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Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection
treatment, was reintroduced after being avoided in clinical settings from the 1970s to the
1990s because of its high toxicity. Colistin is considered a crucial treatment option for
Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical
priority pathogens for new antibiotics by the World Health Organization. The resistance
mechanisms of colistin are considered to be chromosomally encoded, and no horizontal
transfer has been reported. Nevertheless, in November 2015, a transmissible resistance
mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten
families with MCR and more than 100 variants of Gram-negative bacteria have been
reported worldwide. Even though few have been reported from Acinetobacter spp. and
Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in
these pathogens. Therefore, this review focuses on the most recent update on colistin
resistance and the epidemiology of mcr genes among non-fermentative Gram-negative
bacilli, especially Acinetobacter spp. and P. aeruginosa.
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1 INTRODUCTION

Presently, beta-lactams, cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, and
macrolides are frequently used to treat bacterial infections. However, the emergence of drug-
resistant microorganisms, particularly Gram-negative pathogens, has become a public health threat.
In 2017, the World Health Organization classified carbapenem-resistant (CR) Acinetobacter
baumannii and Pseudomonas aeruginosa as priority pathogens in critical need of alternative
treatment options (World Health Organization, 2017). P. aeruginosa, A. baumannii,
Stenotrophomonas maltophilia, and Burkholderia cepacia complex are non-fermentative Gram-
negative bacteria that cause significant problems in healthcare settings. Because these bacteria are
highly adaptable and have various intrinsic and acquired resistance mechanisms, they are typically
resistant to major classes of antimicrobial agents, leaving only a few therapeutic options (Enoch
et al., 2007). Among these, P. aeruginosa and A. baumannii are the most common causes of
nosocomial infections (Mancuso et al., 2021). P. aeruginosa is the most common pathogen in the
Pseudomonas genus. This bacterium is an opportunistic pathogen that causes skin, wound, and lung
infections. Respiratory infections caused by P. aeruginosa are often associated with defective
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respiratory systems or ventilation, such as in cystic fibrosis
(Bassetti et al., 2018). In contrast, A. baumannii is one of the
most common causes of nosocomial infections, such as
bloodstream infections and pneumonia (Garnacho-Montero
and Timsit, 2019). This organism is part of what is known as
the Acinetobacter calcoaceticus–baumannii complex, which also
includes Acinetobacter pittii, Acinetobacter nosocomialis, and
Acinetobacter calcoaceticus (Ramirez et al., 2020).

With the limitations of new drug development, many
outdated antibiotics have been reintroduced into the clinical
setting despite their high toxicity, including the polymyxin drug
group (Hermsen et al., 2003). As there are no other options
available, this drug group has become crucial to combat
antibiotic resistance (Bialvaei and Samadi Kafil, 2015). Modern
therapeutic drug monitoring of colistin is prone to have a lower
incidence rate of toxicity when compared to the past.

The polymyxin group contains many drugs, but polymyxin E,
also known as colistin, is recognized as the main agent (Rhouma
et al., 2016b). Colistin is one of the remaining treatment options
for life-threatening infections caused by multidrug and
extensively drug-resistant A. baumannii and P. aeruginosa
(Bialvaei and Samadi Kafil, 2015). Moreover, colistin resistance
mechanisms are quite rare and chromosomally encoded, which
makes transfer difficult (Olaitan et al., 2014). Therefore, the
resistance rate against colistin in Gram-negative pathogens
appears to be lower than that of other antibiotic classes.
However, the increasing trend of colistin resistance in
Enterobacteriaceae led to the discovery of the transmissible
resistance mechanism of colistin in 2015 (Liu et al., 2016).
Since then, the resistance rate of last-resort drugs has been
closely monitored; the more the antibiotic resistance rate
increases, the fewer treatment options are available.
Transferable polymyxin resistance has been extensively
reported worldwide. To date, at least ten variations in mcr
genes have been described and are currently ongoing. This
problem is critical, especially for pathogens with limited
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
treatment options, such as A. baumannii and P. aeruginosa.
Therefore, this review focuses on colistin drug resistance and its
epidemiology among the non-fermentative Gram-negative
bacilli, Acinetobacter spp., and P. aeruginosa.
2 THE POLYMYXINS

