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Abstract: A novel one-flask synthetic method was developed in which 5-aminopyrazoles were
reacted with N,N-substituted amides in the presence of PBr3. Hexamethyldisilazane was then
added to perform heterocyclization to produce the corresponding pyrazolo[3,4-d]pyrimidines in
suitable yields. These one-flask reactions thus involved Vilsmeier amidination, imination reactions,
and the sequential intermolecular heterocyclization. To study the reaction mechanism, a series
of 4-formyl-1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidines, which were conceived
as the chemical equivalent of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-formamidine, were
prepared and successfully converted into pyrazolo[3,4-d]pyrimidines. The experiments demonstrated
that the reaction intermediates were the chemical equivalents of 4-(iminomethyl)-1,3-diphenyl-
1H-pyrazol-5-yl)formamidines. The rate of the reaction could be described as being proportional
to the reactivity of amine reactants during intermolecular heterocyclization, especially when
hexamethyldisilazane was used.

Keywords: pyrazolo[3,4-d]pyrimidines; pyrimidines; vilsmeier reaction; heterocyclization;
hexamethyldisilazane

1. Introduction

One-flask reactions possess significant advantages and have emerged as a powerful tool in
synthetic organic chemistry and reaction design approaches [1–3]. The main advantages of using
one-flask reactions in organic syntheses are their green chemistry nature and high atom economy
due to the lack of workup or the isolation of intermediates involved [4–12]. We previously reported
an efficient one-pot three-component synthesis of pyrazolo[3,4-d]pyrimidines that involved treatment
of 5-aminopyrazoles with formamide using PBr3 as the coupling agent (Scheme 1) [13–15].
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Scheme 1. Synthesis of pyrazolo[3,4-d]pyrimidines by the different synthetic strategy via the Vilsmeier 
reaction and intramolecular or intermolecular heterocyclization. 

Pyrazolopyrimidine derivatives are important structural moieties, found in pharmacologically active 
compounds such as a novel series of glucokinase activators [16], antibacterial [17], antifungal [18,19], 
antioxidant [20], antitumor [21–24], herbicidal [25], antivirus [26,27], anticancer compounds [28,29], 
and effective inhibitors of inflammatory mediators in intact cells [30,31]. The pyrazolo[3,4-d] 
pyrimidine core is also isomeric with the biologically significant purine system [32,33]. Numerous 
synthetic methods were developed for preparing pyrazolopyrimidine derivatives [34–37]. However, 
most of these methods are not straightforward and their purification steps are troublesome. 
Therefore, new and convenient routes for the synthesis of pyrazolo[3,4-d]pyrimidine systems have 
attracted considerable attention [13–15]. 

In this study, we extended our previous one-pot three-component approach for the synthesis of 
a series of pyrazolo[3,4-d]pyrimidine derivatives to develop a novel one-flask synthesis involving 
Vilsmeier amidination, imination reactions, and sequential intermolecular heterocyclization. First, 5-
aminopyrazoles were treated with various Vilsmeier agents, which were generated from the 
corresponding amide solvents, including N,N-dimethylformamide (DMF), N,N-diethylformamide (DEF), 
N,N-diisopropylformamide, N,N-di-n-butylformamide, piperidine-1-carbaldehyde, and pyrrolidine-1-
carbaldehyde in the presence of tribromophosphine PBr3, to produce the corresponding 4-(iminomethyl)-
1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidine intermediates (Scheme 1) [38,39]. Without 
isolating the intermediates, we sequentially evaluated the intermolecular heterocyclization reactivity 
between 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-formamidines and amines such as 
hexamethyldisilazane, hexamethylenetetramine, lithium bis(trimethylsilyl)amine, and sodium 
bis(trimethylsilyl)amine. These experimental results revealed that commercially available N,N-
dimethylformamide (DMF)/PBr3 and hexamethyldisilazane were the optimal Vilsmeier agent and the 
promotor, respectively. Specifically, we successfully combined the Vilsmeier amidination and imination 
reactions with intermolecular heterocyclization to design a high-efficiency one-flask synthesis for the 
preparation of a series of pyrazolo[3,4-d]pyrimidines . 

