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Abstract

Fibromyalgia (FM) patients have dysfunctional endogenous pain modulation, where opioid

and serotonergic signaling is implicated. The aim of this study was to investigate whether

genetic variants in the genes coding for major structures in the opioid and serotonergic sys-

tems can affect pain modulation in FM patients and healthy controls (HC). Conditioned pain

modulation (CPM), evaluating the effects of ischemic pain on pressure pain sensitivity, was

performed in 82 FM patients and 43 HC. All subjects were genotyped for relevant functional

polymorphisms in the genes coding for the μ-opioid receptor (OPRM1, rs1799971), the

serotonin transporter (5-HTT, 5-HTTLPR/rs25531) and the serotonin 1a receptor (5-HT1a,

rs6295). Results showed the OPRM1 G-allele was associated with decreased CPM. A sig-

nificant gene-to-gene interaction was found between the OPRM1 and the 5-HT1a gene.

Reduced CPM scores were seen particularly in individuals with the OPRM1 G*/5-HT1a CC

genotype, indicating that the 5-HT1a CC genotype seems to have an inhibiting effect on

CPM if an individual has the OPRM1 G-genotype. Thus, regardless of pain phenotype, the

OPRM1 G-allele independently as well as with an interaction with the 5-HT1a gene influ-

enced pain modulation. FM patients had lower CPM than HC but no group differences were

found regarding the genetic effects on CPM, indicating that the results reflect more general

mechanisms influencing pain modulatory processes rather than underlying the dysfunction

of CPM in FM. In conclusion, a genetic variant known to alter the expression of, and binding

to, the my-opioid receptor reduced a subject’s ability to activate descending pain inhibition.

Also, the results suggest a genetically inferred gene-to-gene interaction between the main

opioid receptor and a serotonergic structure essential for 5-HT transmission to modulate

pain inhibition. The results in this study highlight the importance of studying joint synergistic

and antagonistic effects of neurotransmittor systems in regard to pain modulation.
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Introduction

Fibromyalgia (FM) is characterized by generalized long-term pain, often along with non-

restorative sleep, fatigue and cognitive impairment like memory loss [1–3]. The pain in FM is

regarded as nociplastic [4–6], as FM patients fulfill the nociplastic pain criteria [7] based on

the characteristic pain hypersensitivity [8,9]. Furthermore, dysfunctional descending pain

inhibition, i.e., reduced exercise-induced hypoalgesia (EIH) [10,11] and conditioning pain

modulation (CPM) [12,13] has been reported in FM patients.

Pain modulatory processes involve several neuromodulators including opioids and seroto-

nin (5-HT). In healthy subjects, endogenous opioid as well as 5-HT signaling has been impli-

cated to affect CPM [14,15]. In FM patients, indirect evidence of increased opioid- and

reduced 5-HT metabolism has been described [16,17]. There is also evidence of interactions

between opioid and serotonergic signaling. Animal studies have shown that 5-HT1a agonists

can prevent and reverse opioid-induced hyperalgesia [18]. Also, the efficacy of an opioid ago-

nist was increased in individual carriers of a serotonergic genotype proposed to reduce 5-HT

signaling [19]. We recently showed that, by genetic association, increased endogenous opioid

tone along with lower serotonergic signaling produced more profound EIH [11], a paradigm

similar to but not identical with CPM [20,21]. To test the generalizability of this finding, we

here study a different paradigm of endogenous pain inhibition, i.e. CPM, and in a different

cohort of FM patients and healthy controls (HC).

The aim of this study was to assess the influence of specific pain related genetic variants on

CPM. More specifically, the single nucleotide polymorphism (SNP) rs1799971 in the OPRM1

gene, regulating the expression, availability, as well as the activation of the μ-opioid receptors

(MOR) [22]. Individuals with the G-genotype (A/G or G/G) are proposed to have increased

receptor affinity for β-endorphins [23], thus increased endogenous opioid efficacy compared

with the homozygous AA-genotype, however, there are conflicting results [24]. A meta-analy-

sis concluded recently that individuals with the OPRM1 G-genotype have reduced analgesic

efficacy of opioid drugs [25]. Also, this variant has been shown to influence cerebral processing

during evoked pain regardless of pain phenotype [26] and has been linked to reduced cerebral

MOR availability [27]. Moreover, we jointly studied two functional polymorphisms

(5-HTTLPR and rs25531) in the serotonin transporter (5-HTT) gene SLC6A4. Together they

alter the degree of gene expression and functionally divide individuals into groups of high,

intermediate or low expression of the 5-HTT [14,28], which have been associated with CPM

efficacy in HC [14]. Lastly, the SNP rs6295 in the HTR1A gene, regulates the expression of the

5-HT1a receptor [29]. Individuals with the 5-HT1a G-genotype (C/G or GG) are associated

with having reduced 5-HT signaling compared with the homozygous CC-genotype [30,31]

and increased sensitivity to suprathreshold pain [32].