Colistin (polymyxin E) belongs to the polymyxin drug group and
appears commercially in two forms as inactive prodrugs: colistin
methanesulfonate for parenteral use and colistin sulfate for
topical use and use in animal production in some countries
(Rhouma et al., 2016b). Another type of polymyxin used in
clinical practice is polymyxin B, which is administered in its
active form (Tsuji et al., 2019). These antibiotics have been
described as old-generation antibiotics, but because of the
limitations of antibiotic options, colistin was reintroduced as a
last resort for multidrug-resistant (MDR) and extensively drug-
resistant (XDR) bacterial infection treatment. Polymyxins were
discovered in the 1940s from Bacillus polymyxa, later known as
Paenibacillus polymyxa, and were approved by the United States
Food and Drug Administration before being used in hospitals in
the 1950s (Lim et al., 2010). Polymyxins are polypeptide
antibiotic groups that include five different chemical
compounds: polymyxins A, B, C, D, and E; however, only
polymyxin B and polymyxin E are used in clinical settings
(Bialvaei and Samadi Kafil, 2015). Polymyxin B consists of two
compounds, polymyxins B1 and B2, whereas colistin contains
polymyxins E1 and E2. Colistin differs from polymyxin B in its
amino acid composition (Figure 1) (Hermsen et al., 2003; Nation
and Li, 2009; Bialvaei and Samadi Kafil, 2015). It has a molecular
weight of 1,750 Da and consists of a polycationic cyclic
heptapeptide attached to a lipophilic fatty acid side chain
(Bialvaei and Samadi Kafil, 2015). The structure of colistin is
amphipathic, containing both aqueous and non-aqueous soluble
parts (Hermsen et al., 2003).
FIGURE 1 | Chemical structures of polymyxin B and E.
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Colistin has been demonstrated to have a concentration-
dependent bactericidal effect, but its mechanism of action is
unclear (Nation and Li, 2009; Bialvaei and Samadi Kafil, 2015).
The proposed mechanism of action is based on the chemical
structure of colistin, which destabilizes lipopolysaccharide (LPS),
increases membrane permeability, and leads to bacterial cell
leakage (Hermsen et al., 2003; Nation and Li, 2009). The
antibiotic spectrum of colistin is narrow, but it is active against
many important MDR Gram-negative bacteria, including P.
aeruginosa , A. baumannii, Escherichia coli , Klebsiella
pneumoniae, Enterobacter spp., and some other bacteria in
Enterobacterales (Hermsen et al., 2003; Nation and Li, 2009;
Bialvaei and Samadi Kafil, 2015). Colistin is generally not
recommended for Gram-positive pathogens because they lack
an outer membrane structure.

Its prominent toxicity, including nephrotoxicity and
neurotoxicity, is a drawback of colistin use (Nation and Li,
2009). However, toxicity is usually reversible upon discontinuing
the medication and is believed to be dose dependent (Li et al.,
2006). In the early 2000s, when a resurgence of colistin use
occurred, the lack of information on appropriate colistin dosage
was the main problem. The International Consensus Guidelines
for the Optimal Use of Polymyxins were published in 2020,
making colistin safer for use. The recommended PK/PD
therapeutic target for efficacy maximization of colistin is a target
plasma colistin Css,avg of 2 mg/L, which can provide an area under
the plasma concentration–time curve across 24 h at a steady state
(AUCss,24 h) of approximately 50 mg h/L (Tsuji et al., 2019). This
concentration is considered the maximum tolerable exposure.
Higher concentrations can increase the nephrotoxicity incidence
and severity (Tsuji et al., 2019). Patients with renal impairment
should have their colistin dosage adjusted based on creatinine
clearance (Tsuji et al., 2019).
3 THE LABORATORY DETECTION OF
COLISTIN RESISTANCE

The phenotypic detection of colistin resistance is usually based
on antimicrobial susceptibility testing. Clinical and Laboratory
Standards Institute (CLSI) guidelines recommend that the broth
dilution method be used for colistin because the disc diffusion
method is unreliable (Falagas et al., 2010). As a result, the CLSI-
EUCAST Working Group recommended a reference method for
polymyxin susceptibility testing using broth microdilution
without additives (Dafopoulou et al., 2019). The microbe is
considered colistin or polymyxin B resistant when the
minimum inhibitory concentration (MIC) is equal to or
greater than 4 mg/ml in tested organisms, including in
Enterobacterales, P. aeruginosa, and Acinetobacter spp.
(Clinical and Laboratory Standards Institute, 2022). Colistin
resistance in Enterobacterales and Acinetobacter spp. is when
the MIC is greater than 2 mg/ml, but resistance in P. aeruginosa
is when the MIC is greater than 4 mg/ml, according to the
EUCAST breakpoints table (The European Committee on
Antimicrobial Susceptibility Testing, 2022). Additionally,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
sulfate salts of polymyxins must be used instead of colistin
methanesulfonate because of their slow breakdown from the
inactive prodrug form (Tsuji et al., 2019). Agar dilution is
another antimicrobial susceptibility method based on dilution
techniques. However, the reliability of the MICs obtained using
this method remains inconclusive. Therefore, the CLSI-EUCAST
Working Group advised to avoid using the agar dilution method
until more data are available (Dafopoulou et al., 2019). Notably,
the phenotypic detection method cannot distinguish between
colistin resistance mechanisms. To identify the resistance
mechanisms, analyses at the genotypic level should be applied
subsequent to the antimicrobial susceptibility test. Genotypic
detection is based on polymerase chain reaction (PCR) and
whole-genome sequencing (WGS) methods. WGS seems to be
the most effective strategy for collecting these data because it can
identify all targeted antimicrobial resistance genes, including
acquired colistin resistance genes (World Health Organization,
2020). The PCR detection method has limitations owing to its
selective amplification of only the known sequence. If suspected
organisms carry novel mcr genes or mutations, the PCR method
alone may not detect that information (World Health
Organization, 2021).

