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Abstract: Antibiotics have been applied for decades and antibiotic pollution is of great concern due
to the risk for promoting resistant genes. Human activities such as mariculture and land-based
discharge can lead to the antibiotic pollution in coastal area and it is of importance to assess the
pollution and risks of antibiotics in this area. In this mini-review, the pollution status of antibiotics in
Chinese coastal waters is summarized and some perspectives are put forward for future efforts to
mitigate the pollution.
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1. Introduction

The application of antibiotics worldwide has been increasing since 1940s. Particularly, China is
estimated to consume the most antibiotics in the world with the consumption amounting to more than
160,000 tons in 2013. These antibiotics are used to cure or prevent diseases for human or applied in
stock farming and aquaculture [1]. It is known that the applied antibiotics could not be absorbed or
metabolized entirely in organisms and about 30%–90% of them would be released to the environment.
Although some antibiotics undergo degradation [2] (e.g., photodegradation [3–6] and hydrolysis [7]) in
the environment, their environmental levels can still increase if their general emission rates are higher
than the degradation rates.

About two-thirds of global rivers carry organic micropollutants including antibiotics, pesticides,
and industrial chemicals to estuarine and coastal areas which are dynamic ecosystems hosting some of
the highest biodiversity and biological production in the world. Thus, it is of importance to assess the
pollution and risks of antibiotics in estuarine and coastal areas [8]. In this mini-review, the pollution of
antibiotics in Chinese coastal waters is summarized so as to get an aerial view on the pollution status
and to suggest future efforts to mitigate the pollution.

2. Occurrence and Distribution of Antibiotics in Coastal Waters of China

Since 2007 when Xu et al. reported determination of selected antibiotics in the Victoria harbor and
the Pearl river, South China, there have been some investigations and reports on antibiotic levels in
rivers and coastal waters in China [9]. These studies mainly focused on coastal waters in four seas; the
Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea (Figure 1). As the Bohai Sea
is an interior sea of China and has poorer water exchange ability, most previous studies focused on
the Bohai Sea. Based on results from previous studies, levels of antibiotics in estuarine and coastal
waters in China are summarized and indicated in Figure 1 and Table 1 [9–22]. More than 36 antibiotics
have been detected in the coastal waters and their concentrations generally range from several ng
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L−1 to dozens of ng L−1. However, the levels could be even up to µg L−1 in some heavily polluted
areas. For example, norfloxacin was once determined to be 6.8 µg L−1 in the Bohai Bay. Sulfonamides,
macrolides, and fluoroquinolones were found to have higher detection rates and levels than others,
especially for sulfamethoxazole, trimethoprim, norfloxacin, enrofloxacin, and erythromycin [21]. Our
previous studies examined antibiotics in three Chinese coastal areas (Figure 2) with concentration
scales of 33.2–136.9 ng L−1(Dalian), 62.3–316.4 ng L−1(Dongying), and 1.9–94.9 ng L−1(Yancheng),
respectively (data not published).
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Table 1. Level range and mean level of antibiotics in coastal water around China (unit: ng L-1) [9–22].

Antibiotic Level Range Mean Level Antibiotic Level Range Mean Level

Sulfonamides Tetracycline
Sulfadiazine 0.1–209.0 14.2 Tetracycline 1.0–122.0 23.9

Sulfacetamide 0.3–56.8 14.7 Doxycycline 0.3 0.3
Sulfadiazole 0.1–52.8 4.7 Chlortetracycline 0.6–5.0 1.8

Sulfamethoxine 0.2–41.7 8.4 Methyl cyclin 2.1–2.3 2.2
Sulfachloropyridazine 0.2–233.2 65.1 Oxytetracycline 2.5–15,163.0 578.9

Sulfamethoxazine 0.2–86.4 26.0 Chloramphenicol
Sulfamonomethoxine 0.1–28.9 7.3 Chloramphenicol 0.2–0.9 0.4

Sulfadimethoxine 0.3–108.4 20.4 Thiamphenicol 0.8–85.0 24.9
Sulfamethoxazole 0.2–47.2 8.9 Florfenicol 0.5–40.0 11.6
Sulfamethoxazole 0.1–527.0 19.1 Macrolides

Acetyl Sulfamethoxazole 5.9–52.8 25.6 Roxithromycin 0.1–630.0 38.4
Sulfadiazine 0.1–30.0 3.4 Azithromycin 0.1–396.0 45.2

Sulfaguanidine 0.6–3.7 1.5 Erythromycin 0.1–486.0 16.9
Sulfanilamide 0.5–7.9 2.5 Clarithromycin 0.2–32.9 3.1

Sulfaquinoxaline 0.5–7.0 1.9 β-lactam
Quinolone Cephalexin 10.0–182.0 43.7
Norfloxacin 2.3–6800.0 129.3 Cefradine 5.3–90.0 41.8

Enoxacin 23.4–508.0 98.8 Others
Ofloxacin 0.8–5100.0 57.0 Salinomycin 1.3–36.9 9.9

Enrofloxacin 1.9–24.6 111.5 Trimethoprim 1.3–13,600.0 416.1
Ciprofloxacin 3.3–39.0 9.7
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The pollution levels in the Bohai Sea are generally higher than those in the other seas, which mainly
results from the poorer water exchange of the Bohai Sea. A negative relationship was found between
the levels of antibiotics and distances from coastline to the sampling sites. This can be explained by the
effects of dilution, degradation, and adsorption by sediments and suspended particles [23].

