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Abstract

Microbiome science is revealing that the phenotype and health of animals, including

humans, depend on the sustained function of their resident microorganisms. In this essay, I

argue for thoughtful choice of model systems for human microbiome science. A greater vari-

ety of experimental systems, including wider use of invertebrate models, would benefit bio-

medical research, while systems ill-suited to experimental and genetic manipulation can be

used to address very limited sets of scientific questions. Microbiome science benefits from

the coordinated use of multiple systems, which is facilitated by networks of researchers with

expertise in different experimental systems.

One of the great biological success stories over the last decade is microbiome science, including

a growing understanding of the impact of resident microorganisms on human health. We now

have irrefutable evidence that microorganisms are key players that shape many functions of

humans and other animals, from metabolism to immunity and behavior [1]. Furthermore, our

growing understanding of and capacity to manipulate the resident microorganisms are already

translating into real-world benefits. For example, a microbial therapy reliably eliminates life-

threatening Clostridium difficile infections in people [2,3], and there are realistic prospects to

suppress mosquito transmission of dengue virus by the large-scale release of mosquitoes modi-

fied to bear a bacterium Wolbachia that confers vector incompetence [4,5].

Underlying the recent successes and excellent prospects for the discipline of microbiome

science, there are, however, differences of opinion, especially concerning the utility of different

experimental systems to advance our understanding and application of microbiomes for

human health. The appropriate choice of study system is vitally important for everyone from

individual researchers and their institutions to national and international funding organiza-

tions. The choices facing biomedical applications of microbiome science have many parallels

with other disciplines in the life sciences as advancing technologies in molecular biology, cell

biology, and microbiology enable us to answer new questions and solve previously intractable

problems.

Two linked factors play an important role in the appropriate choice of experimental systems

for human microbiome research: history and purpose. Let us start with history. For many, the
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discipline of microbiome science burst onto the scientific scene some 10 to 15 years ago, made

possible by breakthroughs in sequencing technologies [6] that enabled us to identify and study

the function of microorganisms in situ, i.e., in their natural communities without isolation

into clonal cultures [7,8]. For the first time, it became practicable to study the complex com-

munities associated with humans and other animals. The power of this new science was swiftly

recognized by the biomedical community, harnessing microbiome science as a route for

improved understanding and treatment of human disease, especially chronic diseases associ-

ated with dysfunction of metabolism and immunity, e.g., obesity, inflammatory bowel disease

[9–12]. This potent combination of history and purpose identified the human as the ideal bio-

logical system for study. For ethical reasons, human studies generally yield correlations

between microbial traits (composition and function) and phenotype (including disease state),

requiring experimentation on other systems to determine causality and mechanism (Fig 1). To

a very large extent, a single traditional model, the laboratory mouse, has fulfilled the important

role as experimental model of host–microbe interactions in humans [13].

So where is the problem? It is that many biomedical researchers and their funders are

neglecting an important strand of our history and, consequently, may be selling themselves

short. The “new” discipline of microbiome science did not enter an empty playing field.

Instead, and to its great benefit, microbiome science builds on more than a century of

research on microorganisms in healthy animals: the discipline of symbiosis [14]. Eukaryotic

organisms—from the first unicellular eukaryotes to complex, multicellular groups (including

animals)—have repeatedly entered into alliances with microorganisms, enabling them to

exploit otherwise unavailable habitats and, for animals, unsuitable diets [15]. As befits a mature

discipline, the goals in symbiosis research are diverse. Some questions are driven by ecological

and evolutionary considerations. How do the presence and composition of its microbiota

influence the ecological fit and the fitness of an individual host and—at larger scales—the

structure of ecological communities and evolutionary trajectory of host lineages [16–20]?