Since the presence of mcr genes on transmissible plasmids
was reported, the colistin resistance rate has increased
significantly, especially in Asia, Africa, and Europe. Therefore,
rapid screening methods for mcr-harboring microorganisms are
necessary. The only recommended phenotypic detection method
is broth dilution, which is laborious compared to the disc
diffusion or gradient diffusion methods. Although genetic-
based detection methods are the gold standard, they require
sophisticated instruments and experienced users. It is also
difficult to detect all the responsible colistin resistance genes,
especially the acquired genes. Therefore, a more practical
method for routine laboratory screening is required (World
Health Organization, 2021). Phenotypic detection methods
that are still under development have been proposed, such as
agar-based screening media (CHROMID® Colistin R agar,
Superpolymyxin™, CHROMagar™ COL-APSE), the Rapid
Polymyxin NP test, Colispot, and disc prediffusion (Boyen
et al., 2010; Nordmann et al., 2016a; Nordmann et al., 2016b;
Abdul Momin et al., 2017; Jouy et al., 2017; Garcia-Fernandez
et al., 2019).
4 COLISTIN RESISTANCE SURVEILLANCE

Public health awareness of the increasing prevalence of
antimicrobial-resistant microorganisms has led to the
implementation of antimicrobial stewardship programs
worldwide. One strategy is to monitor the resistance of
bacteria to slow the spread of resistant microorganisms.
Therefore, many surveillance programs have been initiated to
monitor antimicrobial resistance in all countries, including the
Global Antimicrobial Resistance and Use Surveillance System
(GLASS), Central Asian and European Surveillance of
Antimicrobial Resistance (CAESAR), Latin American and
June 2022 | Volume 12 | Article 882236
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Caribbean Network for Antimicrobial Resistance Surveillance
(ReLAVRA), and the European Antimicrobial Resistance
Surveillance Network (EARS-Net). A report of colistin
resistance in bloodstream infections from the SENTRY
program from 2009 to 2016 showed a resistance rate of less
than 1% in P. aeruginosa, 3.1% in A. baumannii, and more than
10% in Enterobacteriaceae (Diekema et al., 2019). In Canada, the
CANWARD surveillance study showed that between 2007 and
2016, Enterobacter cloacae, P. aeruginosa, and A. baumannii
were the top three microorganisms with the highest colistin
resistance rates of approximately 18.1%, 5.0%, and 2.5%,
respectively (Zhanel et al., 2019). Similar results were obtained
by Bialvaei and Kafil, who also detected a high resistance rate of
colistin among Enterobacteriaceae, especially from Enterobacter
spp. and K. pneumoniae, in the Asia-Pacific and Latin American
regions (Bialvaei and Samadi Kafil, 2015). The abrupt increase in
colistin resistance in Asian countries has led to the discovery of
mobile colistin resistance (MCR). In Thailand, the National
Antimicrobial Resistance Surveillance Center, Thailand
(NARST) also monitors colistin resistance in clinically
important microorganisms. Fortunately, the resistance rates to
colistin in E. coli, K. pneumoniae, P. aeruginosa, and A.
baumannii in Thailand in 2019 were less than 5% (National
Antimicrobial Resistant Surveillance Center, 2020).
5 THE IMPORTANCE OF THE
POLYMYXINS IN NON-FERMENTATIVE
BACTERIA TREATMENT

Polymyxins and carbapenems are considered last-resort
antibiotics for the treatment of Gram-negative bacteria;
however, owing to their misuse, the problem of antibiotic
resistance is worsening, particularly in low- to middle-income
countries (de Carvalho et al., 2022). A multicenter surveillance
study in Taiwan found that the incidence of MDR, XDR, and CR
P. aeruginosa infections in hospitalized patients increased from
25.1% to 27.5%, 7.7 to 8.4%, and 19.7% to 27.5%, respectively,
between 2016 and 2018 (Jean et al., 2022). In the past decade,
hospital-associated P. aeruginosa has showed high MDR/CR
numbers in Europe, with prevalence rates of more than 30%
(Micek et al., 2015). In 2020, more than half of the countries in
Europe showed carbapenem resistance of more than 25% among
invasive isolates (European Centre for Disease Prevention and
Control, 2022). A meta-analysis found that colistin is the most
effective antibiotic for the treatment of Pseudomonas spp.
Throughout the study period, colistin was the only antibiotic
with a resistance rate of less than 10% (Bonyadi et al., 2022).

In China, Acinetobacter spp. showed a high level of resistance
to all carbapenems caused by plasmids carrying various
carbapenemase genes (Jean et al., 2022). In a 2022 report from
Europe, healthcare-associated isolates of CR-Acinetobacter spp.
were >50% in at least 20 countries, especially in southern and
eastern Europe (European Centre for Disease Prevention and
Control, 2022). Data from many surveillance studies have
indicated that carbapenem resistance has been increasing over
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
the last decade, suggesting that carbapenems may not be a
suitable standard treatment for MDR, XDR, and CR non-
fermentative Gram-negative bacteria. Therefore, polymyxin-
based therapy has become the recommended treatment option
for CR A. baumannii (CRAB) and XDR P. aeruginosa infections
(de Carvalho et al., 2022). In clinical practice, colistin or
polymyxin has always been used in combination therapy with
at least one additional antibiotic from a different class against CR
microorganisms or in patients with risk factors (Bassetti et al.,
2018; Doi 2019).

