernel size, where c is the feature map
depth. As shown in Figure 1, the first and last layer of the
region proposal module is directly connected. However, the
middle layers feature map is fussed, so based on this con-
figuration the number of parameters is as follows: 1 × 1 ×

512 kernel for the second layer and the remaining three
layers each has 1 × 1 × 256 kernel size. Hence the total
number of parameters is 1280.

(e SSD’s bounding boxes’ width and height are defined
by the aspect ratios (1, 0.5, 2, 0.333, and 3) with scales
starting at 0.2 and growing linearly to the rightmost layer at a
scale of 0.9. However, this design distribution does not best
fit a common pedestrian dataset [5] because the equation
[40] of the SSD’s bounding boxes definition yields 50% of
boxes with a width size greater than height resulting in
misalignment between anchors and ground-truth bounding
box features. As a result, we define bounding boxes shape as
illustrated in the following equation:

Height � scale × aspect ratio × feature map height,

Width � scale × aspect ratio × feature map width.
(3)

(ere is no standard for defining the number of model
anchors and their characteristics. Nevertheless, a good de-
cision is based on several factors. (e problem type (the
density of the objects in the dataset) i.e., are the objects in the
dataset sparse or dense? Or if the objects in the image are
large, small, or mixed and the smallest and largest boxes to
be detected in the dataset are common considerations.
Moreover, CNN’s key characteristics of multiscale, regular
deformation, and sparseness make it the optimal view,
particularly for our problem of dealing with the dynamically
changing nature of crowd density and the scale of various
objects.

First, the bottom layers of CNN aggregate very fine,
small-scale information, which is close neighbor informa-
tion, and then, through the cascading of convolutional and
subsampling operations, gradually aggregate information on
a larger scale. Consequently, our anchor number and aspect
ratio configuration are assigned based on these and the
preceding factors. (ere are so many anchors for the lower
layer because this layer’s feature contains many objects, and
as a layer’s height increases, we reduce the number of an-
chors, because the feature may contain a few objects with
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large dimensions. Consequently, given the preceding factors,
the configuration of the aspect ratio (1, 0.5, 3, 4, and 2) and
the number of anchors (6, 6, 4, 4, and 4) at each layer of a
region proposal yielded a satisfactory outcome after several
experiments.

3.3. Adaptive Bounding Box Suppression Module. To dem-
onstrate the effect of nonmaximum suppression (NMS) on
occluded pedestrian detection, we examine various NMS
techniques, such as greedy-NMS [66], soft-NMS [67], and
our proposed modified soft-NMS called score-soft NMS. A
greedy-NMS applies a hard threshold when deciding what
should be retained or eliminated from K’s bounding box
neighborhood. Setting maximum and minimum threshold
values has a cost, for example, suppressing all nearby

detection boxes with a low threshold value increases the miss
rate.

Furthermore, using a high threshold value would result
in more false positives, lowering average precision. Figure 3
depicts the effect of greedy-NMS on a crowded pedestrian. A
pedestrian with a label of 2 has neighbors labeled with 3 and
11; their score is 0.67 and 0.6, respectively. Because both
boxes overlap significantly with label 2, greedy-NMS sup-
presses them and assigns a score of zero. While Soft-NMS
decays the scores of 2’s neighborhood, the score for de-
tection boxes with a higher overlap with 2 should be decayed
more, as they are more likely to be false positives. (e time
complexity of this algorithm is equivalent to that of soft-
NMS, but the decaying function is different where
f(iou(M, bi), di ff(sm, si)) is the weighting function based
on overlap. In each iteration of removing an anchor has a
computational complexity of O(N), where N is the number
of detection boxes.

Soft-NMS outperforms greedy NMS in terms of pre-
cision, especially when dealing with crowded pedestrians.
However, the rescoring function based on the overlap
parameter results in a low decay rate for a proposal having a
small score value. Hence, to tackle this, we modified the
soft-NMS of rescoring function by considering a proposal’s
score and overlap. For example, detection boxes with
higher overlaps with 2’s and a low objectness score decay
more than the exact overlaps but with a high objectness
score.

As shown in equation (4), decaying is an exponential
function of the difference between a proposal having a high
score and its neighbor’s scores with their overlap value. (is
results in a detection box having a higher overlap and a lower
objectness score with the highest score proposal decaying faster
than a high score value. (is update rule is applied every cycle,
and the scores of all remaining detection boxes are updated.
(e algorithm’s top, middle, and bottom boxes represent
greedy-NMS, soft-NMS, and modified soft-NMS, respectively.

SM

FE

conv5-3
19×19

conv4-3
38×38

conv5-3-1
19×19

conv5-3-2
10×10

conv5-3-3
5×5

conv5-3-4
3×3

1×1

87
32

 p
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Figure 2: Our proposed region proposal module, here VGG-16 Conv5-3 layer feature map pass-through attention score feature extractor
module FE, which is learned by 1 × 1 kernel. (e output from FE pass-through the soft-max normalization SM to ensure a non-negative
feature selector. Finally, the output of SM is multiplied with a low-layer feature map which enables a significant feature from the low-layer
feature maps to pass through the higher layer, i.e., can avoid background jumble and semantic ambiguity.