Fig 1. The laboratory mouse model is widely used to demonstrate causality of correlations between the

microbiome and human disease. (A) Analysis of many humans reveals a negative association between the severity of

disease symptoms and an index of the microbiome, e.g., abundance of a specific taxon or functional trait. (B)

“Humanized” mice (i.e., mice colonized with microbiome samples from humans) are used to infer a causal role of the

microbiome in the human disease: mice display disease symptoms when colonized with microbiome samples from

diseased, but not healthy, humans. This figure is a generalized illustration and is not intended to be representative of

any specific disease or microbiome dataset.

https://doi.org/10.1371/journal.pbio.2005245.g001
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Other questions are mechanistic: what is the molecular basis of microbial persistence in their

host, including the patterns of host–microbe signal and nutrient exchange, and how are these

often coevolved traits influenced by the mode of transmission and evolutionary age of the asso-

ciation [21–23]? Over many decades, the associations used to address these questions have

been selected for their microbiological simplicity, ideally a single microbial taxon that is

restricted to a specific host organ and is morphologically conspicuous (e.g., the pigmented

algal symbionts in corals, the luminescent bacteria in squid). The microbiology of the tradi-

tional animal models does not meet these criteria, and symbiosis researchers have been adept

at identifying and developing alternative systems to answer their questions. This diversity of

system and purpose has led to the opposite mindset from the biomedical microbiome scientist.

For the symbiosis researcher, there is an inherent value in diversity of systems. Not only are

different biological systems suitable for different questions, but multiple systems used to

address the same question are predicted to yield a richer understanding of any one topic.

For the sake of clarity and brevity, the preceding paragraphs portray the assumptions and

expectations in our discipline as a simple dichotomy between the “mature” field of symbiosis

research and the “new” field of biomedical microbiome science. Although this is an accurate

reflection of the view of some colleagues, I believe that the perspective of many practitioners in

the discipline is more nuanced. There is a growing sense that the application of microbiome

science for human health would be better served by the use of a greater range of experimental

models by the biomedical community and, equally, that fundamental discovery will be facili-

tated by a greater focus on systems that are experimentally tractable and amenable to the latest

molecular techniques. How can we achieve these beneficial outcomes?

A first-order question for the future of microbiome science is the utility of the traditional

animal models that have been the basis for fundamental biological discoveries over many years

(Fig 2A). These are the animal systems that are maintained indefinitely under laboratory con-

ditions; are amenable to genetic manipulation; have genetically defined wild-type strains,

enabling the phenotype of mutations to be investigated against a common genetic background;

and have attracted the critical mass of investigators needed to develop common tools and

structures for sharing resources and data, with dissemination via stock centers, databases, etc.

These models are also tractable to the key procedures in microbiome science—to generate

microbiologically sterile (“germ-free”) animals that can be recolonized with a standardized

microbiota (Fig 2B) [24–29]—and their value is being enhanced further by advances in experi-

mental manipulation of the microbial partners. In particular, protocols for enumeration, culti-

vation, and genetic manipulation of key members of the microbiome are either in place or the

subject of intensive method development [30–33]. Nevertheless, some of these traditional

models are not currently being used to their full capacity in microbiome science.

Many microbiome scientists focused on human health make extensive use of the experi-

mental protocol illustrated in Fig 1 to identify a causal role of the microbiome in human dis-

ease. This approach requires that the animal model be colonized by human-derived microbes

and respond to them in the same way as humans. To a certain extent, the laboratory mouse

meets these expectations. Nevertheless, great caution is needed to extrapolate mouse data back

to the human. There are major anatomical differences between the gastrointestinal (GI) tract

of the mouse and human, and the laboratory mouse is highly inbred and maintained under

pathogen-free conditions that bear no resemblance to the human condition. The use of mice

bearing human-derived microbes is particularly problematic because an appreciable propor-

tion of human-associated gut microorganisms fail to colonize the mouse gut, and those

microbial taxa that do colonize fail to induce some responses elicited by the native mouse

microbiota [34–36]. Two responses to these limitations of the mouse model are appropriate.

