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Abstract. Tetrandrine (TET) exhibits biological activities, 
including anticancer activity. In Chinese medicine, TET has 
been used to treat hypertensive and arrhythmic conditions and 
has been demonstrated to induce cytotoxic effects on human 
cancer cell lines. However, to the best of the author's knowledge, 
no previous studies have revealed that TET affects cell metas-
tasis in SW620 human colon cancer cells. The present study 
demonstrated that TET decreased the cell number and inhibited 
cell adhesion and mobility of SW620 cells. Furthermore, a 
wound healing assay was performed to demonstrate that TET 
suppressed cell movement, and Transwell chamber assays were 
used to reveal that TET suppressed the cell migration and inva-
sion of SW620 cells. Western blotting demonstrated that TET 
significantly reduced protein expression levels of SOS Ras/Rac 

guanine nucleotide exchange factor 1, phosphatidylinositol 
3-kinase, growth factor receptor bound protein 2, phosphory-
lated (p)‑c Jun N‑terminal kinase 1/2, p‑p38, p38, 14‑3‑3, Rho A, 
β-catenin, nuclear factor-κB p65, signal transducer and activator 
of transcription-1 and cyclooxygenase-2, in comparison with 
untreated SW620 cells. Overall, the results of the present study 
suggested that TET may be used as a novel anti-metastasis agent 
for the treatment of human colon cancer in the future.

Introduction

In recent years, colorectal cancer remains a primary 
cause of morbidity and it is the fourth leading cause of 
cancer‑associated mortality worldwide (1). In the USA (2) and 
Europe (3), colorectal cancer is the second leading cause of 
cancer-associated mortality. In China, it has been noted that 
the morbidity and mortality rates of colorectal cancer were 
increased compared with previous years (4). In Taiwan, colon 
cancer is the fourth most common type of cancer, accounting 
for 23.9 mortalities per 100,000 individuals, based on the 
2014 report from the Department of Health, Executive Yuan, 
Taiwan (5). For patients with superficial cancer (Duke's staging 
of colorectal cancer), the 5-year survival rate was up to 90%; 
however, for patients with distant metastasis, the survival rate 
was ~9% (6,7). Therefore, it is well known that investigating 
the mechanisms underlying metastatic disease is critical for the 
treatment and development of metastatic prevention strategies 
of patients with cancer.

It is well known that tumor metastasis involves epithelial 
cancer cell adhesion, migration, invasion and angiogenesis 
for the development of cancer in other sites of the body (8,9). 
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Furthermore, numerous factors are associated with tumor 
metastasis, including matrix metalloproteinases (MMPs) and 
urokinase plasminogen activator (uPA), which serve critical roles 
in degrading the extracellular matrix and basement membrane 
collagen for cancer cells to invade into new sites (10-12). 
Epithelial mesenchymal-transition (EMT) is an important 
process for epithelial cancer cell loss of polarity and cell to cell 
contact (13), and EMT is one of the initial and primary events 
in tumor progression (14). The fibroblast growth factor family 
has been revealed to be associated with tumor metastasis in 
EMT (15,16). Other factors, including secreted factors, cyto-
kines, chemokines and growth factors have been revealed to be 
associated with the distinct modes of metastasis and subsequent 
mortality in tumors (17). A previous study demonstrated that 
activation of the phosphatidylinositol 3 kinase (PI3K)/protein 
kinase B (Akt) signaling pathway is involved in cancer cell 
metastasis (18). Therefore, numerous studies have aimed to 
investigate the use of novel compounds extracted from natural 
products as treatments for colon cancer cell metastasis (19-21).