2. Results and Discussion 

To optimize the one-flask process for the synthesis of pyrazolo[3,4-d]pyrimidine derivatives 3a–n via 
the sequential Vilsmeier reaction and intermolecular heterocyclization and explain the mechanism 
the study illustrated in Scheme 2 was performed. 5-Amino-1,3-diphenylpyrazole (1a) was prepared 
by our previously developed method [38,39] and used as the model starting material to improve the 
intermolecular heterocyclization reaction conditions. Following the reliable published procedure for 
the Vilsmeier reaction 5-aminopyrazole 1a was treated with 3.0 equivalent of PBr3 in N,N-
dimethylformamide (DMF) solution at 60 °C for 1.0–2.0 h. The corresponding 4-(iminomethyl)-1,3-
diphenyl-1H-pyrazol-5-yl-formamidine 2a was thus obtained in excellent yield (>90%). 

 

Scheme 1. Synthesis of pyrazolo[3,4-d]pyrimidines by the different synthetic strategy via the Vilsmeier
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Pyrazolopyrimidine derivatives are important structural moieties, found in pharmacologically
active compounds such as a novel series of glucokinase activators [16], antibacterial [17],
antifungal [18,19], antioxidant [20], antitumor [21–24], herbicidal [25], antivirus [26,27],
anticancer compounds [28,29], and effective inhibitors of inflammatory mediators in intact
cells [30,31]. The pyrazolo[3,4-d]pyrimidine core is also isomeric with the biologically significant purine
system [32,33]. Numerous synthetic methods were developed for preparing pyrazolopyrimidine
derivatives [34–37]. However, most of these methods are not straightforward and their purification
steps are troublesome. Therefore, new and convenient routes for the synthesis of pyrazolo[3,4-d]
pyrimidine systems have attracted considerable attention [13–15].

In this study, we extended our previous one-pot three-component approach for the
synthesis of a series of pyrazolo[3,4-d]pyrimidine derivatives to develop a novel one-flask
synthesis involving Vilsmeier amidination, imination reactions, and sequential intermolecular
heterocyclization. First, 5-aminopyrazoles were treated with various Vilsmeier agents, which were
generated from the corresponding amide solvents, including N,N-dimethylformamide (DMF),
N,N-diethylformamide (DEF), N,N-diisopropylformamide, N,N-di-n-butylformamide, piperidine-1-
carbaldehyde, and pyrrolidine-1-carbaldehyde in the presence of tribromophosphine PBr3, to produce
the corresponding 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidine
intermediates (Scheme 1) [38,39]. Without isolating the intermediates, we sequentially evaluated
the intermolecular heterocyclization reactivity between 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-
5-yl-formamidines and amines such as hexamethyldisilazane, hexamethylenetetramine, lithium
bis(trimethylsilyl)amine, and sodium bis(trimethylsilyl)amine. These experimental results revealed
that commercially available N,N-dimethylformamide (DMF)/PBr3 and hexamethyldisilazane were
the optimal Vilsmeier agent and the promotor, respectively. Specifically, we successfully combined
the Vilsmeier amidination and imination reactions with intermolecular heterocyclization to design
a high-efficiency one-flask synthesis for the preparation of a series of pyrazolo[3,4-d]pyrimidines.

2. Results and Discussion

To optimize the one-flask process for the synthesis of pyrazolo[3,4-d]pyrimidine derivatives
3a–n via the sequential Vilsmeier reaction and intermolecular heterocyclization and explain the
mechanism the study illustrated in Scheme 2 was performed. 5-Amino-1,3-diphenylpyrazole (1a) was
prepared by our previously developed method [38,39] and used as the model starting material to
improve the intermolecular heterocyclization reaction conditions. Following the reliable published
procedure for the Vilsmeier reaction 5-aminopyrazole 1a was treated with 3.0 equivalent of PBr3 in
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N,N-dimethylformamide (DMF) solution at 60 ◦C for 1.0–2.0 h. The corresponding 4-(iminomethyl)-
1,3-diphenyl-1H-pyrazol-5-yl-formamidine 2a was thus obtained in excellent yield (>90%).Molecules 2017, 22, 820 3 of 11 
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pyrazolo[3,4-d]pyrimidine 3a was obtained in excellent yield (91%, see Table 2). 
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Without isolation of intermediate 2a, various amines, including hexamethyldisilazane
(NH(SiMe3)2), hexamethylenetetramine, lithium bis(trimethylsilyl)amine (LiN(SiMe3)2), and sodium
bis(trimethylsilyl)amine (NaN(SiMe3)2) were added into the reaction mixture and the solution
was heated at reflux for 3–5 h to establish the best heterocyclization conditions (see Table 1).
Without the amine agent, only 4-formyl-1,3-diphenyl-1H-pyrazol-5-yl-formamidine 7a, which is the
chemical equivalent of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-formamidine intermediate 2a,
was isolated after work-up and purification (see entry 1 in Table 1). Among the amines, the corresponding
pyrazolo[3,4-d]pyrimidine product 3a can be produced and isolated in yields ranging from 26% to
91%. Based on the results, we found that commercially available hexamethyldisilazane (NH(SiMe3)2)
provided the best result (91% yield) and the reactivity tendency of the amines was NH(SiMe3)2 >
NaN(SiMe3)2 > LiN(SiMe3)2 > hexamethylenetetramine (see the Entries 2–5 in Table 1). We next tried
different amounts of NH(SiMe3)2, including 1.0, 2.0, 3.0, and 4.0 equivalents. The corresponding
pyrazolo[3,4-d]pyrimidine product 1a was obtained in 56–91% yield, with the best yield (91%)
corresponding to 3 equivalents of (NH(SiMe3)2) (see the Entries 5 and 6–8 in Table 1). Consequently,
we believe that 3.0 equivalent of NH(SiMe3)2 is the optimum amount for our reaction conditions.