Figure 3: Our figure shows a pedestrian’s detection score; with the
help of the declining score function, occluded pedestrians can be
detected with a low score value. When greedy-NMS is used, a
pedestrian with label 9 overlaps with labels 7 and 8, results in a 0
score for both.(e penalization of the score, on the other hand, aids
in the detection of the occluded pedestrian.
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si � e
− di ff sm,si( )( )sie

− iou M,bi( )( ), (4)

where ∀bi ∉ D, si is the revised abjectness score of a pro-
posal. (e overlap-NMS technique is depicted in full in the
algorithm, which includes the overlap and abjectness score-
based weighting function.

4. Experiments and Results

4.1. Dataset and Evaluation Metrics. To evaluate the use-
fulness of the proposed approach, we used the Caltech
dataset [5], which is a benchmark for testing pedestrian
detection algorithms. (e dataset is significant and difficult
to evaluate, comprising around 10 hours of videos (at 30
frames per second) taken from a vehicle traveling through
metropolitan traffic. In every frame of the raw Caltech
dataset, the bounding boxes of pedestrian instances have
been heavily annotated. In 250,000 frames, 350,000
bounding boxes with about 2,300 distinct pedestrians are
classified. We employ the log-average miss rate in log-space
in the range [0.02 to 1] to describe detector performance.
Pedestrian height and proportion of occlusion have been
used to construct various assessment settings. (e following
are the parameters utilized in this paper.

4.1.1. Setups Involving Scale. Near (80 pixels or more),
medium (30 pixels to 80 pixels), and far (30 pixels or less) are
the three categories of pedestrian distribution in the dataset;
the medium size is excellent for automobile systems. It is the
most often used evaluation setting, and practically all pe-
destrian detection research studies use it as a standard
evaluation benchmark. In this study, it is also the default
setting for evaluation.

4.1.2. Setups Involving Occlusion. (e partial and heavy
occlusion categories apply to pedestrians between 30 pixels
to 80 pixels and have 1–35 and 36–80 of their body parts
occluded, respectively. We test our methods on the updated
annotations supplied by [18], which amend the mistakes in
the original annotations and the Caltech dataset with the
original annotations.

4.1.3. Log-Average Miss Rate (LAMR). Used to measure the
performance of the object detector by comparing the log-
average miss rate of the detection results compared to
ground-truth data.

LAMR � exp
1
p

􏽘
f

log mr argmaxfppi(c)≤ffppi(c)􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠,

(5)

where, fppi is the number of false positives per image, p is
the number of fppi reference points, and c is a confidence
threshold c which is used as a control variable. By decreasing
c, more detections are taken into account for evaluation
resulting in more possible true or false positives, and pos-
sibly fewer false negatives, and mr is the miss rate which is

equal to the division of the number of false negatives fn(c)

by the sum of the number of true positives (tp(c)) and the
number of false positives (fp(c)). For each fppi reference
point the corresponding mr value is used. In the absence of a
miss-rate value for a given f the highest existent fppi value is
used as a new reference point.

4.2. Ablation Study. First, we conduct ablation experiments
to evaluate the single-scale kernel properties based on the
features produced from the VGG-16 base framework. We
use recall rates at various IoU thresholds for evaluation. (e
results of the experiment are shown in Table 1.(e Conv5-3-
4 feature has the highest MR of 13. (e impact of low-
resolution features on proposal quality can also be noticed.
MR increases as we progress from low-level to high-level
features. Conv4-3 begins to decline, which may be attributed
to a diminished depiction of the shallower layers. We
contend that the low-resolution features are the reason for
the poor performance.

To demonstrate this, we employ our modified VGG-16,
multiscale feature extraction-based network (on the same set
of region proposals). Table 1 of column 6 shows the MR
result after modification of the VGG-16 base network. From
the result, we can see that the MR of each layer of feature
maps is enhanced. (is fact reveals that multiscale feature
extraction is vital for an effective proposal because it is large
enough to capture the prominent characteristics of an image,
allowing for a maximum effective receptive field with a
shallow layer and sufficient signal reach at the base network’s
end layer.

4.3. Evaluation of the Dense Multiscale Region Proposal
Detector. (is section is devoted to exploring the effec-
tiveness of the proposed dense multiscale region proposal
detector. (e feature maps from Conv4-3 with a resolution
38 × 38 of VGG-16 are our framework’s first layer because
they achieve the best performance among the different layers
[40]. (en, using a focused attention selection mechanism
[68], we blend the higher layer with the lower-layer feature
to generate the remaining five hierarchical feature maps.

Table 2 shows the results of our proposed framework for
all combinations of feature maps. (e results show that the
combination of features outperforms each CNN feature
alone, such as SSD feature representation. (e combination
of Conv-4-3 and Conv 5–3 layer of VGG-16 achieves an MR
of 9.1, which is slightly better than the best MR of 9.6
achieved in [34]. In their work, the best result is achieved by
the combination of conv3-3 and the trous version of Conv4-
3 takes extra computation time to recompute the conv4-3
features maps with the trous trick and adds background
clutter and semantic ambiguity to a higher layer. While
attention selection feature integration requires more com-
putation time, it allows lower-layer feature maps to prop-
agate forward if they have a high correlation with higher-
layer feature maps.