Although continuous monitoring data on antibiotics in Chinese coastal waters are very limited,
it can still be inferred that antibiotic levels generally have an increasing trend in the coastal waters.
For example, the antibiotics levels in the Victoria harbor in the South China Sea were mainly below
the limit of quantification and the maximum detected level was 30.6 ng L−1 in 2007. While in 2015,
21 antibiotics were detected in the Hailing Bay of the South China Sea with levels up to 15,163 ng
L−1 [9]. A similar trend can be also observed in the coastal waters around Dalian by comparing the
levels determined in 2013 [24] (2.11–9.23 ng L−1) [13] and in 2016 (33.2–136.9 ng·L−1, unpublished data).

3. Potential Sources of Antibiotic Pollution in Coastal Waters

Riverine transport, discharge from land-based sources and mariculture activities are the main
sources of antibiotics pollution in coastal waters in China. It was estimated that humans consumed
about 48% of the 160,000 tons of antibiotics and the rest were shared by animals in 2013. Zhang et al. [1]
determined antibiotics in the Laizhou Bay and 10 ambient rivers, and found antibiotics levels in
rivers were much higher than those in the seawaters. Zou et al. [18] investigated antibiotics levels in
rivers and mariculture ponds adjacent to the Bohai Bay and got a similar conclusion. Sulfonamides
and tetracyclines were shown to be predominant antibiotics in the fish farming ponds in China’s
southeast coast [21]. In addition, streptomycin, neomycin, penicillin, and rifampin were proved to be
effective for the development and survival of giant clams and therefore they were widely used in the
mariculture [25,26]. These results indicate that antibiotics in rivers and ponds could continually flow
into coastal waters and lead to the pollution. The mariculture mainly include in land- or sea-based
enclosures, such as cages, ponds, or raceways. It seems that the relatively closed ones may release
more antibiotics to the seawaters.

4. Risks of Antibiotics in Marine Environment

Although levels for most antibiotics in the coastal waters mentioned above were proved to have
no acute toxicity for marine organisms [16,18,24], the ecological risks of antibiotics in the coastal waters
should not be ignored, as many studies indicated that antibiotics in coastal waters may promote the
selection of antibiotic resistances [27–29]. For example, Niu et al. [30] found that the abundance of
resistance genes has a positive relationship with the levels of antibiotics in the Bohai Bay. The antibiotics
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in the coastal waters can also be adsorbed and stored by sediments, promoting the occurrence of
resistance genes among abundant microbes in the sediments. The resistance genes in the marine
environment have the potential to enter the biosphere [19,31]. It has been reported that fishmeal
is a major reservoir for resistance genes. Table 2 shows relative information on the antimicrobial
resistance genes detected in marine environment of China [32]. Besides promoting resistance, some
antibiotics of high levels may also pose direct toxicity to the marine organisms. Chen et al. [24] pointed
out that erythromycin-H2O, norfloxacin, and oxytetracycline in seawaters of the Hailing Bay could
pose high risks to marine sensitive species.

Table 2. Information of antimicrobial resistance genes detected in marine environment of China.

Antimicrobial Resistance Genes Geographic Locations Local
Factors Reference

cat I, cat III Jiaozhou Bay Surface
seawater [33]

cat II, cat IV, floR, tetB, tetD, tetE, tetM Around Dalian Maricultural
environments [34]

sul1, sul2, tetA, tetC, tetD, qnrS, qnrB, qnrA Around Dalian Maricultural
environments [35]

sul1, sul2, sul3, sulP, tetA, tetB, tetC, tetD, qnrS, qnrB Around Tangshan Maricultural
environments [35]

sul1, sul2, sulP, tetA, tetB, tetC, tetD, qnrD, qnrB, qnrA Around Penglai Maricultural
environments [35]

sul1, sulP, tetA, tetC, qnrD, qnrB Around Lianyungang Maricultural
environments [35]

sul1, sul3, sulP, tetB, tetC, tetD, qnrD, qnrB Around Qidong Maricultural
environments [35]

sul1, sul2, sulP, tetA, tetC, tetD, qnrS, qnrA Around Xiangshan Maricultural
environments [35]

sul1, sul2, sul3, tetA, tetC, tetD, qnrS, qnrA Around Ningde Maricultural
environments [35]

sul1, sul2, sulP, tetA, tetC, tetD, qnrD, qnrB, qnrA Around Dongshan Maricultural
environments [35]

sul1, sul3, tetB, tetC, tetD, qnrD, qnrS, qnrB Around Zhanjiang Maricultural
environments [35]

sul2, sul3, tetA, tetB, tetC, tetD, qnrD, qnrS, qnrB, qnrA Around Lingshui Maricultural
environments [35]

tetA, tetB Around Meijijiao Maricultural
environments [35]