Based on our previous findings [11] we hypothesized that individuals with OPRM1 G-

genotype in combination with the 5-HTT low expression or 5-HT1a G-genotype have a more

pronounced CPM, and vice versa, and that this will be seen regardless of baseline pain level,

i.e., in FM patients and HC alike.

Materials and method

Participants

The current study forms part of a larger project, see study plan https://osf.io/8zqak [33,34].

Study participants were recruited by local news advertisement. FM patients were evaluated by

an experienced physician with a standardized interview and palpation of tender points to ver-

ify both the American College of Rheumatology 1990 criteria for FM [35] and the newer 2010
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criteria [36]. Inclusion criteria included female sex, right handedness and age between 20–60

years. Exclusion criteria for FM patients and HC were high blood pressure (>160/90), painful

osteoarthritis, other causes of pain than FM for FM patients or any pain rated as more than 20/

100 VAS (visual analog scale) for HC, other severe somatic or psychiatric disorder, addiction

disorder, pregnancy, severe obesity (BMI> 35), smoking, medication with antidepressants or

anticonvulsants, and inability to refrain from analgetics, anti-inflammatory drugs or hypnotics

for 48 hours before participation in the study. HC were screened by telephone before their

visit. A total of 117 FM patients and 45 HC were screened for participation. Subjects were

excluded for not meeting the inclusion/exclusion criteria (FM n = 17, HC n = 1) and for

declining participation (FM n = 14). 4 FM patients and 1 HC failed to complete the CPM

assessment. Thus, data for the analysis included 82 FM patients and 43 HC. One subject was

not included in the genetic analyses due to failed genotyping. All participants were Caucasian

women. They were given verbal and written information and gave written informed consent

in accordance with the Declaration of Helsinki. The study was reviewed and approved by the

Swedish Ethical Review Authority board (permit 2014/1604-31/1) before the study began.

Procedures

Questionnaires. All participants completed standardized and validated questionnaires

concerning health status and quality of life. The questionnaires analyzed in the present study

are Hospital Anxiety and Depression Scale (HADS), Short-Form-36 Bodily Pain Scale (SF-36

BP), and for FM patients the Fibromyalgia Impact Questionnaire (FIQ). HADS consists of 2

subscales assessing depressive (HAD-D) and anxiety (HAD-A) symptoms in nonpsychiatric

patients. Each subscale comprises of 7 items with accumulated scores between 0 and 21. Cut-

off scores of above 8 can be regarded as the presence of anxiety and depressive disease [37].

The SF-36 BP, a 2-item subscale within the Short Form (SF-36), was chosen to assess pain

severity and pain over time (4 weeks). The raw scores are transformed into a 0 to 100 scale,

where lower score indicate more pain symptoms [38]. The FIQ is a questionnaire assessing

symptoms and disability related to FM. It consists of 20 items with scores ranging from 0 to

100, where higher values indicates a poorer state of health due to FM [39].

Pressure Pain Thresholds (PPTs). To assess pain sensitivity pressure algometry (Alg-

ometer, Somedic Sales, Sweden) was used with a probe area of 1 cm2, manual pressure perpen-

dicular to the skin was applied with an increase pressure rate of 50kPa/s. The subjects then

pressed a response button at the slightest sensation of pain. PPTs were assessed bilaterally on 4

sites corresponding to the tender points of the ACR 1990 criteria for FM classification, namely

musculus trapezius, lateral epicondyle of the humerus, musculus gluteus maximus, and medial

proximal fat pad of knee. The assessments were conducted by two test investigators who were

jointly trained to perform assessments comparably (JT,AS).

Conditioned Pain Modulation (CPM). CPM is a reliable method for assessing endogenous

pain modulatory processes [40]. In this study, CPM was assessed with a tourniquet test for each

individual. The subjects were comfortably seated upright on a stretcher with the backrest raised to

approximately 50 degrees and resting their left arm on an armrest. A baseline assessment of pain

sensitivity was done before the start of the tourniquet test, with 2 PPTs at the subject’s right thigh

(m. quadriceps). The left arm was raised vertically for 1 minute to drain the arm for venous blood,

then a blood pressure cuff was put on the left upper arm and inflated to 200 mmHg. The subject

then lifted a 1 kg weight with their left underarm extensor muscles. The subjects continuously

rated their experienced pain on a VAS (0-100mm) scale. When they rated 50 mm they were told

to stop lifting the weight and endure the conditioning pain. The examiner started assessing PPTs

with the algometer at the subjects right (contralateral) m. quadriceps. PPTs were assessed
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continuously with a minimum of 20 seconds between assessments until the subject asked to stop

or for a maximum of 4 minutes. A final post CPM assessment of PPT was made 5 minutes after

the end of the conditioning stimulus at m.quadriceps (Fig 1).