The “Guidelines Recommendations for Evidenced-based
Antimicrobial use in Taiwan” (GREAT) working group has
launched recommendations and guidelines for the treatment of
infections caused by MDR organisms (Sy et al., 2022). In
bloodstream infections caused by CRAB, the recommended
treatment is colistin 5 mg/kg IV loading dose, followed by IV
every 12 h of 2.5 mg × (1.5 × creatine clearance + 30) and/or
imipenem/cilastatin 500 mg IV every 6 h or meropenem 2 g IV
every 8 h. In pneumonia caused by CRAB, the recommended
treatment is colistin 5 mg/kg IV loading dose, then IV every 12 h of
2.5 mg × (1.5 × creatine clearance + 30) and/or imipenem/cilastatin
500 mg IV every 6 h or meropenem 2 g IV every 8 h and adjunctive
colistin inhalation 1.25–15 MIU/day in 2–3 divided doses. For any
clinical symptoms caused by difficult-to-treat P. aeruginosa, one of
the recommended regimens is colistin 5 mg/kg IV loading dose,
followed by IV every 12 h at 2.5 mg × (1.5 × creatine clearance + 30)
or combination therapy for 5–14 days. Colistin plays a crucial role in
MDR microorganism treatment. Therefore, if colistin resistance
mechanisms can be transmitted more easily like MCR, it would
significantly impact non-fermentative Gram-negative
bacterial treatment.
6 CHROMOSOMAL RESISTANCE
OF COLISTIN

Before the 2000s, reports of resistance to colistin were quite rare,
which might have been caused by its low usage over the last 30
years (Nation and Li, 2009). The main mechanism of polymyxin
resistance in Gram-negative bacteria is the modification of lipid
A, which reduces electrostatic interactions with polymyxins (Cai
et al., 2012). Some Gram-negative bacteria, such as Proteus spp.
and Burkholderia spp., demonstrated resistance to polymyxins
naturally by modifying LPS with 4-amino-4-deoxy-L-arabinose
(L-Ara4N) (Olaitan et al., 2014). Chromosomal encoding
enzymes (EptA, EptB, and EptC) have been identified in some
Gram-negative bacteria, such as Salmonella. EptA, also known as
PmrC, is a complex operon. These enzymes, encoded by
phosphoethanolamine (pEtN) transferases, can add pEtN to
LPS (Zhang et al., 2019; Hamel et al., 2021).

The acquired resistance mechanisms of chromosomally encoded
polymyxins are mainly caused by modification of the LPS charge
(Olaitan et al., 2014). These resistance mechanisms have been
reported in many Gram-negative microorganisms, such as
Salmonella enterica, K. pneumoniae, A. baumannii, P. aeruginosa,
and E. coli. They are involved in the two-component system genes
phoP/phoQ and pmrA/pmrB (Needham and Trent, 2013; Olaitan
June 2022 | Volume 12 | Article 882236

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Khuntayaporn et al. MCR in Acinetobacter and Pseudomonas
et al., 2014). PhoQ and PmrB proteins possess tyrosine kinase
activity, which phosphorylates the regulator protein (PhoP or
PmrA), activates the pmrHFIJKLM operon, and finally modifies
the surface of bacteria by adding L-Ara4N or pEtN to lipid A
(Ayoub Moubareck, 2020). PhoP/PhoQ is also regulated by the
ColR/ColS and CprR/CprS systems. Mutations in these regulatory
systems can lead to overexpression of PhoP/PhoQ in P. aeruginosa
(Gutu et al., 2013). ParR/ParS is also involved in colistin resistance
in P. aeruginosa, with upregulation of the LPS modification operon
at sub-inhibitory concentrations of polymyxins (Fernandez et al.,
2010). The two-component systems found in P. aeruginosa are
PhoP/PhoQ and PmrA/PmrB, but only PmrA/PmrB has been
reported in A. baumannii (McPhee et al., 2003; Adams et al.,
2009; Beceiro et al., 2011). In addition, in A. baumannii, the
insertion of ISAba11 into the biosynthesis genes lpxA, lpxC, and
lpxD leads to the complete loss of LPS and colistin resistance
(Moffatt et al., 2010; Moffatt et al., 2011).

Additional resistance mechanisms, such as overexpression of
efflux pumps, outer membrane remodeling, and lack of LPS
formation, have also been reported to be involved in colistin
resistance (Olaitan et al., 2014; Ayoub Moubareck, 2020).
However, these resistance mechanisms appear to be located on
the chromosome. Therefore, the transmission of these
mechanisms is difficult, and the horizontal gene transfer of
these mechanisms has never been reported (Liu et al., 2016).
7 TRANSMISSIBLE RESISTANCE
OF COLISTIN

Although the use of colistin in human clinical settings was
reduced in the 1970s and was reintroduced in the late 1990s,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
colistin is commonly consumed in animal farming to prevent E.
coli and Salmonella spp. infections (Kempf et al., 2013; Rhouma
et al., 2016a). Prior to the discovery of MCR-1, surveillance of
antimicrobial resistance revealed a significant increase in
colistin resistance. In 2015, the first mobilized colistin
resistance gene, mcr-1, was discovered in E. coli in a Chinese
pig farm using a routine antimicrobial resistance surveillance
program (Liu et al., 2016). MCR-1 encodes pEtN-lipid A
transferase, which can modify the lipid A portion of LPS by
the addition of pEtN. MCR-1 also demonstrates transmission
and maintenance properties in K. pneumoniae and P.
aeruginosa (Liu et al., 2016). Moreover, the microorganisms
that harbored MCR-1 showed an increase in the MIC values of
colistin. Furthermore, researchers have identified the mcr-1
gene in clinical isolates from inpatients in the same area of a
pig farm (Liu et al., 2016). Therefore, awareness of this gene’s
transferable properties is of great concern because colistin is
currently considered one of the last-resort treatments for
XDR microorganisms.