Tetrandrine (TET), a bisbenzylisoquinoline alkaloid isolated 
from the root of Stephania tetrandra S. Moore, has been revealed 
to have biological activity, including cytotoxic effects, cell cycle 
arrest and induction of cell apoptosis in a number of human 
cancer cell lines (22-26). It was reported that TET suppresses 
proliferation, induces apoptosis and inhibits migration and inva-
sion in human prostate cancer cells (27). It was also reported that 
TET regulates metastatic- and angiogenic-associated proteins, 
including vascular endothelial growth factor, hypoxia-inducible 
factor-1, integrin β5, endothelial cell specific molecule‑1 and 
intercellular adhesion molecule-1 (28). Previously, it was 
demonstrated that TET targets epidermal growth factor receptor 
signaling and its downstream molecules contribute to the inhi-
bition of epidermal growth factor (EGF)-induced HT29 cell 
metastasis in vitro (29). Furthermore, it was also reported that 
TET‑loaded PVP‑b‑PCL nanoparticles more efficiently inhibit 
cell migration and invasion compared with free TET in A549 
human lung cancer cells (30). Although it was reported that TET 
inhibits cell migration and invasion in human colon cancer HT29 
cells via inhibition of EGF, whether nuclear factor (NF)-κB is 
involved in TET suppression of SW620 human colon cancer cell 
metastasis remains unclear. The present study revealed that TET 
inhibited cell migration and invasion of SW620 cells via the 
PI3K, NF‑κB and mitogen-activated protein kinase signaling 
pathways.

Materials and methods

Chemicals and reagents. TET, dimethyl sulfoxide (DMSO) and 
propidium iodide were obtained from Sigma‑Aldrich (Merck 
KGaA, Darmstadt, Germany). Leibovitz's L‑15 medium, fetal 
bovine serum (FBS), L-glutamine and antibiotics (penicillin-strep-
tomycin) were purchased from Gibco (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). Primary and secondary antibodies 
were obtained from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). Polyvinylidene difluoride (PVDF) membrane was 
obtained from EMD Millipore (Billerica, CA, USA).

Cell culture. The SW620 human colon cancer cell line was 
purchased from the Food Industry Research and Development 
Institute (Hsinchu, Taiwan). Cells were cultured in Leibovitz's 

L‑15 medium supplemented with 10% FBS, 100 units/ml peni-
cillin and 100 µg/ml streptomycin in a 75 cm2 tissue culture 
flask at 37˚C in a humidified atmosphere containing 5% 
CO2 (31,32).

Cell viability assays. SW620 cells were seeded in a 96-well 
plate at a density of 1.5x104 cells/well and treated with TET 
at the final concentrations of 0, 0.2, 0.39, 0.78, 1.56, 3.12, 6.25, 
12.5, 25 and 50 µM or 0.5% DMSO as the vehicle control. 
Following exposure to the drug for 24 or 48 h, 100 µl MTT 
(0.5 mg/ml; Sigma‑Aldrich; Merck KGaA) was added to each 
well and the plates were incubated for an additional 4 h at 37˚C. 
MTT solution in the medium was aspirated off. To achieve 
solubilization of the formazan crystals formed in viable cells, 
200 µl DMSO was added to each well prior to evaluation of 
absorbance at a wavelength of 570 nm (33).

Adhesion assay. SW620 cells (1x106 cells/well) were cultured 
with 0, 1, 5 and 10 µM TET for 48 h at 37˚C in 12‑well plates, 
which were pre‑coated with type I collagen (10 µg/ml) (Merck 
KGaA, Darmastadt, Germany) for 60 min at room tempera-
ture. Unattached cells were removed and attached cells were 
mixed in 1% glutaraldehyde (Sigma‑Aldrich; Merck KGaA) 
supplemented with PBS for 20 min, and stained with 0.02% 
crystal violet solution for 5 min at room temperature. Ethanol 
(70%) was used to dissolve crystal violet in the stained cells. 
Optical density (O.D.) was evaluated at 570 nm using a micro-
plate reader with a reference of 405 nm. The adhesion ability 
(percentage of adhesive cells, %) was determined by measuring 
the treated cells compared with the control cells (34).