Genotyping. The SNPs in this study were chosen based on a priori hypotheses based on

existing literature. To be consistent with previous research, the genotypes of the rs1799971
(118A>G, N40D) of the OPRM1 gene and the C(-1019)G 5-HT1a promoter polymorphism of

the HTR1A gene coding for the 5-HT1a receptor were dichotomized into major allele homozy-

gotes and minor allele carriers [41–43]. The 5-HTT gene (SLC6A4) includes the functional poly-

morphism 5-HTTLPR, which consists of an L allele and an S allele, where the S-allele is associated

with reduced 5-HTT expression [44]. Moreover, the functional polymorphism rs25531 containing

an A-allele and a G-allele has been shown to further modulate the efficacy of 5-HTTLPR, the

minor G-allele reduces gene expression to S-allele levels [28]. Given this proposed efficacy and in

line with our previous studies [11,19], we examined 5-HTTLPR/rs25531 jointly, referred to as the

triallelic 5-HTTLPR. This approach results in functional division of the study subjects into having

high (LA/LA), intermediate (LA/LG and LA/SA) and low (SA/SA and SA/LG) expression of 5-HTT.

For genotyping, saliva samples (Oragene G500) were collected from all subjects. For the

polymorphisms rs1799971 (OPRM1) and rs6296 (5-HT1a), genotyping was performed using

TaqMan SNP genotyping assays and ABI 7900 HT instrument (Applied Biosystems (ABI),

Foster City, CA). Polymerase chain reactions (PCRs), with a total volume of 5 mL, were per-

formed in 384-well plates containing 2.5 mL Universal Master Mix (UMM) and 5 ng dried-

down genomic DNA per well. The PCR amplification protocol includes 2 holds, 50˚C for 2

minutes and denaturation at 95˚C for 10 minutes, followed by 45 cycles for rs6296 and 50

cycles for rs1799971 at 92˚C for 15 seconds and 60˚C for 1 minute. For the genotyping of the

triallelic 5-HTTLPR, 2 fragments, 487 bp (short) and 530 bp (long), were amplified by PCRs.

Each PCR reaction contained 50 ng DNA, 0.2 mM deoxynucleotide triphosphate (dNTP), 0.4

mMof primer 17P-3F, 0.4 mM primer 17P- 3R, 0.05 mL Qiagen HotStar Polymerase, 1 M Q-

solution, and finally 1x buffer. Samples were amplified on Biorad Tetrade (BIORAD, Hercules,

CA) with an initial denaturation for 10 minutes at 95˚C followed by 33 cycles consisting of

denaturation for 30 seconds at 95˚C, annealing for 30 seconds at 57˚C and elongation for 5

minutes at 72˚C, and finally followed by another elongation step for 5 minutes at 72˚C. Eight

microliters of the PCR reactions were separated for 2 hours at 100 V by gel electrophoresis in

TBE buffer on a 2.5% agarose gel containing GelRed and visualized using ultraviolet light. To

determine the rs25531, 10 mL of the PCR product was digested with 0.1 mL MSP1 (New

England Biolabs, Ipswich, MA) and 1 mL buffer per sample for 12 hours at 37˚C. The MSP1

restriction enzyme breaks the 59-C/CGG9 sequence that gives a fragment of 342 base pairs,

Fig 1. Schematic view of the assessment for conditioned pain modulation.

https://doi.org/10.1371/journal.pone.0277427.g001
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one of 127 and finally one of 62 base pairs which constitutes the LA allele,whereas the 298, 127,

and 62 base pairs is the SA allele, the 173, 166, 127, and 62 base pairs for the LG allele, and

finally the 166, 130, 127, and 62 for the SA allele. Fragments were run on a 4% agarose gel (3%

normal agarose and 1% low melting agarose) containing GelRed initially for 15 minutes at 70

V followed by 2 more hours at 100 V. The gels were then visualized with ultraviolet light.