Actually, the antibiotics do not exist in the aquatic environment separately. Previous studies
showed that the combined antibiotics can exhibit synergistic effects and lead to joint ecotoxicity.
For example, synergistic effects were observed when combinations of amoxicillin, erythromycin,
levofloxacin, norfloxacin, and tetracycline were tested on cyanobacterium and green algae [36,37].
It is indicated that specific combinations of antibiotics at the present environmental levels can pose
a potential ecological risk for aquatic ecosystems [37–39].

Conventionally, only hydrophobic pollutants were considered to be bioaccumulative.
However, it was found that some antibiotics that are not very hydrophobic, including sulfonamides,
fluoroquinolones, and macrolides, can also be bio-concentrated in marine animals and sulfonamides
can even be biomagnified in the food web of the Laizhou Bay [40].

5. Perspective

In recent years, the Chinese government has promulgated a series of policies to improve the
environmental quality and to build the “Beautiful China”, including management of the antibiotic
pollution in aquatic environments. For example, the “Action Plan for Prevention and Control of
Water Pollution” put forward by the state council in 2015 stipulates “To strengthen management of
aquaculture inputs, standardize and limit the use of chemical medicine such as antibiotics in accordance
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with the law”. In 2019, the “No 1 Central Document”, the first policy statement released by central
authorities each year, holds that “To control and reduce the scale of inland and coastal aquaculture”,
which can also reduce the antibiotics consumption and emission. Therefore, it is expected that the
antibiotic levels in coastal waters will decrease in the future.

To evaluate the performance of the national policies and to provide sound technologies to
control and mitigate the pollution of antibiotics in the coastal waters, the following measures can
be implemented.

(1) Systematical surveys on spatial and temporal variation of antibiotics in coastal waters should
be organized. There are currently many data gaps on levels of antibiotics in the coastal waters with
regard to the spatial and temporal scales. The previous studies are far from enough to reflect the
pollution characteristics of antibiotics in the coastal waters.

Due to the broad areas of coastal waters relative to inland rivers, collecting and transporting
seawater samples for target pollutants analysis is very laborious, costly, and time-consuming.
Development and application of passive sampling or other in situ novel active sampling technology
(e.g., osmotic sampler [41]) becomes important. Passive sampling technique, e.g., the diffusive gradients
in thin-films (DGT) technique [42], can provide a time-weighted average concentration of pollutants.
Chen et al. developed DGT techniques to monitor antibiotics in freshwaters. Xie et al. [43,44]
further developed DGT technology to monitor antibiotics and endocrine disrupting chemicals in
seawaters [45,46].

As coastal waters are sinks for many organic and inorganic pollutants, our understanding on
diversity of organic micropollutants in the coastal waters can be very limited. To protect ecosystems
of coastal zones, non-target analytical methods can be developed to screen other emerging organic
micropollutants in the coastal waters.

(2) Environmental behavior and ecological risks of antibiotics in the coastal waters should be
investigated, so as to assess environmental capacity of the pollutants and manage the application of
antibiotics. For example, some studies have indicated photodegradation in a dominant degradation
pathway of some antibiotics (e.g., ciprofloxacin [4], sulfadiazine [47], and sulfapyridine [48]). It was
also found that dissolved organic matter (DOM) from coastal waters impacted by mariculture exhibited
higher promotion effects on photodegradation of sulfonamide antibiotics than that from offshore
seawaters. Nevertheless, the effects of DOM in coastal waters influenced by different land-based sources
on photodegradation of antibiotics and other micropollutants are largely unknown and need further
investigations [6]. It is also important to understand the photodegradation pathways of micropollutants
such as antibiotics in coastal waters, and to develop prediction models on photodegradation kinetics
in coastal water bodies [49].

(3) More studies are necessary to investigate pollution control technology for antibiotic containing
wastewaters from hospitals, pharmaceutical factories, livestock and poultry farms, and even indoor
industrial type of aquaculture plants. It is reported that the conventional activated sludge methods
were negative for removing antibiotics in waste waters [50]. Therefore more effective and economical
methods should be developed [51]. Previous studies proved high efficiency of UV activation of
hydrogen peroxide for antibiotic removal in aqueous solutions. This technique can be a potential waste
water treatment method for the discharge of antibiotics [52]. Further attentions should be paid on
more suitable reaction conditions and decreasing the cost of treatment. Meanwhile, it is also necessary
to reduce stocking density for aquiculture ponds, and to develop greener aquiculture technologies [53].
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