7.1 The Variation of MCR
After the MCR-1 discovery, many surveillance programs
discovered MCR variation. The nomenclature of mcr genes was
proposed in 2018 (Partridge et al., 2018). As of January 2022, ten
mcr-gene families with more than 100 variants have been
reported in GenBank. The highest number of MCR variants
was found in MCR-3 followed by MCR-1, with 42 and 32
variants, respectively (Medicine, 2022). Only MCR-6 and
MCR-7 showed one variant each. MCR-5, MCR-8, and MCR-
10 all had four variants. The rest of the MCR families, i.e., MCR-
2, MCR-4, and MCR-9, have 8, 6, and 3 variants, respectively.
The phylogenetic tree of the MCR families is shown in Figure 2.
FIGURE 2 | The phylogenetic tree of MCR-gene variants using the Neighbor-Joining method alignment. Multiple sequence alignment was calculated by the clustal
omega (Madeira et al., 2019), and the results were illustrated by the Interactive Tree of Life (Letunic and Bork, 2021).
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7.2 The Epidemiology of the mcr Gene
The discovery of themcr gene occurred from a surveillance study in
China before it spread around the world (Liu et al., 2016). In 2016,
many countries across all continents except Australia reported the
discovery of MCR-1 (Table 1). Most MCR-harboring
microorganisms belong to the Enterobacterales order, such as E.
coli, Salmonella spp., and K. pneumoniae. Apart from
Enterobacterales, colistin was also considered a last-resort
antibiotic option for non-fermentative Gram-negative bacteria,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Acinetobacter spp., and P. aeruginosa. Pseudomonas spp. and
Acinetobacter spp. are the most common microorganisms that
cause nosocomial infections. They have many intrinsic resistance
mechanisms and readily acquire transmissible antibiotic resistance
genes, which limit antibiotic treatment options. These organisms
belong to ESKAPE (Enterococcus faecium, Staphylococcus aureus, K.
pneumoniae, A. baumannii, P. aeruginosa, and Enterobacteriaceae),
a group of bacteria that are considered an emerging threat in this
century (Boucher et al., 2009). Transferable colistin resistance
TABLE 1 | List of countries that reported the mcr-1 gene in 2016.

Continent Country List of
organisms

Source of
specimens

Reference

Africa Algeria E. coli A, C (Berrazeg et al., 2016; Olaitan et al., 2016)
Egypt E. coli A, C (Elnahriry et al., 2016; Khalifa et al., 2016)

South Africa E. coli A, C (Perreten et al., 2016; Poirel et al., 2016)
Tunisia E. coli A (Grami et al., 2016)

Asia Bahrain E. coli C (Sonnevend et al., 2016)
Cambodia E. coli C (Stoesser et al., 2016)
China E. coli

K. pneumoniae
E. aerogenes
E. cloacae

Kluyvera ascorbata
S. entirica

A, C
A,C
C
C
E
A

(Li et al., 2016; Liu et al., 2016; Zeng et al., 2016; Zhao and Zong, 2016)

Japan E. coli
S. enterica

A
A

(Kusumoto et al., 2016; Suzuki et al., 2016)

Laos E. coli
K. pneumoniae

A, C
C

(Olaitan et al., 2016)
(Rolain et al., 2016)

Malaysia E. coli A, E, C (Yu et al., 2016)
Pakistan E. coli C (Mohsin et al., 2017)
Singapore E. coli

E. aerogenes
K. pneumoniae

C
C
C

(Teo et al., 2016a; Teo et al., 2016b)

Saudi Arabia E. coli C (Sonnevend et al., 2016)
South Korea E. coli A (Lim et al., 2016)
Thailand E. coli C (Olaitan et al., 2016)

United Arab Emirates E. coli C (Sonnevend et al., 2016)
Vietnam E. coli

Shigella sonnei
A
C

(Malhotra-Kumar et al., 2016b)
(Pham Thanh et al., 2016)

Australia –

Europe Denmark E. coli A, C (Hasman et al., 2015)
Estonia E. coli A (Brauer et al., 2016)
Germany E. coli A, C (Falgenhauer et al., 2016)
France Salmonella spp.

E. coli
K. pneumoniae

A
A
C

(Webb et al., 2016)
(Haenni et al., 2016)
(Rolain et al., 2016)

Belgium E. coli# A (Malhotra-Kumar et al., 2016a; Xavier et al., 2016)
Italy E. coli

K. pneumoniae*
Salmonella spp.

A, C
C

A, C

(Cannatelli et al., 2016; Carnevali et al., 2016; Di Pilato et al., 2016; Zogg et al., 2016)

Lithuania E. coli A (Ruzauskas and Vaskeviciute, 2016)
Netherlands E. coli,

Salmonella spp.
A, C
A

(Arcilla et al., 2016; Kluytmans-van den Bergh et al., 2016; Veldman et al., 2016)

Norway E. coli C (Solheim et al., 2016)
Poland E. coli C (Izdebski et al., 2016)
Portugal E. coli

Salmonella spp.
E

A, C
(Campos et al., 2016; Figueiredo et al., 2016; Jones-Dias et al., 2016)

Russia E. coli C (Castanheira et al., 2016)
Spain E. coli

Salmonella spp.
A, C
A

(Prim et al., 2016; Quesada et al., 2016)

Sweden E. coli C (Vading et al., 2016)

(Continued)
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mechanisms in these organisms are a serious problem in the
healthcare setting. Therefore, monitoring the mcr gene in non-
fermentative Gram-negative bacteria is necessary to combat
multidrug resistance.