Wound healing assay. SW620 cells (5x105 cells/well) were 
cultured in 6‑well plate until cell growth reached 100% conflu-
ence. A sterile yellow micropipette tip was used to scrape the 
cell monolayers in the well and cells were washed with PBS 
three times. Cells were then cultured in medium containing 
0, 1, 5 and 10 µM TET for 24 and 48 h at 37˚C. Cells were 
examined and imaged using an inverted microscope (x100 
magnification) (32,34). 

Invasion and migration assays. Evaluation of SW620 cell 
invasion was performed using Matrigel-coated Transwell cell 
culture chambers (8 µm pore size). Cells (8x104 cells/well) were 
seed in the upper chamber and incubated with Leibovitz's L-15 
medium supplemented with 0% FBS, and 0 or 10 µM TET 
for 48 h at 37˚C. Leibovitz's L‑15 medium supplemented with 
10% FBS was placed in the lower chamber. The non-invaded 
cells were removed using a cotton swab on the upper surface 
of the membrane and the invaded cells on the lower surface of 
the membrane were fixed with 4% cold formaldehyde, stained 
with 0.1% crystal violet for 15 min at room temperature and 
then imaged using an inverted light microscope (x200 magni-
fication). The invaded cells in the chamber were counted. For 
the determination of cell migration, the same invasion assay 
was performed with the membrane coated without Matrigel, 
as previously described (34). Cell migration was quantified by 
ImageJ (version 1.49o software, National Institutes of Health, 
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Bethesda, MD, USA) based on the change in the area of the 
cell-free gap before and after TET stimulation:

Western blot analysis. SW620 cells (6x106) were plated in 
10-cm dishes and incubated with 0, 1, 5, 10, 20 and 30 µM 
TET for 48 h at 37˚C, subsequently the cells were collected 
and lysed in a lysis buffer [40 mM Tris-HCl (pH 7.4), 10 mM 
EDTA, 120 mM NaCl, 1 mM dithiothreitol, 0.1% Nonide P‑40]. 
The total protein concentration from each treatment was evalu-
ated as previously described (34). A total of 30 µg protein was 
separated by SDS‑PAGE (5% stacking gel and 10‑12% separa-
tion gel) for western blot analysis. The gel was transferred to a 
PVDF membrane and the membrane was blocked in 5% fat‑free 
dry milk solution in PBS containing 0.1% Tween-20 for 1 h at 
room temperature, and then incubated with primary antibodies 
overnight at 4˚C. The phospho‑Jun N‑terminal kinase (p‑JNK) 
1/2 (sc‑6254), p‑38 (sc‑136210), phospho‑p‑38 (sc‑166182), 
ras homolog family member A (Rho A; sc‑418), growth 
factor receptor bound protein 2 (GRB2; sc-503) and 14-3-3 
protein σ (sc-100638) antibodies were supplied by Santa-Cruz 
Biotechnology, Inc. (Dallas, TX, USA, dilution 1:1,000). The 
anti‑matrix metalloproteinase (MMP)‑1 (MAB13439) and tissue 
inhibitor of metalloproteinase (TIMP)‑1 (AB6007) antibodies 
were supplies by Merck Millipore Corp. (Billerica, MA, USA; 
dilution, 1:1,000). The Son of sevenless homolog (SOS)-1 (610095, 
dilution, 1:250), phosphoinositide 3‑kinase (PI3K) (610046, 
dilution, 1:2,500), signal transducer and activator of transcrip-
tion 1 (STAT1) (610115, dilution, 1:1,000), cyclooxygenase‑2 
(Cox-2) (610204, dilution, 1:500) and -nuclear factor kappa B 
(NF-κB p65) (610868, dilution, 1:500) antibodies were obtained 
from BD Biosciences (Bedford, MA, USA). The anti‑MMP‑2 
(ab7032, dilution, 1:1,000) antibody was obtained from Abcam 
(Cambridge, MA, USA), and the MMP‑9 (GTX32122, dilu-
tion, 1:1,000) antibody was supplied by GeneTex, Inc. (Irvine, 
CA, USA) for the β-Catenin (C2206, dilution, 1:4,000) and 
β‑actin (A5316, dilution, 1:10,000) antibodies were supplied 
by Sigma‑Aldrich (St. Louis, MO, USA). Subsequently, the 
membranes were incubated with secondary antibodies [horse-
radish peroxidase (HRP)-conjugated mouse immunoglobulin G 
(IgG; GTX213112) and rabbit HRP-conjugated IgG secondary 
antibodies (GTX213110), dilution, 1:5,000; GeneTex, Irvine, 
CA, USA] for 1 h at room temperature. Proteins were visualized 
using enhanced chemiluminescencereagents (GE Healthcare, 
Chicago, IL, USA) to stain, as previously described (34). 