Statistics

CPM score and normalization of PPTs. To assess the associations between functional

genetic polymorphisms and CPM, a CPM score was calculated, as the difference between the

end value and the baseline value divided by the baseline value [11,14]. A positive CPM score

indicates increased pain inhibition, whereas a negative CPM score indicates facilitation, i.e.

increased pressure pain sensitivity during the conditioning stimulation (tournique test). In

order to control for the evident interindividual differences in pain sensitivity, i.e., PPTs [45] in

the assessments of CPM, the scores were normalized by dividing the PPT at each time point

with the individuals first PPT at baseline (before the CPM assessment) [46]. A value over 1

indicates pain inhibition, i.e decreased sensitivity to pressure pain during conditioning stimu-

lation. Normalized PPTs were used to analyze the temporal aspects of CPM.

Statistical analyses. All analyses were made using SPSS Statistics, version 27 (SPSS Inc,

Chicago, IL). Data were reported as mean with standard deviation and graphs as mean with

error bars of 1 standard error of the mean. Graphs visualizing normalized PPTs were adjusted

by adding a coefficient so that the baseline value corresponded to 1. Reported p-values were

two-sided and p< 0.05 was considered statistically significant. Allelic deviation from Hardy-

Weinberg equilibrium was tested with Chi-square test, and genotype frequencies were ana-

lyzed with the Fisher exact test and Chi-square test. The Shapiro–Wilk test was used to assess

deviations from a normally distributed sample. To assess differences in pain sensitivity, CPM

score, normalized PPTs, contraction time, number of PPT assessments and test leader differ-

ences, Students t-test and the Mann–Whitney U test was used.

The overall effects of gene-to-gene interactions were analyzed by univariate ANOVAs, with

CPM score as the dependent variable, and genotypes as independent variables (OPRM1 AA/
�G, 5HT1a CC/�G, 5-HTT low/intermediate/high), and age, HAD-A, and HAD-D as covari-

ates. Post-hoc tests were performed with univariate ANOVAs and Students t-test.

The assessment of the temporal aspects of CPM were analyzed by repeated measures analy-

sis of variance (ANOVA) with the within-subject factor TIME (normalized PPTs; baseline,

start, middle, end and after 5 minutes), age as a covariate and the between subject factor

GROUP (FM/HC) and GENOTYPE (OPRM1 AA/�G) in separate analyses. Post-hoc analysis

was made with the Mann-Whitney U test. When the assumption of sphericity was violated the

Greenhouse-Geisser correction was used. To assert possible methodological differences

between the groups, the model was repeated adding the covariates for the length in time of the

tourniquet test and number of PPT assessments.

Multivariate ANOVA was used to assess whether the different genotypes affected symptom

parameters. The analysis was performed in FM patients with the dependent variables FIQ,

HAD-D, HAD-A, average PPT, and SF-36 BP, the independent variables OPRM1, 5-HTT,

and 5-HT1a, and age as a covariate.

Results

Participant and genotype characteristics

Patient characteristics for FM patients and HC are presented in Table 1. FM patients had sig-

nificantly lower average PPT, indicating increased pain sensitivity compared to HC
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(p< 0.001) and reduced CPM score (p< 0.001) indicating a dysfunction of conditioning pain

modulation. Allele frequencies were in Hardy-Weinberg equilibrium (rs1799971 X2 (1) = 3.34

p = 0.067, rs6295 X2 (1) = 0.45 p = 0.50, 5-HTTLPR X2 (1) = 0.25 p = 0.61). Genotype frequen-

cies, presented in Table 2, were similar in both groups for all genotypes. The results did not dif-

fer between test leaders for average PPT (p = 0.17) or CPM score (p = 0.91) indicating similar

methodology across the study group. The FM patient group had shorter mean tourniquets

assessment time (start after rating> 50 mm VAS) with 192 seconds compared to 220 seconds

in the HC group. However, given the lower PPTs in the FM group both groups had an equal

number of PPT assessments.

Table 1. Descriptives of study population.

FM patients (N = 82) HC (N = 43) p-value

Age (years) 47.2 ± 7.8 48.3 ± 7.7 p = 0.47

BMI (kg/m2) 26.2 ± 3.8 22.7 ± 2.4 < 0.001

FM duration (months) 121 ± 88 NA

Tenderpoint count� 17 (range 11–18) NA

Widespread Pain Index� 15 (range 9–19) NA

Symptom Severity Score� 10 (range 5–12) NA

Average PPT (kPa) 150 ± 63 318 ± 109 < 0.001

Average VAS 58 ± 22 4 ± 6 < 0.001

CPM score -0.03 0.20 p = 0.005

Questionnaires:

FIQ 62.9 ± 16.5 NA

HAD-D 7.2 ± 4.0 1.1 ± 1.5 < 0.001

HAD-A 7.8 ± 4.2 3.1 ± 3.0 < 0.001

SF-36 BP 31.3 ± 14.1 89.4 ± 12.5 < 0.001

Number of PPT assessments 11.5 ± 3.2 11.3 ± 2.5 p = 0.72

Tourniquet time (seconds) 192 ± 51 220 ± 35 p < 0.001

Numbers reported as means ± SD unless otherwise indicated. FM = fibromyalgia, HC = healthy controls, NA = not applicable, BMI = body mass index, PPT = pressure

pain threshold, VAS = visual analog scale, FIQ = Fibromyalgia impact questionnaire, HAD-D = Hospital anxiety and depression scale—depression, HAD-A = Hospital

anxiety and depression scale—anxiety, SF-36 BP = 36-item short form–bodily pain.