Table 1. The study of amine agents in the one-flask for synthesis of pyrazolo[3,4-d]pyrimidines.

Entry Amine Agents Equiv. Yields (%) of Compound 3a

1 Without base - - a

2 Hexamethylenetetramine 3 33
3 Lithium bis(trimethylsilyl)amine (LiN(SiMe3)2) 3 67

4 Sodium bis(trimethylsilyl)amine
(NaN(SiMe3)2) 3 81

5 Hexamethyldisilazane (NH(SiMe3)2) 3 91
6 Hexamethyldisilazane (NH(SiMe3)2) 1 56
7 Hexamethyldisilazane (NH(SiMe3)2) 2 63
8 Hexamethyldisilazane (NH(SiMe3)2) 4 75

a 1H-pyrazol-5-yl-N,N-disubstituted formamidine 2a was isolated.

To determine the reactivity of the different Vilsmeier agents (HC(O)NR1R2 + PBr3), we used
different amide solvents, including N,N-dimethylformamide (DMF), N,N-diethylformamide (DEF),
N,N-diisopropylformamide, N,N-di-n-butylformamide, piperidine-1-carbaldehyde, and pyrrolidine-1-
carbaldehyde in the presence of 3.0 equivalent of PBr3 to prepare the corresponding types of Vilsmeier
reagent. Compound 1a was allowed to react sequentially with these different Vilsmeier reagents at
60 ◦C for 1.0–2.0 h. When the starting material 1a was fully consumed, 3.0 equivalents of NH (SiMe3)2

were added to the reaction mixture which was heated at reflux for 3.0–5.0 h. After the work-up
and purification, the corresponding pyrazolo[3,4-d]pyrimidine 3a was obtained in 56–91% yields
(see Table 2). Based on the study, commercially available DMF was the best solvent for the preparation
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of the Vilsmeier reagent in this new one-flask procedure. Based on our optimized experimental results,
we believe the most reliable procedure for the one-flask synthesis of pyrazole[3,4-d]pyrimidines
involves the treatment of 5-aminopyrazole 1a with 3.0 equivalent of PBr3 in DMF solution at 60 ◦C
for 1.0–2.0 h. When the Vilsmeier reaction was completed, the resulting mixture was added with
3.0 equivalents of NH(SiMe3)2 then heated at reflux at 70 ◦C to 80 ◦C for 3.0–5.0 h (monitored by TLC).
After work-up and purification by chromatography, the corresponding pyrazolo[3,4-d]pyrimidine 3a
was obtained in excellent yield (91%, see Table 2).

Table 2. The study of the reactivity of the different Vilsmeier agents in the one-flask synthesis of
pyrazole[3,4-d]pyrimidines.
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Entry Amide Solvents Yields (%) of Compound 3a

1 N,N-dimethylformamide (DMF) 91
2 N,N-diethylformamide (DEF) 86
3 N,N-diisopropylformamide 83
4 N,N-di-n-butylformamide 81
5 piperidine-1-carbaldehyde 69
6 pyrrolidine-1-carbaldehyde 56

Application of the optimized one-flask inter-heterocyclization procedure to 5-amino-1,
3-disubstituted pyrazoles 1b–i bearing various N1 substituents, including o-Me-Ph, o-Cl-Ph, m-Me-Ph,
m-Cl-Ph, m-NO2-Ph, p-Me-Ph, p-Cl-Ph, and p-Br-Ph, also proceeded smoothly to give the corresponding
pyrazolo[3,4-d]pyrimidines 3a–i in 78–91% yields (see Table 3).