Statistical analysis. All data are expressed as the mean ± 
standard deviation. Differences between groups were analyzed 
by one-way analysis of variance. Statistical comparisons were 
made using Tukey's test (SigmaPlot for Windows v12.0; Systat 
Software, Inc., San Jose, CA), and P<0.05 was considered 
to indicate a statistically significant difference. Differences 
between two groups were determined using the unpaired 
Student's t-test (SigmaPlot for Windows version 10.0; Systat 

Software, Inc., San Jose, CA), and P<0.01 was considered to 
indicate a statistically significant difference. 

Results

TET decreases the cell viability of SW620 cells. SW620 cells 
were treated with TET (0, 0.2, 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 
25 and 50 µM) for 24 and 48 h prior to collection of the cells to 
determine the percentage of total viable cell number (Fig. 1). The 
data indicated a significant dose‑dependent reduction of living 
SW620 cells treated with TET at 0.2-50 µM concentrations for 
24 and 48 h (P<0.001). Thus the present study selected 0, 1, 5 
and 10 µM for cell migration and invasion experiments. 

TET decreases the cell adhesion of SW620 cells. SW620 cells 
were cultured with 0, 1, 5 and 10 µM TET for 48 h and the 
total percentage of adhesion was determined and presented 
in Fig. 2, [1 µM (87.36±0.71%, P<0.05); 5 µM (79.22±0.18%, 

Figure 1. TET decreases the percentage of viable SW620 cells. Cells 
(1.5x104 cells/well) were treated with 0, 0.2, 0.39, 0.78, 1.56, 3.12, 6.25, 12.5, 
25 and 50 µM TET or 0.5% dimthylsulfoxide as a vehicle control for 24 and 
48 h. Cell growth inhibition was assessed by MTT assay. The values with 
different letters were significantly different from each other, P<0.05 (Tukey's 
test). TET, tetrandrine.

Figure 2. TET decreases the cell adhesion of SW620 cells. SW620 cells were 
cultured with 0, 1, 5 and 10 µM TET for 48 h at 37˚C in 12‑well plates, which 
were pre‑coated with type I collagen (10 µg/ml) for 60 min, and the attached 
cells were mixed with 1% glutaraldehyde in PBS for 20 min and stained with 
0.02% crystal violet solution for 5 min. Ethanol (70%) was used to dissolve 
crystal violet in the stained cells. Optical density was evaluated at 570 nm 
using a microplate reader with a reference of 405 nm. The total percentage of 
adhesion was determined based on the cells that had adhered compared with 
the control. The results are presented as the mean ± standard deviation (n=3). 
The values with different letters were significantly different from each other, 
P<0.05 (Tukey's test). TET, tetrandrine.
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P<0.05); 10 µM (78.72±0.18%, P<0.05) compared to untreated 
control cells (100.00±0.18%)]. Based on these results, it was 
indicated that TET at 1‑10 µM for 48 h treatment significantly 
reduced cell adhesion in SW620 cells in vitro. 