�median value.

https://doi.org/10.1371/journal.pone.0277427.t001

Table 2. Genotype frequencies of the polymorphisms rs1799971 (OPRM1), rs6296 (5-HT1A) and the triallelic 5-HTT for the whole group, as well as fibromyalgia

(FM) patients and healthy controls (HC) separately.

Whole group FM patients HC

N = 124 % N = 82 % N = 43 %

OPRM1 AA 96 77.4 60 74.1 36 83.7

(rs1799971) G-carrier 28 22.6 21 25.9 7 16.3 p = 0.26

5-HT1A CC 26 21.0 16 19.8 10 23.3

(rs6296) G-carrier 98 79.0 65 80.2 33 76.7 p = 0.65

5-HTT High 20 16.1 12 15.2 8 19.5

Intermediate 58 46.8 38 48.1 20 48.8

Low 42 33.9 29 36.7 13 31.7 p = 0.78

Genotype frequencies did not differ between the FM and HC group (p-values). Call rate > 99% for OPRM1 and 5-HT1a and 96% for 5-HTT.

https://doi.org/10.1371/journal.pone.0277427.t002
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Associations of CPM score with the gene OPRM1

As hypothesized, no statistically significant interactions were found between group (FM, HC)

and genetic polymorphisms regarding the CPM score, indicating similar genetic effects

regardless of baseline pain level. When both groups were analyzed jointly, a statistically signifi-

cant effect of OPRM1 (df = 1, F = 5.7, p = 0.019) was found for the CPM score. More specifi-

cally, individuals with OPRM1 AA-genotype had higher CPM scores compared to the G-

genotype (mean CPM scores: OPRM1 AA 0.085 (SD 0.49), G-genotype -0.093 (SD 0.45),

which indicates reduced ability in individuals with OPRM1 G-genotype to activate descending

pain inhibition (Fig 2A). Post hoc testing of each group separately revealed significant effects

of the OPRM1 genotype on CPM score in FM patients, (df = 1, F = 4.17, p = 0.045), with

reduced CPM score in FM patients carrying the OPRM1 G-genotype (mean CPM scores:

OPRM1 AA 0.011 (SD 0.54), G-genotype -0.18 (SD 0.47), while no significant effect was seen

in HC (Fig 2B). Regarding the serotonergic genes, no significant effects on CPM score were

found for 5-HT1a or 5-HTT, respectively.

Gene-to-gene interactions

There was a gene-to-gene interaction between OPRM1 and 5-HT1a (df = 1, F = 5.38,

p = 0.022). Post hoc analyses revealed that individuals with 5-HT1a CC genotype had better

CPM score if they had the OPRM1 AA genotype compared with the OPRM1 G-genotype

(p = 0.029), indicating better central pain inhibition with the genetic setup of 5-HT1a CC-

genotype and OPRM1 AA-genotype (Fig 3). Also, there was a trend that individuals with

Fig 2. Conditioned pain modulation (CPM) score based on OPRM1 genotype in the study group. Fig 2A. Fibromyalgia patients and healthy

controls pooled together split by OPRM1-AA versus G-genotype. Results showed significantly reduced CPM score in OPRM1 G-allele carriers

(p = 0.019). Fig 2B. CPM score for HC and FM patients separately split by OPRM1-AA vs G-allele. A significant difference was seen for FM

patients (p = 0.045) but not for HC. Notable, FM patients with the OPRM1 G-allele had the lowest CPM score among all four groups

(indicating less efficient CPM).

https://doi.org/10.1371/journal.pone.0277427.g002
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OPRM1 G-genotype and 5-HT1a G-genotype had higher CPM score compared with the

5-HT1a CC-genotype (CPM score CC: -0.43 (SD 0.52) and G -0.02 (SD 0.41); p = 0.065).

Regarding the serotonergic genes, no significant interactions were found for 5-HT1a x 5-HTT

nor for 5-HTT x OPRM1, and thus, no post hoc analyses were performed.