Table 3. The results of the one-flask synthesis of pyrazolo[3,4-d]pyrimidines from 5-aminopyrazoles,
DMF/PBr3 and NH(SiMe3)2.
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For further investigation of the effect of the substituent on the C-3 of the pyrazole ring, the same
conditions were employed with 5-amino-1-phenyl-3-substituted pyrazoles 1j–n that contained methyl,
t-butyl, p-Me-Ph, p-Cl-Ph, or p-OMe-Ph groups at the C-3 position of the pyrazole ring. The reaction
also proceeded smoothly gave the corresponding products 3j–n in 79–91% yields (see Table 3).
All pyrazolo[3,4-d]pyrimidines 3a–n were fully characterized by spectroscopic methods and the physical
properties and spectroscopic characteristics of the pyrazolo[3,4-d]pyrimidines 3a–n were consistent
with our published data [13–15].

For further comparison of the reactivity between this new intermolecular Vilsmeier
heterocyclization and the previously published intramolecular heterocyclization method [13–15],
5-aminopyrazoles were treated with formamide/PBr3. Based on the results of Table 3, the corresponding
pyrazolopyrimidines 3a–n were obtained in 78–91% yields by the intermolecular heterocyclization
route and in 87–96% yields by intramolecular heterocyclization, respectively. The data suggests that
the intramolecular heterocyclization is more favorable as it provided the better isolated yields.

We propose a plausible mechanism for the newly developed one-flask cascade for synthesis
of pyrazolo [3,4-d]pyrimidines as shown in Scheme 3. Initiallly, N,N-dimethylformamide (DMF)
reacted with the coupling agent PBr3 to form the Vilsmeier reactive species 4 in situ [40–44].
Sequentially, 5-amino-1,3-disubstituted pyrazoles 1a–n reacted with the reactive species 4 to undergo
the amidination and imination reaction to give the 1H-pyrazol-5-yl-N,N-disubstituted formamidine
intermediates 2a–n (see Scheme 3). When the Vilsmeier reaction was complete (by monitoring TLC),
NH(SiMe3)2 was directly added into the reaction mixture to perform the substitution reaction with
the imino group to generate intermediate 5. A sequential intermolecular heterocyclization reaction
then took place to produce intermediate 6. After the desilylation reaction occurred caused by bromide
anion and water, the corresponding pyrazolo[3,4-d]pyrimidines 3a–n were obtained in good yields.
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To further study the mechanism, 4-formyl-1,3-diphenyl-1H-pyrazol-5-yl-N,N-dimethyl
formamidine 7a was synthesized [20] and reacted with various amines including NH(SiMe3)2,
hexamethylenetetramine, LiN(SiMe3)2, and NaN(SiMe3)2, to carry out the intermolecular
heterocyclization. The heterocyclization was successfully and smoothly underwent to give pyrazole
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[3,4-d]pyrimidine product 3a in 37–91% yields. Particularly, NH(SiMe3)2 was most efficient
base for heterocyclization to afford the desired product in 91% yield (see Entry 4 in Table 4).
The similar reactivity tendency of heterocyclization was observed in this study: NH(SiMe3)2 >
NaN(SiMe3)2 > LiN(SiMe3)2 > hexamethylenetetramine (see Entries 1–4 in Table 4). 4-formyl-1,
3-diphenyl-1H-pyrazol-5-yl-N,N-disubtituted formamidines 7b–e with grafting the different
amino-substituent on amidinyl groups, such as NEt2, N(i-Pr)2, N(n-Bu)2, and piperidinyl, were
then allowed to reacted with NH(SiMe3)2 in DMF solution at reflux to give the corresponding
pyrazolo[3,4-d]pyrimidine 3a for the investigation of the reactivity of substrates. Based on
the experimental result, among of starting substrates 7b–e displayed the good to excellent
reactivity in heterocyclization, except for 7c possessing the bulky N (i-Pr)2 substituent moiety
on amidinyl groups (see Entries 1 and 5–8 in Table 4). Furthermore, 4-formyl-1,3-diphenyl-1H-
pyrazol-5-yl-N,N-dimethyl formamidine 7a with the NMe2 substituent on amidinyl groups
was the best suitable reactant in the intermolecular heterocyclization (91%, see Table 4).
The above results also gave more proof to our proposed mechanism, for example, the new one-flask
reaction would take place through 4-(iminomethyl)-1H-pyrazol-5-yl-formamidine intermediates 2a–n.
On the other hands, the commercial available N,N-dimethylformamide (DMF) in the presence of PBr3

and hexamethyldisilazane were the best Vilsmeier agent and the promoted cyclization base.