TET decreases cell mobility of SW620 cells. Cell mobility 
was evaluated using a wound healing assay. SW620 cells 

were cultured in 6-well plates and the cell monolayers were 
scraped and then cultured in medium containing 0, 1, 5 and 
10 µM TET for 24 and 48 h (Fig. 3). Fig. 3A demonstrated 
that closure of the scraped area at the highest dose of TET 
was decreased compared with the control. TET significantly 
reduced cell mobility, and increased the ability to inhibit 
migration at 24 and 48 h up to 176.74 and 183.45% in the 

Figure 3. TET decreases cell mobility of SW620 cells. Cell mobility was evaluated using a wound healing assay. SW620 cells were cultured in a 6-well plate, 
the cell monolayers were scraped and then cultured in medium containing 0, 1, 5 and 10 µM TET for 24 and 48 h. (A) The cell mobility rates were examined 
and imaged using contrast phase microscopy (x200 magnification). The (B) 24 h and (C) 48 h percentage of inhibition of cell motilities were determined. The 
values with different letters were significantly different from each other, P<0.05 (Tukey's test). TET, tetrandrine.
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10 µM TET treated cells, respectively, compared with control 
cells (Fig. 3B and C).

TET inhibits the migration and invasion of SW620 cells. 
Transwell migration and invasion assays were performed to 
investigate the inhibitory role of TET on SW620 cell migration 
and invasion, the results are presented in Fig. 4. The results 
indicated that TET significantly (P<0.05) inhibited cell 

invasion by 35% for 10 µM TET treated cells for 48 h (P<0.01; 
Fig. 4A), and inhibited cell migration by 35% for 10 µM 
TET treated cells for 48 h compared with the control cells 
(P<0.01; Fig. 4B). 

TET alters expression levels of proteins associated with migra-
tion and invasion of SW620 cells. The present study further 
investigated the role of upstream regulated proteins associated 
with SW620 cell migration and invasion following exposure 
to TET (Fig. 5). TET significantly reduced protein expression 
levels of MMP‑9, MMP‑2, MMP‑1, SOS Ras/Rac guanine 
nucleotide exchange factor 1 (SOS‑1), PI3K, phosphory-
lated (p)‑c Jun N‑terminal kinase (JNK)1/2, growth factor 
receptor bound protein 2 (GRB2) and TIMP metallopeptidase 
inhibitor 1 (TIMP1; Fig. 5A), p‑p38, p38, 14‑3‑3, Rho A, signal 
transducer and activator of transcription‑1 (STAT‑1) and cyclo-
oxygenase-2 (Cox-2; Fig. 5B), β-catenin and NF-κB (Fig. 5C). 
The protein expression levels were decreased in TET-treated 
cells compared with untreated-cells. TET inhibited the p38, 
JNK and Rho A signaling pathways by reducing PI3K, Cox‑2 
and NF-κB p65 expression levels, which induced MMP‑2/‑9 
downregulation (Fig. 6).

Discussion

Previous studies have demonstrated that cancer cells exhibit 
extensive invasive and migratory abilities, which are factors 
that may block the effectiveness of clinical treatments 
against cancer, including chemotherapy (35,36). Cancer 
cell metastasis involves a complex multistep process, which 
includes cell movement and cell adhesion accompanied with 
migration, invasion and angiogenesis to develop new tumors 
in other sites of body (37,38). Therefore, investigators focus 
on the inhibition of cancer cell migration and invasion, as an 
anticancer strategy. It has previously been reported that TET 
induces cancer cell death via cell cycle arrest and induction of 
apoptosis in numerous human cancer cell lines; however, there 
is no available information to demonstrate TET inhibiting 
migration and invasion in human colon cancer SW620 cells. 
The present study investigated the effects of TET on adhesion, 
migration and invasion of SW620 cells in vitro. 