Genetic effects on the temporal aspects of CPM

Regarding the effect of the genetic polymorphism in OPRM1 on normalized PPTs assessed

over time there was a statistically significant effect of GENOTYPE (OPRM1 AA or G-geno-

type) (df = 1, F = 4.59, p = 0.034) and a significant GENOTYPE x TIME interaction (df = 3.11,

F = 2.93, p = 0.032). Post-hoc analyses reveal that individuals with the OPRM1 G-genotype,

compared to the AA-genotype, had significantly lower CPM at start (p = 0.035) as well as after

the conditioning stimulus (p = 0.008), revealing a reduced ability to activate descending pain

Fig 3. Genetic interaction of OPRM1 and 5-HT1a. A significant gene-to-gene interaction between OPRM1 and

5-HT1a was found on conditioned pain modulation (CPM) in fibromyalgia (FM) and healthy controls. Subjects with

5-HT1a CC-genotype had a significantly higher CPM score if they also had the OPRM1 AA-genotype compared to G-

genotype (p< 0.05). In accordance, there was a trend in OPRM1 G-carriers where 5-HT1a G-carriers had a higher

CPM score than CC-carriers (p = 0.065). PPT = pressure pain threshold. CPM score = (PPT end–PPT baseline)/PPT

baseline.

https://doi.org/10.1371/journal.pone.0277427.g003
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inhibition, with the effect persisting up to 5 minutes after the assessment. The data visualized

in Fig 4 indicate that the effect of reduced CPM in OPRM1 G-genotype individuals is similar

in FM patients and HC (Fig 4B and 4C). However, post hoc tests failed to show significance

when FM and HC were analyzed separately, as power is reduced.

Assessment of temporal aspects of CPM in FM patients compared to HC

Differences in normalized PPTs over time (baseline, start, mid, end and after 5 minutes)

between FM patients and HC were assessed by repeated measures ANOVA. A significant

TIME x GROUP interaction (df = 3.16, F = 3.48, p = 0.014) was found. Post-hoc analysis

revealed a statistically significant group difference at the end of the CPM paradigm

(p< 0.001), indicating better functioning pain inhibitory processes in HC compared to FM

patients (Fig 5). Moreover, FM patients had reduced pain sensitivity after 5 minutes with a

group mean below the mean PPT at start, indicating pain facilitation after the CPM

Fig 4. A. Normalized pressure pain thresholds (PPTs) (mean +/- SEM) at baseline, start, middle, end and 5 minutes

after a standardized assessment for conditioned pain modulation for the whole group divided into OPRM1 AA versus

G-genotypes. Individuals with OPRM1 G-genotype had significantly reduced PPTs at start (p = 0.035) and after

(p = 0.008). 4B and 4C. The effect of OPRM1 normalized PPTs over time in fibromyalgia (FM) patients and healthy

controls analyzed separately. No significant GENOTYPE x GROUP interaction was found, indicating similar effects in

both groups regardless of baseline pain level.

https://doi.org/10.1371/journal.pone.0277427.g004
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assessment. This represents a statistically significant difference between the groups, where the

HC group still show activated pain inhibition (p = 0.041). As there was a significant group dif-

ference in the length of the CPM assessment, an additional model was used to control for this.

However, no significant influence of the length of the CPM assessment was found (time x

group df = 3.32, F = 3.70, p = 0,009 and time x length of CPM df = 3.32, F = 1.43 p = 0.23).

Associations between genetic polymorphisms and FM symptoms

There were no statistically significant effects of the assessed polymorphisms of OPRM1 or

5-HT1a regarding symptom severity (FIQ, HAD-A, HAD-D, SF36-BP) or pain sensitivity

(average PPT). There was a significant effect of 5-HTT and an interaction between 5-HTT x

5-HT1a regarding HAD-D, i.e. assessment of depression, data reported elsewhere [47]. Also, a

significant gene-to-gene interaction with HAD-D was found regarding 5-HTT x 5-HT1a x

OPRM1 (F = 6.07, df = 1, p = 0.016).

Discussion

Here we examined the role of specific functional genetic polymorphisms acting on opioid and

serotonergic signaling on CPM in healthy subjects and patients with FM. This is the first study

to show that, by inferring from genotype, phenotypes of endogenous opioid signaling signifi-

cantly influences descending pain modulation in humans as measured by CPM. More specifi-

cally, OPRM1 G-allele, mechanistically proposed to increase the affinity for β-endorphins [23],

while reducing MOR expression and signaling [24] was associated with decreased CPM, i.e. a

reduced ability to activate descending pain inhibition. Furthermore, there was a gene-to-gene

Fig 5. Normalized pressure pain thresholds (PPTs) (mean ± SEM) at start, middle, end and 5 minutes after a

standardized tourniquet test. The conditioning pain was applied in the upper left arm and PPTs were assessed at the

contralateral m. quadriceps in FM patients and healthy controls. There was a statistically significant difference between

the groups at end (p<0.001) and after (p = 0.041) the assessment.

https://doi.org/10.1371/journal.pone.0277427.g005
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interaction between the OPRM1 and the 5-HT1a gene, revealing that the negative effects of the

OPRM1 G-genotype on CPM were seen specifically in individuals with the 5-HT1a CC-geno-

type, which associated with increased 5-HT signaling mediated via the 5-HT1a receptor [48].