7.2.1 The Epidemiology of the mcr Gene in
Pseudomonas spp.
MCR-1 is the major MCR family member found in
Pseudomonas spp. (Table 2). Pseudomonas spp. harboring the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
mcr-gene have been reported by at least one country in all
continents, except Australia (Figure 3). P. aeruginosa is a major
species of Pseudomonas that harbors the mcr gene. There are
also some reports of mcr genes in Pseudomonas putida (Caselli
et al., 2018; Ara et al., 2021). PCR is used as the primary
detection method for mcr genes in Pseudomonas spp. However,
the first report of Pseudomonas spp. carrying the mcr gene by
Snesrud et al. used the WGS method combining short-read and
long-read sequences (Snesrud et al., 2018). Moreover, they also
TABLE 2 | Summary of the mcr gene identified in Pseudomonas spp., specimen description, MCR family, and susceptibility profile.

Country Sources of samples
[details (if any)]

Detection
method

Year of
sample

collection

Genus
species

MCR
family

Number of
detected
samples

Susceptibility profile (mg/ml)
(determination method)

Reference

Bangladesh Clinical samples
(urine)

PCR 2017–2018 P. putida MCR-
1

3 32–128
(Agar dilution)

(Ara et al.,
2021)

Brazil Clinical sample
(urine)

PCR 2015–2016 P. aeruginosa MCR-
1

1 ≥8
(Vitek R 2 Compact)

(Nitz et al.,
2021)

Brazil Animal samples
(ear swabs from cat
and dog)

PCR 2018–2020 Pseudomonas
spp.

MCR-
1

11 n/a
(Disk diffusion)

(Martins et al.,
2022)

Egypt Clinical samples PCR No data P. aeruginosa MCR-
1

8 8–256
(Agar dilution)

(Abd El-Baky
et al., 2020)

Egypt Animal samples
(bird feces)

PCR 2017–2018 P. aeruginosa MCR-
1

6 n/d (Ahmed et al.,
2019)

MCR-
2

1 n/d

Egypt Animal samples
(milk from dairy cows)

PCR 2018–2020 P. aeruginosa MCR-
1

3 32–>128
(Broth microdilution)

(Tartor et al.,
2021)

MCR-
2

1 128
(Broth microdilution)

MCR-
3

3 16–64
(Broth microdilution)

MCR-
7

1 128
(Broth microdilution)

Egypt Clinical sample PCR 2019 P. aeruginosa MCR-
1

1 ≥4
(E-test®)

(Shabban
et al., 2020)

Iran Clinical samples
(burn and wound)

PCR 2017–2018 P. aeruginosa MCR-
1

3 >4
(Broth microdilution)

(Tahmasebi
et al., 2020b)

Iran Clinical samples
(blood)

PCR 2018–2019 P. aeruginosa MCR-
1

10 ≥4
(E-test®)

(Tahmasebi
et al., 2020a)

(Continued)
June 2022 | Volume 12 |
TABLE 1 | Continued

Continent Country List of
organisms

Source of
specimens

Reference

Switzerland E. coli E, C (Zurfuh et al., 2016)
(Nordmann et al., 2016c)

United Kingdom E. coli
S. enterica

C
A, C

(Doumith et al., 2016)

North America Canada E. coli A, C (Mulvey et al., 2016)
United States of America E. coli A, C (McGann et al., 2016; Meinersmann et al., 2016)

South America Argentina E. coli A, C (Liakopoulos et al., 2016; Rapoport et al., 2016)
Brazil E. coli A (Fernandes et al., 2016)

Ecuador E. coli C (Ortega-Paredes et al., 2016)
Venezuela E. coli A, C (Delgado-Blas et al., 2016)
A, animal sources; C, clinical sources; E, environmental sources; *mcr1.2 gene reported; #mcr-1 and mcr-2 gene reported.
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found that the mcr-5 gene was located within a Tn3-like
transposon structure on the chromosome (Snesrud et al.,
2018). Considering a health approach, animal and
environmental sources may also be reservoirs of mcr genes.
Ahmed et al. collected fecal samples from migratory birds in
Egypt during the winter season and detected MCR-1 in P.
aeruginosa (Ahmed et al., 2019). Some studies have detected
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
mcr genes in cow’s milk, animal meat, and soil (Fujihara et al.,
2015; Javed et al., 2020; Tartor et al., 2021). It is noteworthy that
the oldest specimen was retrieved from the environment in
1983 but was never recognized until the WGS era (Fujihara
et al., 2015). Therefore, dissemination of the mcr gene in the
environment via animal hosts is another issue that needs to
be considered.
TABLE 2 | Continued

Country Sources of samples
[details (if any)]

Detection
method

Year of
sample

collection

Genus
species

MCR
family

Number of
detected
samples

Susceptibility profile (mg/ml)
(determination method)