 Firstly, the present study examined the cytotoxic effects 
of TET on SW620 cells in vitro and the results indicated that 
TET induced cell death in a dose-dependent manner. Therefore, 
1, 5 and 10 µM TET treatments were selected for further experi-
ments. The present study also investigated cell adhesion of 
SW620 cells following exposure to 0, 1, 5 and 10 µM TET for 
48 h and the results indicated that TET inhibited cell adhesion 
in a concentration-dependent manner. It is well documented 
that wound healing is one of the methods for examining cancer 
cell mobility (39,40); thus, the results from the wound healing 
assay indicated that TET inhibited cell mobility in SW620 cells 
in a dose-dependent manner. The Transwell assay has been 
recognized to be effective in the analysis of cell migration 
and invasion (41,42). The present study performed Transwell 
assays to investigate cell migration and invasion of SW620 cells 
following exposure to TET in vitro. The findings indicated that 
TET significantly inhibited cell migration and invasion when 
compared with the control groups. Based on these observations, 
the present study suggested that TET suppressed cell migration 

Figure 4. TET inhibits migration and invasion of SW620 cells. Transwell cell 
migration and invasion assays were used to investigate the inhibition of TET 
on SW620 cell migration and invasion. (A) Cell invasion was imaged using 
contrast phase microscopy (x100 magnification) and percentage of inhibi-
tion of cell invasion. (B) Cell migration was imaged using contrast phase 
microscopy (X100) and percentage of inhibition of cell migration.  **P<0.01 
(Student's t-test) vs. control. TET, tetrandrine.
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and invasion via the inhibition of cell attachment (adhesion) to 
the basement membrane.

MMPs, a family of zinc-dependent proteases, serve essen-
tial roles in defining how cells interact with their surrounding 
microenvironment (43). It was reported that increased expression 
levels of MMPs are associated with increased levels of cancer 
cell angiogenesis, migration and invasion (44); thus, MMPs have 
previously been used as drug targets (45). Therefore, the present 
study first examined the protein expression levels of MMP‑2 and 
MMP-9 in SW620 cells following exposure to various concen-
trations of TET, and the results indicated that TET decreased 
the protein expression levels of MMP-2, MMP-9, MMP-1 and 
TIMP1 in a concentration-dependent manner, which was revealed 
by western blotting. MMP-2 and MMP-9 serve important roles 
in cancer invasion and metastasis (46,47). Furthermore, results 
indicated that TET suppressed the protein expression levels of 
SOS‑1, PI3K, GRB2 and p‑JNK1/2 in SW620 cells. SOS‑1 and 
GRB2 have been observed in HT 29 colon cancer cells (48). To 
the best of the author's knowledge, the present study is the first 
demonstrate that TET inhibited the protein expression levels of 
SOS-1 and GRB2. GRB2-associated binding protein 2 serves a 

Figure 6. The possible signaling pathways for TET inhibited cell mobility, 
adhesion, migration and invasion in SW620 cells in vitro. TET, tetrandrine; 
ECM, extracellular matrix; GRB2, growth factor receptor bound protein 2; 
SOS‑1, SOS Ras/Rac guanine nucleotide exchange factor 1; PI3K, phos-
phatidylinositol 3 kinase; p, phosphorylated; JNK1/2, c Jun N‑terminal 
kinase; MAP, mitogen‑activated protein; NF‑κB, nuclear factor-κB; 
STAT‑1, signal transducer and activator of transcription‑1; MMP, matrix 
metalloproteinase.