Table 4. The mechanistic study for the intermolecular heterocyclization from 4-formyl-1,3-disubstituted-
1H-pyrazol-5-yl-formamidines 7a–n with various amines.
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Entry Substrates NR1R2 Amines Yields of 3a (%)

1 7a NMe2 Hexamethylenetetramine 3a 37
2 7a NMe2 LiN(SiMe3)2 3a 51
3 7a NMe2 NaN(SiMe3)2 3a 84
4 7a NMe2 NH(SiMe3)2 3a 91
5 7b NEt2 NH(SiMe3)2 3a 89
6 7c N(i-Pr)2 NH(SiMe3)2 3a 61
7 7d N(n-Bu)2 NH(SiMe3)2 3a 81
8 7e Piperidinyl NH(SiMe3)2 3a 86

3. Experimental Section

3.1. General Information

All chemicals were reagent grade and used as purchased. All reactions were carried out under
nitrogen atmosphere and monitored by TLC analysis. Flash column chromatography purification of
compounds was carried out by gradient elution using hexanes in ethyl acetate (EA) unless otherwise
stated. Commercially available reagents were used without further purification unless otherwise
noted. 1H-NMR were recorded at 200, 400, or 500 MHz and 13C-NMR recorded at 50, 100, or 125 MHz,
respectively, in CDCl3, CH3OD, and DMSO-d6 as solvent (see supplementary materials). The standard
abbreviations s, d, t, q, and m refer to singlet, doublet, triplet, quartet, and multiplet, respectively.
Coupling constant (J), whenever discernible, have been reported in Hz. Infrared spectra (IR) were
recorded as neat solutions or solids; and mass spectra were recorded using electron impact or
electrospray ionization techniques. The wavenumbers reported are referenced to the polystyrene



Molecules 2017, 22, 820 7 of 12

1601 cm–1 absorption. High-resolution mass spectra were obtained by means of a JMS-HX110 mass
spectrometer (JEOL, Tokyo, Japan).

3.2. Standard Procedure for the Synthesis of Pyrazolo[3,4-d]pyrimidines 3a–n

The optimized procedure involved the treatment of 5-aminopyrazoles 1a–n (1.0 equiv)
with PBr3 (~3 equiv.) in various amide solutions including N,N-dimethylformamide (DMF),
N,N-diethylformamide (DEF), N,N-diisopropylformamide, N,N-di-n-butylformamide, piperidine-1-
carbaldehyde, or pyrrolidine-1-carbaldehyde (2 mL) at 50–60 ◦C for 1.0–2.0 h. When the reaction
was completed (as monitored by TLC), an amine such as hexamethyldisilazane (NH(SiMe3)2),
hexamethylenetetramine, lithium bis(trimethylsilyl)amine (LiN(SiMe3)2), or sodium bis(trimethylsilyl)
amine (NaN(SiMe3)2) was added into the reaction mixture which was stirred at reflux for 3–5 h. When
the intermolecular heterocyclization was complete, the resulting mixture was added to saturated
sodium bicarbonate (15 mL) and extracted with dichloromethane (15 mL × 2). The organic extracts
were dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified
by column chromatography on silica gel to give the corresponding pyrazolo[3,4-d]pyrimidines 3a–n in
69–91% yields.

1,3-Diphenyl-1H-pyrazolo[3,4-d]pyrimidine (3a) [13–15,45]. Light-yellow solid; m.p. 158–159 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.34–7.38 (1H, m, ArH), 7.48–7.51 (1H, m, ArH),
7.53–7.57 (4H, m, ArH), 8.06 (2H, d, J = 8.00 Hz, ArH), 8.31 (2H, d, J = 8.00 Hz, ArH), 9.12 (1H, s),
9.51 (1H, s). 13C-NMR (CDCl3, 100 MHz,): δ 114.24, 121.46 (2× C), 126.86, 127.39 (2× C), 129.24 (4× C),
129.64, 131.50, 138.50, 145.00, 152.82, 153.34, 155.61. IR (KBr): 1632, 1586, 1554, 1497, 1366, 1219 cm–1.
EIMS m/z: 272 (M+, 100), 273 (18), 271 (31), 142 (11), 77 (34), 69 (24), 51 (11).