This interaction is in line with our hypothesis based on our previous report of genetic influ-

ence on pain modulation, where we showed gene interactions with a similar pattern during

EIH, with carriers of the 5-HT1a CC/OPRM1 G-genotype exhibiting the lowest EIH [11].

Lastly, similar to the results from the previous EIH study, there were no differences between

FM patients and HC regarding the effects of the genetic variants on pain modulatory pro-

cesses. Thus, these results seem to reflect more general mechanisms influencing pain modula-

tory processes and not the underlying dysfunction of CPM in FM.

The effect of the MOR and the OPRM1 gene on CPM

The opioid system, and μ-opioid receptors in particular, is known to be involved in descending

pain modulation. Here, we show that a genetic variant in the OPRM1 gene, coding for the μ-

opioid receptor (MOR), independently influences the function of CPM. Individuals with the

OPRM1 G-genotype had significantly poorer ability to activate descending pain modulation

where endogenous opioids are engaged. In the literature, this genetic variant is proposed to

mediate stronger binding of endogenous opioids to the μ-opioid receptor [23], suggesting an

increase of function. However, it is well established that individuals with this variant require

higher postoperative exogenous opioids for pain relief, instead suggesting a loss of function

[25,49]. A study of opioid-naive healthy subjects showed that strong μ-opioid agonists potenti-

ated CPM [50], while the opposite was seen in long-term opioid drug users who displayed less

efficient CPM, suggesting a dampening effect on the endogenous pain modulatory system by

longstanding exposure [51]. On a similar note, the OPRM1 G-allele has been proposed to

exhaust the opioid system of a compensatory reaction to chronic exposure to opioid drugs

[52] and could thus hypothetically be relevant for the shift from anti- to pronociceptive pain

modulatory processes during long-term opioid exposure. Based on this, we hypothesize that

the OPRM1 G-genotype plays a role in interindividual differences of endogenous opioid effect

on CPM activation. Pecina et al demonstrated that carriers of the OPRM1 G-allele had

reduced μ-opioid receptor availability in brain areas implicated in regulation of pain and affect

[27]. Thus, the OPRM1 G-allele, favoring a higher MOR affinity for β-endorphins [23], could

hypothetically have a negative impact on opioid signaling, due to lower availability of MOR.

During the CPM assessment in the present study, a strong painful sensation was evoked by the

conditioning stimulus (mean rating of worst pain was VAS 77/100) which most likely induced

an immediate engagement of central endogenous opioids. Hypothetically, individuals with the

OPRM1 G-allele would have a stronger initial binding of endogenous opioids to MOR leaving

less receptors available to newly activate and initiate pain inhibition from antinociceptive neu-

rons downstream, resulting in a loss of function of pain inhibition as reported here.

Compared to HC, FM patients have a reduced MOR binding capacity in brain regions

implicated in pain regulation, including the opioid rich rostral anterior cingulate cortex

(rACC) [53,54]. Importantly, lower MOR binding capacity was associated with reduced pain

related activation of rACC in FM patients [55]. Moreover, FM patients display less functional

connectivity between the rACC and other parts of the brain’s pain inhibitory network [56] as

well as decreased cortical thickness of rACC, related to a longer duration of FM [57]. In anal-

ogy with our hypothesis regarding the OPRM1 polymorphism, Schrepf et al. (2016) proposed

that initially high levels of endogenous opioids in FM patients [16] would cause downregula-

tion and/or reduced affinity of MOR in the antinociceptive brain regions, thus explaining the

failure to activate descending inhibitory mechanisms during pain stimulation in FM. In this
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scenario, FM patients with the OPRM1 G-genotype would be expected to have a further reduc-

tion of MOR signaling during evoked pain, resulting in even less efficient descending pain

inhibition. Indeed, FM patients in our study had reduced CPM compared to HC, as has been

repeatedly reported previously [12,58], interestingly with the lowest CPM scores seen in FM

patients carrying the OPRM1 G-allele (Fig 2B). Thus, the effect of the OPRM1 G-allele variant

seems to exist regardless of baseline function of descending pain inhibition or the presence of

a chronic pain condition.