The first is to investigate microbial interactions with human cells grown in vitro as sheets of
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gut epithelium or as GI-tract organoids, and we are witnessing rapid progress with these mod-

els [13,37,38]. The second response builds on insights from symbiosis research, specifically

that the interactions between the human and its microbiota are the product of a long evolu-

tionary history of interactions between animals and benign or beneficial microorganisms. The

eukaryotic forbears of animals lived in a world that had been inhabited by bacteria for billions

of years, with the expectation that—as for modern unicellular eukaryotes and basal animals—

the ancestral animals were colonized by a diversity of microorganisms, with which they inter-

acted [39]. Consequently, we should expect (and indeed, are finding) conserved genetic and

cellular mechanisms underlying interactions between various animals and their resident

microbiota [1]. The implication is that fundamental discoveries in microbiome science can be

made using the most tractable animal systems, including nonmammal vertebrates such as the

zebrafish and invertebrates such as Drosophila and Caenorhabditis elegans (Fig 2A). The

Fig 2. The traditional animal models are amenable to microbiome research. (A) The advantages and limitations of

traditional models for microbiome research. �Zebrafish older than 6–8 days require feeding, which is technically

demanding under strictly sterile conditions [27]. (B) The key microbiological manipulations required for experimental

investigation of microbiome function.

https://doi.org/10.1371/journal.pbio.2005245.g002
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human may, in a perfect world, be the best model for the human—but arguably, we will obtain

a better understanding of the human–microbiome interactions faster and more cost-effectively

by more extensive integration of “simple” animal models into the collective endeavor.

Other practitioners in the discipline are wary of the traditional animal models because of

the perception that the microbiota of these models is unnatural as a result of laboratory cultiva-

tion. There is some truth in these concerns. The gut microbiota of the laboratory mouse is dif-

ferent from wild conspecifics [40], taxonomically indistinguishable bacteria in wild and

laboratory Drosophila differ in functional gene content [41], and the oft-repeated claim that C.

elegans has no microbiota arises from a standard laboratory practice that maintains this species

in a microbiologically sterile condition apart from a single Escherichia coli strain used as food

[25]. These constraints can, however, be overcome by thoughtful experimental design. We are

already witnessing evidence-based discussion about the wisdom of maintaining laboratory

mouse cultures under intensely hygienic conditions [42,43], and research on C. elegans
reunited with its natural microbiome is yielding new insights into the immune function of this

model [25].

What about the systems that are being used to study animal–microbe interactions but lack

the in-depth infrastructure available to the traditional models? A number of systems used by

relatively small communities of researchers have yielded major insights of general significance.

I cite a few among many examples here: hydra for the role of the microbiota in orchestrating

peristalsis of the gut epithelium [44], squid for integration of microbial function into the circa-

dian rhythm of the host [45], the aphid for coevolved metabolite exchange [46], and the killi-

fish for microbial determinants of lifespan [47]. For these systems, the future is bright because

of the progressive democratization of technologies. Tools and resources that once demanded

an army of researchers with funds to match can now be developed by small but well-integrated

teams. For your favorite organism, you can sequence its genome or modify its genes and their

expression by a growing list of genetic technologies, including RNA interference (RNAi),

genome editing, and the use (or set up) of publicly available online databases to share informa-

tion and resources. An early-career researcher entering the discipline is well-advised to con-

sider whether their preferred system has, or has good prospects of, these resources for the host

or microbial partners.

My conclusion is somewhat akin to Goldilocks’ porridge: neither too few nor too many. Let

us not invest our resources in a narrow set of systems, especially when other systems (often

less familiar to the biomedical community) would yield results faster and more economically.

And let us be cautious of systems that are ill-suited to experimental and genetic manipulation.

The middle ground does, however, create a substantial constraint for the individual research

group. The use of any biological system has large front-end costs, including the financial cost

of setting up facilities and the opportunity cost of developing the expertise. These costs reduce

our flexibility. It is difficult for researchers to use multiple systems in one study, for example,

to first investigate a problem in a “simple” system and then to test for its relevance to mammals

(but see [48]); and it is difficult for a single researcher to switch between different systems as

their research questions change over time. I believe that it is important for the future of our

discipline to mitigate this constraint. One powerful solution is already starting to happen: net-

works of researchers who can share access to multiple different systems (traditional models,

nontraditional models, in vitro systems, and human research) and the associated expertise.

These networks can be (partly or entirely) colocated as centers at one (or several) institution

(s). Combined with a greater awareness of the opportunities available from different biological

systems, these institutional innovations will make it easier for us all to choose the best biologi-

cal model, and to use it well.
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