1-(2-Methylphenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3b) [13–15]. Light-yellow solid; m.p.
140–141 ◦C (hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 2.48 (3H, s, CH3), 7.18 (1H, d, J = 7.60 Hz,
ArH), 7.42–7.45 (1H, m, ArH), 7.50 (1H, d, J = 8.00 Hz, ArH), 7.54–7.58 (2H, m, ArH), 8.05–8.10 (2H, m,
ArH), 9.12 (1H, s), 9.50 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 21.6 (CH3), 114.18, 118.77, 122.17, 127.42
(2 × C), 127.77, 129.06, 129.23 (2 × C), 129.61, 131.55, 138.38, 139.33, 144.92, 152.80, 153.32, 155.60.
IR (KBr): 1636, 1497, 1223, 1096 cm–1. EIMS m/z: 286 (M+, 100), 287 (20), 285 (19), 77 (10).

1-(2-Chlorophenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3c) [13–15]. Yellow solid; m.p. 139–140 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.48–7.51 (3H, m, ArH), 7.53–7.57 (2H, m, ArH),
7.60–7.64 (2H, m, ArH), 8.05 (2H, d, J = 8.00 Hz, ArH), 9.08 (1H, s), 9.54 (1H, s). 13C-NMR (CDCl3,
100 MHz): δ 113.01, 125.54, 127.38 (2 × C), 127.72, 128.38, 129.65 (2 × C), 130.08, 130.82, 131.40, 132.19,
134.74, 145.70, 152.87, 154.50, 155.91. IR (KBr): 3012, 1636, 1582, 1497, 1362, 1223, 1084 cm–1. EIMS m/z:
306 (M+, 96), 308 (28), 307 (M+ + 1, 15), 272 (15), 271 (100), 195 (11), 77 (42), 75 (10), 51 (11).

1-(3-Methylphenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3d) [13–15]. Yellow solid; m.p. 80–81 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 2.52 (3H, s, CH3), 7.18 (1H, d, J = 8.00 Hz, ArH),
7.41–7.45 (1H, m, ArH), 7.49 (1H, d, J = 7.20 Hz, ArH), 7.53–7.57 (2H, m, ArH), 8.05–8.10 (4H, m, ArH),
9.16 (1H, s), 9.53 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 21.60, 114.15, 118.70, 122.11, 127.38 (2 × C),
127.72, 129.02, 129.19 (2 × C), 129.57, 131.52, 138.36, 139.28, 144.86, 152.75, 153.27, 155.55. IR (KBr):
1632, 1613, 1585, 1493, 1420, 1366, 1265 cm–1. EIMS m/z: 286 (M+, 100), 287 (22), 285 (21), 77 (9).

1-(3-Chlorophenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3e) [13–15]. White solid; m.p. 185–186 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.31 (1H, d, J = 8.00 Hz, ArH), 7.44–7.50 (2H, m, ArH),
7.52–7.57 (2H, m, ArH), 8.32–8.42 (2H, m, ArH), 9.14 (1H, s), 9.49 (1H, s). 13C-NMR (CDCl3, 100 MHz):
δ 114.51, 118.90, 121.07, 126.61, 127.40 (2 × C), 129.25 (2 × C), 129.85, 130.21, 131.17, 134.95, 139.58,
145.62, 152.88, 153.61, 155.73. IR (KBr): 1585, 1555, 1489, 1404, 1366, 1312, 1215, 1088 cm–1. EIMS m/z:
306 (M+, 100), 308 (32), 307 (M+ + 1, 26), 305 (22), 77 (16).
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1-(3-Nitrophenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3f) [13–15]. Yellow solid; m.p. 179–180 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.54–7.61 (3H, m, ArH), 7.73 (1H, dd, J = 8.0, 16.4 Hz,
ArH), 8.08 (2H, d, J = 8.00 Hz, ArH), 8.19 (1H, d, J = 8.00 Hz, ArH), 8.87 (1H, d, J = 8.00 Hz, ArH),
9.20 (1H, s), 9.37 (1H, s), 9.55 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 114.74, 115.70, 120.87, 126.04,
127.51 (2 × C), 129.36 (2 × C), 130.16, 130.18, 130.88, 139.64, 146.08, 148.87, 153.14, 154.00, 156.05. IR
(KBr): 1636, 1528, 1489, 1346, 1003 cm–1. EIMS m/z: 317 (M+, 100), 318 (17), 77 (14).