Reference

Italy Environment sample
(hospital surfaces)

PCR 2016–2017 P. aeruginosa MCR-
1

1 4
(Broth microdilution)

(Caselli et al.,
2018)

P. putida MCR-
1

1 8
(Broth microdilution)

Japan Environment sample
(soil)

WGS 1983 P. aeruginosa MCR-
5a

1 n/a (Fujihara
et al., 2015)

Pakistan Clinical sample (urine) PCR 2017–2018 P. aeruginosa MCR-
1

1 16
(Broth microdilution)

(Hameed
et al., 2019)

Pakistan Animal sample PCR No data
(18

months)

P. aeruginosa MCR-
1

1 ≥8

(SensiTest™ Colistin)

(Javed et al.,
2020)

Pakistan Clinical samples
(urine, wound)

PCR No data (6
months)

P. aeruginosa MCR-
1

2 ≥4

(SensiTest™ Colistin)

(Ejaz et al.,
2021)

United States
of America

Clinical sample
(wound)

WGS (short read
and long read)

2012 P. aeruginosa MCR-
5

1 4
(Broth microdilution)

(Snesrud
et al., 2018)
June 2022 | Volume 12 |
aAntimicrobial resistance gene database (NCBI). n/d, not determined; n/a, no data available.
FIGURE 3 | The worldwide dissemination of the mcr gene in Pseudomonas spp. Countries that reported only one type of mcr gene were colored to represent the
mcr gene. The country that reported more than one type of mcr gene was filled with gray background containing color bands of the reported mcr gene.
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Because of the low incidence of the mcr gene in Pseudomonas
compared to other microorganisms in ESKAPE pathogens, this
raises the question of the fitness barrier or transferability
properties of the mcr gene among Pseudomonas. The
transmissibil ity of mcr genes in P. aeruginosa was
demonstrated by Tartor et al. via conjugation with E. coli J53
(Tartor et al., 2021). Four mcr genes, mcr-1, mcr-2, mcr-3, and
mcr-7, were able to transfer into the recipient bacteria and
increased the MIC of the recipient cells up to 64 mg/ml (Tartor
et al., 2021). Cervoni et al. also demonstrated that MCR-1
increases colistin resistance in recipient cells. Moreover, the
expression of MCR-1 in Pseudomonas does not affect bacterial
growth or cell envelope homeostasis (Cervoni et al., 2021).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
7.2.2 The Epidemiology of the mcr Gene in
Acinetobacter spp.
MCR-1 and MCR-4 are the major MCR families reported in
Acinetobacter spp. (Table 3). Other mcr genes found in A.
baumannii include mcr-2 and mcr-3 (Al-Kadmy et al., 2020).
Reports of MCR harboring Acinetobacter spp. have been obtained
from all continents, except North America and Australia (Figure 4).
The oldest Acinetobacter specimen in which mcr genes were
identified was from a stored clinical sample retained from a
patient in Brazil in 2008, indicating that the mcr gene circulated
for quite a period prior to its discovery by Liu et al. in 2015
(Martins-Sorenson et al., 2020). PCR has been used inAcinetobacter
spp. formcr gene detection, but short- and long-readWGS has been
TABLE 3 | Summary of the mcr gene identified in Acinetobacter spp., specimen description, MCR family, and susceptibility profile.

Country Sources of samples
[details if any]

Detection
method

Year of sample
collection

Genus
species

MCR
family

Number of
detected
samples

Susceptibility profile (mg/ml)
(determination method)

Reference

Brazil Clinical sample
(cerebrospinal fluid)

WGS 2008 A.
baumannii

MCR-
4.3

1 64
(Broth dilution)

(Martins-
Sorenson et al.,
2020)

China Clinical sample PCR 2018 A.
baumannii

MCR-
1.1

1 8
(Broth microdilution)

(Fan et al., 2020)

China Animal sample
(pig feces)

WGS 2018 A.
baumannii

MCR-
4.3

1 8
(Broth dilution)

(Hameed et al.,
2019)

China Animal sample
(pig lung)

WGS 2018a A. pittii MCR-
1b

1 n/a (Yang and Zhang,
2018)

Czech
Republic

Animals sample
(imported aquaculture
products)

WGS 2019 A.
baumannii

MCR-
4.3

1 >16
(Broth microdilution)

(Kalova et al.,
2021)

A.
nosocomialis

MCR-
4.3

1 >16
(Broth microdilution)

Czech
Republic

Animal sample
(imported raw turkey
liver)

WGS 2017 A.
baumannii

MCR-
4.3

1 16
(Broth microdilution)

(Bitar et al., 2019)

Clinical sample
(tracheal)

WGS 2017 A.
baumannii

MCR-
4.3

1 16
(Broth microdilution)

Egypt Clinical samples PCR 2019 A.
baumannii

MCR-1 2 ≥4
(E-test®)

(Shabban et al.,
2020)

Finland Environment sample
(paper pulp mill)

WGS 2020a A.
baumannii

MCR-
4b

1 n/a (Hamidian et al.,
2020)

Iraq Clinical samples PCR 2014–2018 A.
baumannii

MCR-1 22 ≥4
(Broth microdilution)

(Kareem, 2020)

Iraq Clinical and
environmental samples

PCR 2016–2018 A.
baumannii

MCR-1 89 >2
(Broth microdilution)