Figure 5. TET alters the expression levels of proteins associated with migration and invasion of SW620 cells. Cells were treated with various concentrations 
of TET for 48 h and then total proteins were quantified and apoptosis associated proteins were examined by western blotting. (A) MMP‑9, MMP‑2 and 
MMP‑1, SOS‑1, PI3K, p‑JNK1/2, GRB2, TIMP1. (B) p‑p38, p38, 14‑3‑3, Rho A, STAT‑1 and Cox‑2. (C) β-catenin and NF-κB p65. TET, tetrandrine. MMP, 
matrix metalloproteinase; SOS‑1, SOS Ras/Rac guanine nucleotide exchange factor 1; PI3K, phosphatidylinositol 3 kinase; p, phosphorylated; JNK1/2, c Jun 
N‑terminal kinase; GRB2, growth factor receptor bound protein 2; TIMP1, TIMP metallopeptidase inhibitor 1; STAT‑1, signal transducer and activator of 
transcription-1; Cox-2, cyclooxygenase-2; NF-κB, nuclear factor-κB.
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critical role in the proliferation and migration of various types 
of cancer (49). Therefore, further investigations are required to 
understand the role of SOS-1 and GRB2 in cancer cell metastasis. 
The results of the present study also revealed that TET inhibited 
the protein expression levels of PI3K in SW620 cells. PI3K/Akt 
and extracellular signal regulated kinase pathways are involved 
in growth factor-mediated colon cancer proliferation (50). It was 
reported that 17β-estradiol treatment inhibited prostaglandin 
E2‑induced uPA, MMP‑9 and cellular motility by suppressing 
activation of JNK1/2 in LoVo human colon cancer cells (51).

The results of the present study demonstrated that TET inhib-
ited the protein expression levels of p-p38, p38, 14-3-3 and Rho 
A in SW620 cells. p‑p38 and p38 were significantly reduced in 
TET-treated SW620 cells compared with untreated cells. It was 
previously reported that in SW620 human colon cancer-derived 
metastatic cells, nicotine stimulates the invasion and metastasis 
of colon cancer cells in vitro via activation of the p38 MAPK 
downstream signaling pathway (52). The present study revealed 
that TET significantly reduced the protein expression levels 
of 14-3-3 in SW620 cells in a dose-dependent manner. It was 
previously demonstrated that 14-3-3 protein overexpression 
promotes lung cancer progression when combined with HSP27 
overexpression (53). A previous study revealed that in patient 
colorectal cancer samples, Rho A is associated with the inva-
sion of lymph nodes and blood vessels, thus, Rho A may be a 
promising target for cancer treatment (54).

 The results of the present study additionally indicated that 
TET significantly suppressed the protein expression levels 
of β-catenin and NF-κB p65 in SW620 cells. β-catenin is a 
92-kDa cellular protein and a member of the Wnt signaling 
pathway that has been revealed to serve an important role in 
colorectal cancer tumorigenesis (55,56), and is associated with 
E-cadherin in maintaining cellular adhesion (57). The aberrant 
activation of β-catenin increases its translocation to the nucleus 
in colorectal cancer (58). Therefore, targeting the Wnt/β-catenin 
signaling pathway to develop novel chemotherapeutic agents 
against colon cancer may be a promising strategy. NF-κB is a 
transcription factor closely associated with cell survival, prolif-
eration and metastasis (59). It is well documented that agents 
blocking the NF-κB signaling pathway may act as therapeutic 
agents to treat inflammation and cancer (60). The results of the 
present study indicated that TET inhibited cell migration and 
invasion of SW620 cells via inhibition of NF-κB. It was also 
revealed that TET suppressed the protein expression levels of 
STAT1 and Cox‑2 in SW620 cells. Constitutive overexpres-
sion of STAT1 in tumor cells is correlated with protection of 
tumor cells to genotoxic stress following doxorubicin (61) or 
cisplatin (62) treatment. Cox-2 has tumor promoting properties 
and is expressed in approximately 40-50% of colonic adenomas 
and in 80-90% of colorectal carcinomas (63,64). Cox-2 is also 
associated with cancer cell invasion (65), serves an important 
role in carcinogenesis and therefore has the potential to be used 
as a novel anticancer therapeutic target (66,67).

In conclusion, the present study revealed that TET 
suppressed cell mobility, adhesion, invasion and migration 
in SW620 cells via the inhibition of metastasis-associated 
proteins such as MMP‑2/‑9. 

Therefore, the results of the present study suggested that 
TET may be a potential candidate for developing preventive 
agents against human colon cancer metastasis. 
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