1-(4-Methylphenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3g) [13–15]. Brown solid; m.p. 133–134 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 2.39 (3H, s, CH3), 7.30 (2H, d, J = 8.00 Hz, ArH),
7.45 (1H, d, J = 8.00 Hz, ArH), 7.50 (2H, dd, J = 7.2, 14.8 Hz, ArH), 8.00 (2H, d, J = 8.00 Hz, ArH),
8.11 (2H, d, J = 8.00 Hz, ArH), 9.07 (1H, s), 9.43 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 20.98, 113.92,
121.21 (2 × C), 127.18 (2 × C), 128.76 (2 × C), 129.37, 129.61 (2 × C), 131.43, 135.94, 136.56, 144.47,
152.58, 152.95, 155.33. IR (KBr): 1636, 1589, 1516, 1386, 1219, 1088 cm–1. EIMS m/z: 286 (M+, 100),
287 (22), 285 (28), 77 (10). HRMS Calcd. for C18H14N4: 286.1218; Found: 286.1216.

1-(4-Chlorophenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3h) [13–15]. Yellow solid; m.p. 147–148 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.48–7.51 (3H, m, ArH), 7.53–7.57 (2H, m, ArH),
8.03 (2H, d, J = 8.00 Hz, ArH), 8.32 (2H, d, J = 8.00 Hz, ArH), 9.11 (1H, s), 9.49 (1H, s). 13C-NMR
(CDCl3, 100 MHz): δ 114.32, 122.24 (2× C), 127.37 (2× C), 129.23 (2× C), 129.28 (2× C), 129.78, 131.24,
132.11, 137.13, 145.23, 152.89, 153.36, 155.66. IR (KBr): 1632, 1555, 1497, 1215, 1054 cm–1. EIMS m/z: 306
(M+, 100), 308 (31), 307 (M+ + 1, 23), 305 (17), 77 (14).

1-(4-Bromophenyl)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3i) [13–15]. Yellow solid; m.p. 180–181 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.51–7.59 (3H, m, ArH), 7.66 (2H, d, J = 8.40 Hz, ArH),
8.05 (2H, d, J = 8.00 Hz, ArH), 8.29 (2H, d, J = 8.00 Hz, ArH), 9.13 (1H, s), 9.51 (1H, s). 13C-NMR (CDCl3,
100 MHz): δ 114.37, 119.99, 122.53 (2 × C), 127.37 (2 × C), 129.23 (2 × C), 129.79, 131.22, 132.24 (2 × C),
137.63, 145.29, 152.88, 153.40, 155.67. IR (KBr): 1586, 1555. 1481, 1400, 1389, 1215, 1072 cm–1. EIMS m/z:
350 (M+, 100), 352 (M+ + 2, 99), 353 (15), 351 (27), 194 (14), 77 (30).

3-Methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3j) [13–15,46]. Brown solid; m.p. 77–78 ◦C (hexane–EtOAc).
1H-NMR (CDCl3, 400 MHz): δ 2.70 (3H, s, CH3), 7.32 (1H, dd, J = 7.20, 14.80 Hz, ArH), 7.50–7.79 (2H,
dd, J = 7.60, 15.60 Hz, ArH), 8.19 (2H, d, J = 8.00 Hz, ArH), 9.07 (1H, s), 9.16 (1H, s). 13C-NMR (CDCl3,
100 MHz): δ 12.59, 115.79, 121.07 (2 × C), 126.49, 129.22 (2 × C), 138.50, 143.35, 151.77, 152.77, 155.70.
IR (KBr): 3240, 1643, 1503, 1439, 1211 cm–1. EIMS m/z: 210 (M+, 100), 211 (16), 209 (27), 195 (13), 142
(15), 77 (37), 69 (11), 57 (16), 55 (13), 51 (13).

3-tert-Butyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3k) [13–15]. Yellow solid; m.p. 45–46 ◦C (hexane–EtOAc).
1H-NMR (CDCl3, 400 MHz): δ 1.57 (9H, s, t-Bu), 7.28–7.32 (1H, m, ArH), 7.51 (2H, dd, J = 7.60, 15.60 Hz,
ArH), 8.22 (2H, d, J = 8.00 Hz, ArH), 9.04 (1H, s), 9.32 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 30.05
(3 × C), 34.51, 114.02, 121.17 (2 × C), 126.33, 129.13 (2 × C), 138.66, 152.84, 153.16, 154.88, 155.04. IR
(KBr): 3048, 2967, 2666, 1636, 1578, 1508, 1427, 1366, 1188, 1096 cm–1. EIMS m/z: 252 (M+, 43), 238 (18),
237 (100), 222 (12), 105(11), 77(17), 57(11).