As a result, more detailed information about an object is
flowed to a semantic layer, avoiding background clutter and
semantic ambiguity. (is suggests that optimizing the
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effective receptive field of a base network and using an ef-
ficient feature integration algorithm can provide quality
object proposals and improve detection accuracy.

4.4. Evaluationwith respect toOcclusion. To demonstrate the
importance of score-aware soft-max suppression in occlu-
sion-aware pedestrian detection, we substitute
Base − Mode l + Region − Proposal of SSD greedy-NMS
with soft-NMS and our suggested NMS. We investigate the
applicability of our technique in various occlusion evalua-
tion circumstances (none, partial, and heavy). Table 3 shows
the outcomes. (is comparison is carried out using the MR
metric, applied to all feature map hierarchies of the region
proposal module. According to this analysis, the consider-
able improvement of nonmaximum bounding box sup-
pression is crucial to enhancing the accuracy of occluded
detection. It demonstrates one approach to dealing with
occlusion aware-detection systems.

4.5. Comparison with State-of-the-Art Methods on Caltech
with the Original and New Annotations. Table 4 compares
our best results of dense multiscale feature extraction
with score-soft pedestrian detection (DMSSPD) to state-
of-the-art methods on the Caltech dataset with original
and latest annotations. On the two benchmarks, our
technique produced MR of 9.1% and 6.08%, respectively.
Several research classes have produced better results than
ours, but they all employ more complex structures and
need higher processing costs.

For instance, the work [69] achieved an outstanding
result. A single-shot convolutional multi-box detector
for pedestrian candidates a classification system
employing the concept of ensemble learning to improve
the detection accuracy and classify the generated can-
didates, a novel soft-rejection fusion method to assign
floating point labels to the generated pedestrian candi-
dates, and a deep context aggregation semantic seg-
mentation network that provides the pixel-level
classification of the scene.

(e aforementioned components make the model more
computationally complex than our proposed method be-
cause our proposed method has three moving parts: a single-
shot convolutional multi-box detector for pedestrian can-
didates, which is identical to [69]; a focused attention se-
lection module with a complexity of 11c kernel size where c
is the depth of six layers for propagating essential features to
the next layer; and an adaptive bounding box suppression
module is the weighting function. (e computational
complexity of each step is O(N), where N is the number of
detection boxes. Furthermore, [72] utilized a multitask in-
fusion framework for pedestrian detection and semantic
segmentation joint subprediction.

(e segmentation infusion layer yields more refined
shared feature maps, which tend to illuminate pedestrians
and facilitate pedestrian detection in a subsequent step. It
consists of four elements, including weak segmentation
supervision, proposal padding, cost-sensitive weighting, and

Input: B� b1, . . . , bN, S� s1, . . . , sN, Nt

B is the list of initial detection boxes
S contains corresponding detection scores
Nt is the NMS threshold
D←whileB≠ emptydo

m←argmax S

M←bm

D←D∪M

B←B − M

forbiinBdo
ifiou(M, bi)≥Ntthen

B←B − bi,

S←S − si

si←f(iou(M, bi))

si←f(iou(M, bi), di ff(sm, si))

ALGORITHM 1: (e algorithm shows the modified version of Soft-NMS. (e last box explicitly shows our proposed objectness score
decaying function, a function of IOU and score parameter. (e function revise the detection scores by scaling them as Gaussian function of
overlap and objectness score.

Table 1: Comparison between the base network VGG-16 and our
proposed modified base module for a small-scale pedestrian on
each hierarchy of layers.

Feature
map Resolution Base

network MR Base-network MR

Conv4-3 38 × 38 VGG-16 9.6 Modified
VGG-16 9.1

Conv5-3 19 × 19 VGG-16 10.2 Modified
VGG-16 10

Conv5-3-1 10 × 10 VGG-16 10.8 Modified
VGG-16 10.3

Conv5-3-2 5 × 5 VGG-16 11.5 Modified
VGG-16 11.5

Conv5-3-3 3 × 3 VGG-16 12.8 Modified
VGG-16 12.3

Conv5-3-4 1 × 1 VGG-16 13 Modified
VGG-16 12.6
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stricter oversight. Because each pixel in the image is com-
puted to identify a foreground feature, each component has
numerous parameters and computational complexity.

5. Conclusion

(e detection of pedestrians is a primary concern. In ideal
settings, such as a pedestrian with a comparable scale (above 80
pixels in height) and complete visibility, the current state-of-the-
art produces an excellent outcome. Despite significant ad-
vancements, recognizing small-scale pedestrians remains a
source of the problem. As a result, to address this issue, we
present an average model weight ensemble framework that can
learn a variety of mapping functions and allows features to have
an equal impact within the receptive field by spreading the
concentration of a sensory field center to the periphery. We also
improve an adaptive bounding box suppression that maps
objects to nearby points via dimensionality reduction.

Data Availability

(e dataset is publicly available. We cite the dataset in
Section 4 for anyone interested in using it.
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