(Al-Kadmy et al.,
2020)MCR-2 78

MCR-3 82
Italy Environment samples

(hospital surfaces)
PCR 2016–2017 A. lwoffii MCR-1 4 4-8

(Broth microdilution)
(Caselli et al.,
2018)

Pakistan Clinical sample (blood) PCR 2017–2018 A.
baumannii

MCR-1 1 16
(Agar dilution and broth
microdilution)

(Hameed et al.,
2019)

Pakistan Clinical samples
(pus, wound, tracheal)

PCR No data (6
months)

A.
baumannii

MCR-1 3 ≥4

(SensiTest™ colistin)

(Ejaz et al., 2021)

Republic
of Korea

Animal sample
(imported pork)

WGS 2019 A.
nosocomialis

MCR-
4.3

1 16
(Broth microdilution)

(Cha et al., 2021)

South
Africa

Clinical sample PCR, WGS 2017 A.
nosocomialis

MCR-
4.3

1 16
(Broth microdilution and

SensiTest™ Colistin)

(Snyman et al.,
2021)

Thailand Clinical sample WGS 2010 A.
nosocomialis

MCR-
4.3b

1 n/a (Kamolvit et al.,
2014)
June 2022 | Volume 1
aYear of genome assembly.
bAntimicrobial resistance gene database (NCBI); n/a, no data available.
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applied in Acinetobacter spp. genome studies and many mobile
genetic elements involved in gene transfer have been identified
(Table 4). While A. baumannii has been shown to harbor a plasmid
carrying the mcr gene, plasmids in A. nosocomialis have also been
reported (Cha et al., 2021; Kalova et al., 2021; Snyman et al., 2021).
The mcr-4.3 gene in Acinetobacter spp. was found on a plasmid
surrounding the transposon Tn3-family and/or insertion sequence.
These mobile genetic elements are important for the transfer of
many antibiotic resistance genes. Interestingly, some of these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
plasmids were unable to conjugate and/or were transferable
between bacterial species.
8 CONCLUDING REMARKS

Colistin is recognized as a highly toxic old-generation
antimicrobial agent. Owing to the shortage of antibiotic
options in fighting against MDR Gram-negative bacteria, this
FIGURE 4 | The worldwide dissemination of the mcr gene in Acinetobacter spp. Countries that reported only one type of mcr gene were colored to represent the
mcr gene. Countries that reported more than one type of mcr gene were filled with gray background containing color bands of the reported mcr gene.
TABLE 4 | Location of the mcr gene in Acinetobacter spp. and surrounding mobile genetic elements.

Bacteria strain MCR
family

Type of
WGS

Gene location Mobile genetic elements sur-
rounding MCR gene

Year of sample
collection

Reference

A. baumannii 597A MCR-
4.3

Short and
long read

pAb-MCR4.3 -Tn3-family transposon
-Insertion sequence ISAba19

2008 (Martins-Sorenson
et al., 2020)

A. baumannii
LEV1449/17Ec

MCR-
4.3

Short and
long read

pEC_mcr4.3 (nonconjugative and
nontransformable plasmid)

Insertion sequence ISAba19 2017 (Bitar et al., 2019)

A. baumannii
39741

MCR-
4.3

Short and
long read

pEH _mcr4.3 (nonconjugative and
nontransformable plasmid)

Insertion sequence ISAba19 2017 (Bitar et al., 2019)

A. nosocomialis
CAC13

MCR-
4.3

Short and
long read

Plasmid pCAC13a -IS3 family transposase
(ISAba19)
-Tn3 family transposase
(ISPsy42)

2017 (Snyman et al.,
2021)

A. baumannii
AB18PR065

MCR-
4.3

Short read pAB18PR065
(nonconjugative plasmid)

Tn3 element 2018 (Hameed et al.,
2019)

A. baumannii
CT263

MCR-
4.3

Short and
long read

Untypeable plasmid Tn3 family transpose ISPsy42 2019 (Kalova et al.,
2021)

A. nosocomialis
KUFSE-ACN036

MCR-
4.3

Short read Unidentified location due to the limitation of
the short-read WGS technique

-Insertion sequence ISAba19
-Transposase

2019 (Kalova et al.,
2021)

A. nosocomialis
CT237

MCR-
4.3

Short and
long read

Untypeable plasmid Tn3 family transpose ISPsy42 2019 (Cha et al., 2021)
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drug was reintroduced into the clinical setting and has been
recognized as one of the last-resort drugs. Non-fermentative
Gram-negative bacteria such as A. baumannii and P. aeruginosa
are already recognized as major threats in this century; when
combined with resistance to last-resort antibiotics, the severity of
the situation is critical. The resistance mechanism against colistin
is considered to be chromosomally encoded and difficult to
transfer. MCR was discovered in 2015, and several
investigations have been subsequently published. To date, ten
families of the mcr gene with more than 100 variants have been
registered. More efforts are now being made to address this issue,
and rapid detection with a high-sensitivity method is essential to
track the resistance pattern. A sophisticated approach, such as
WGS, is also needed to enhance the knowledge of resistance
mechanisms. While waiting for the discovery of a rapid detection
technique and more information, a strategy to control the
resistant pathogens should be implemented along with the
antibiotic stewardship program, which is recognized as a good
practice in hospital settings.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
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