3-(4-Methylphenyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3l) [13–15]. White solid; m.p. 138–139 ◦C
(hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 2.44 (3H, s, CH3), 7.36 (3H, d, J = 6.80 Hz, ArH),
7.55 (2H, dd, J = 8.00, 16.00 Hz, ArH), 7.95 (2H, d, J = 8.00 Hz, ArH), 8.30 (2H, d, J = 8.00 Hz, ArH),
9.12 (1H, s), 9.49 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 21.39, 114.24, 121.41 (2 × C), 126.74, 127.23
(2 × C), 128.64, 129.18 (2 × C), 129.87 (2 × C), 138.51, 139.77, 145.06, 152.79, 153.27, 155.52. IR (KBr):
3117, 1582, 1501, 1223, 1092 cm–1. EIMS m/z: 286 (M+, 100), 287 (21), 285 (26).

3-(4-Chlorophenyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3m) [13–15,45]. Light-yellow solid; m.p.
194–193 ◦C (hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 7.37 (1H, dd, J = 7.60, 15.20 Hz, ArH),
7.51–7.57 (m, 4 H, ArH), 8.00 (2H, d, J = 8.00 Hz, ArH), 8.28 (2H, d, J = 8.00 Hz, ArH), 9.13 (1H, s),
9.47 (1H, s). 13C-NMR (CDCl3, 100 MHz): δ 114.03, 121.47 (2 × C), 127.01, 128.51 (2 × C), 129.27
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(2 × C), 129.48 (2 × C), 129.98, 135.71, 138.43, 143.85, 152.60, 153.37, 155.69. IR (KBr): 1632, 1555, 1504,
1404, 1219, 1092 cm–1. EIMS m/z: 306 (M+, 100), 308 (33), 307 (M+ + 1, 26), 305 (22), 77 (10).

3-(4-Methoxylphenyl)-1-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3n) [13–15]. Light-yellow solid; m.p.
169–170 ◦C (hexane–EtOAc). 1H-NMR (CDCl3, 400 MHz): δ 3.86 (3H, s, OCH3), 7.04 (2H, d, J = Hz,
ArH), 7.33 (1H, dd, J = 7.60, 14.80 Hz, ArH), 7.52 (2H, dd, J = 7.60, 15.60 Hz, ArH), 7.96 (2H, d,
J = 8.00 Hz, ArH), 8.28 (2H, d, J = 8.00 Hz, ArH), 9.08 (1H, s), 9.43 (1H, s). 13C-NMR (CDCl3, 100 MHz):
δ 55.36 (OCH3), 114.13, 114.57 (2 × C), 121.26 (2 × C), 124.01, 126.61, 128.61 (2 × C), 129.14 (2 × C),
138.51, 144.74, 152.66, 153.18, 155.43, 160.72. IR (KBr): 3059, 1632, 1613, 1528, 1501, 1431, 1362, 1300,
1258, 1219, 1173, 1092 cm–1. EIMS m/z: 302 (M+, 100), 303 (22), 287 (23), 77 (15).

4. Conclusions

We have successfully developed the one-flask method to synthesize pyrazolo[3,4-d]pyrimidines
by treating 5-amino-pyrazoles, in presence of PBr3 coupling agent and then hexamethyldisilazane.
In this new one-flask reaction was contained Vilsmeier reaction and the sequential intermolecular
heterocyclization two steps. Based on the improved studies of the different type of Vilsmeier agents
and amines, we found the commercial available DMF/PBr3 and hexamethyldisilazane were the
best Vilsmeier agent and the efficient base for this newly developed one-flask synthesis. For the
mechanistic study, 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidines
were demonstrated as the reaction intermediates by using a series of 4-formyl-1,3-diphenyl-1
H-pyrazol-5-yl-N,N-disubstituted formamidines successfully reacted with amines to give pyrazolo
[3,4-d]pyrimidines due to they were conceived as the chemical equivalent species. On the other hands,
the order of reactivity of amines in intermolecular heterocyclization was NH(SiMe3)2 > NaN(SiMe3)2

> LiN(SiMe3)2 > hexamethylenetetramine. Through the further comparison variation reactive study
between intramolecular and intermolecular Vilsmeier heterocyclization reaction, we found the
intramolecular heterocyclization be able to provide the better results.

Supplementary Materials: Supplementary materials are available online.
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