Interaction between opioid and serotonergic genes on CPM

The opioid system interacts with the serotonergic pain regulatory system in an antagonistic,

time- and state dependent way [59]. However, the specific effect of 5-HT1a on opioid mediated

pain modulation is difficult to interpret. Stimulation of MOR give a first order analgesic effect,

but can have a second order hyperalgesic effect, i.e. opioid-induced hyperalgesia, which in

turn can be counteracted by stimulation with 5-HT1a agonists [18]. In fact, 5-HT1a agonists

have the opposite profile to opioids, i.e., a first order pronociceptive, followed by a second

order analgesic effect [60] and the 5-HT1a receptor is shown to mediate inhibition of pain

[61]. Thus, the effects of 5-HT signaling on pain perception seem to depend on the state of the

opioid system.

On a genetic level, the proposed mechanism of the 5-HT1a G-genotype is that it leads to a

reduction in 5-HT transmission, as it yields upregulation of presynaptic inhibitory 5-HT1a

auto-receptors in the raphe nuclei where 5-HT is synthesized, and downregulation of postsyn-

aptic 5-HT1a receptors [48,62]. In this study, we found significant gene-to-gene interactions

between genes coding for the 5-HT1a receptor and MOR. More specifically, individuals with

5-HT1a CC/OPRM1 G-genotype had significantly reduced CPM score, i.e. reduced ability to

activate descending pain modulation, as compared to other genetic combinations. In fact,

these two genotypes combined produced negative CPM scores, meaning pain facilitation dur-

ing CPM. As described above, the OPRM1 G-genotype was in itself associated with a lower

CPM score, but this effect was driven by individuals with genetically inferred increased 5-HT

signaling and higher concentrations of postsynaptic 5-HT1a receptors. The latter is in accor-

dance with the interactions between 5-HT1a agonists and opioids [18]. Furthermore, these

data are in line with our previous report on these genes influence on EIH [11]. Interestingly,

both methodologies, i.e. CPM and EIH, produced gene-to-gene interactions in the same direc-

tion based on proposed mechanisms of the opioid and 5-HT1a polymorphisms studied, and

no difference was found based on baseline pain level (FM patients or HC).

Contrary to our findings during EIH [11], no statistically significant interactions between

OPRM1 and 5-HTT affecting CPM were found. Previous studies regarding the effects of the

5-HTT polymorphism on CPM have shown inconsistent results. Healthy carriers of the low

expressing 5-HTT polymorphism had reduced CPM affecting both mechanical- and heat pain

stimuli when the tourniquet was used as conditioning stimulus [14], reduced CPM during

cold pressor test as measured by non-painful heat stimuli but not painful heat stimuli [63], as

well as normal CPM assessed by tonic heat stimuli during a cold pressor test, the latter was

also seen in FM patients [58]. The inconsistent effects of the 5-HTT polymorphism on CPM

may explain why we failed to reveal a 5-HTT and OPRM1 interaction in the current study.

Limitations

The main limitation of our study is that the effects of opioid and serotonergic signaling are

inferred from genotypes in opioid and serotonergic genes. Therefore, we should not draw defi-

nite conclusions to underlying biological mechanisms. Nevertheless, genetic variability
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influences pain phenotypes [64]. This method is well established in the literature and allows us

to study pain regulation without pharmacological manipulation, which has an additive value

to current knowledge of pain regulatory processes. Furthermore, as the analyses of the FM and

HC groups separately are based on rather low sample sizes for the uncommon genotypes of

the investigated genetic polymorphisms, the results must be regarded as exploratory and need

to be reproduced in larger cohorts.

Conclusions

This is the first study to show that the gene OPRM1, coding for a main structure of endoge-

nous opioid signaling, independently influences pain behavior without exogenous opioids

being involved. More specifically, a polymorphism known to alter the expression of, and bind-

ing to, the μ-opioid receptor influences an individual’s ability to activate descending pain inhi-

bition during ischemic pain. Furthermore, a gene-to-gene interaction was found showing that

the OPRM1 G-genotype/5-HT1a CC- genotype conferred significantly reduced ability to acti-

vate descending pain modulation, as compared to other genetic combinations. The results

revealed that the effect of the OPRM1 G-genotype on CPM was driven by individuals with

genetically inferred higher 5-HT signaling and higher concentrations of postsynaptic 5-HT1a

receptors. Interestingly, this gene-to-gene interaction is similar to our previous results from a

study assessing EIH in HC and FM patients, thus validating the findings to, not only two dif-

ferent methodologies to activate descending pain inhibition, but also two different cohorts.
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