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Abstract Preeclampsia is a pregnancy-specific syn-
drome characterized by hypertension and proteinuria
after 20 weeks of gestation. However, it is not well un-
derstoodwhat lipidsare involvedin thedevelopmentof
this condition, and even less is known how these lipids
mediate its formation. To reveal the relationship be-
tween lipids andpreeclampsia,we conducted lipidomic
profiling of maternal sera of 44 severe preeclamptic
and 20 healthy pregnant women from a multiethnic
cohort in Hawaii. Correlation network analysis showed
that oxidized phospholipids have increased in-
tercorrelations and connections in preeclampsia,
whereas other lipids, including triacylglycerols, have
reduced network correlations and connections. A total
of 10 lipid species demonstrate significant changes
uniquely associated with preeclampsia but not any
other clinical confounders. These species are from the
lipid classes of lysophosphatidylcholines, phosphati-
dylcholines (PCs), cholesteryl esters, phosphatidyleth-
anolamines, lysophosphatidylethanolamines, and
ceramides. A random forest classifier built on these
lipids shows highly accurate and specific prediction (F1
statistic ¼ 0.94; balanced accuracy ¼ 0.88) of severe
preeclampsia, demonstrating their potential as bio-
markers for this condition. These lipid species are
enriched in dysregulated biological pathways,
including insulin signaling, immune response,
and phospholipid metabolism. Moreover, causality
inference shows that various PCs and lysophosphati-
dylcholines mediate severe preeclampsia through
PC 35:1e. Our results suggest that the lipidome may
play a role in the pathogenesis and serve as biomarkers
of severe preeclampsia.
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Preeclampsia is a pregnancy-specific syndrome that
aspects 2–8% of pregnancies and is diagnosed when a
pregnant woman presents with increased blood
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pressure and proteinuria (1). It is a leading cause of
maternal, fetal, and neonatal mortality, especially in
low-income and middle-income countries (2).
Depending on the onset time, preeclampsia can be
categorized as early onset preeclampsia (<34 weeks)
and late onset preeclampsia. Early onset preeclampsia
is a more severe form and associated with shallow
placental implantation into the uterine wall and sub-
sequent placental dysfunction (3). Alternatively, pre-
eclampsia can be classified as mild or severe type based
on the severity of the symptoms. For severe pre-
eclampsia, the mothers often suffer from potentially
fatal pathological manifestations, including hyperten-
sion, proteinuria, liver rupture, pulmonary edema, and
kidney failure (4). Moreover, women who had pre-
eclampsia previously have shown 2–3-folds' higher
risks at developing cardiovascular diseases later in life
(5). The adverse impacts on the fetus include intra-
uterine growth restriction and preterm delivery.
Despite the severity of this condition, few effective
treatments are available except expectant manage-
ment. Delivery of the placenta is the only cure, but this
is often coupled with preterm delivery of the fetus (6),
who are more likely to have lifelong health issues, such
as neurodevelopmental disorders and adult onset dis-
orders (7).

Many efforts have been made to systematically un-
derstand the biological processes altered in this syn-
drome as well as identify potential biomarkers using
genomics platforms, such as DNA methylation, tran-
scriptomics, proteomics, and metabolomics (8–10).
However, the systematic changes in lipids, which are
more stable compared with other metabolites, are less
studied for preeclampsia (11–13). Lipids have shown
biomarker potential for many diseases (14, 15). More-
over, lipids can reflect the physiological or pathological
status of a metabolic disease such as preeclampsia, as
they are structural components of cell membranes,
signaling mediators, and energy depots. Recent de-
velopments in mass spectrometric methods for
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TABLE 1. Demographic and clinical characteristics in case and
control groups

Characteristics

Control (n = 20) Case (n = 44)

PaMean (SD)s

Maternal age, years 27.50 (6.52) 29.27 (6.79) 0.33
Prepregnancy BMI, kg/m2 29.37 (6.82) 29.28 (7.06) 0.96
Gestational age, weeks 39.10 (0.85) 35.82 (2.89) 4.80e-9
Parity 0.017

0 10 20
1 1 13
2 8 5
3 and above 1 6

Smoker 0.088
Yes 0 7
No 20 37

Maternal ethnicity 0.22
Asian 13 22
Caucasian 2 6
Latin 2 1
Pacific Island 3 15

Baby gender 0.42
Male 8 24
Female 12 20

Gestational diabetes 0.013
Yes 0 11
No 20 33

Chronic hypertension 0.085
Yes 1 11
No 19 33

Membrane rupture 0.25
Yes 9 12
No 11 32

Abruption 0.55
Yes 0 3
No 20 41

Neonatal malformations 0.55
Yes 0 3
No 20 41

aCategorical variables were compared using Fisher's exact test,
whereas continuous variables were compared using t test.
lipidomics allow for untargeted measurements of
hundreds of lipids simultaneously (16). For preeclamp-
sia metabolomics research, one study found 11 lipid
classes in the maternal blood of women with early onset
preeclampsia different from those of healthy pregnant
women (17). Another study identified a panel of 23
serum lipidomic biomarkers from 10 lipid classes to
predict the risk of preeclampsia in a pregnancy cohort
at 12–14 weeks of gestation (18). A different study found
that the first trimester maternal plasma ceramide spe-
cies (Cer 14:0) and SM species (SM 16:0 and SM 18:1) may
be early biomarkers of preeclampsia occurrence (19).
However, none of these studies systematically analyzed
the potential molecular mechanisms underlying the
identified lipids beyond biomarker modeling. More-
over, lipids that are linked to the occurrence and
pathogenesis of severe preeclampsia have not been
investigated yet.

Here, we conducted untargeted lipidomics profiling
of maternal blood in a multiethnic cohort of severe
preeclampsia (N = 44) patients and those with full-term
healthy deliveries (N = 20). By combining LC-MS
technology and advanced bioinformatics analysis, we
provide novel insights into lipids and their pathways
involved in preeclampsia, in addition to identifying
new biomarkers for severe preeclampsia. Our analysis
shows that a variety of lipids are altered in severe pre-
eclampsia, and some are directly involved in causal
mechanisms. These molecular changes coherently lead
to dysregulated biological functions, such as insulin
signaling and inflammation/infections. Oxidized
phospholipids (OxPLs) are significantly coordinated
and upregulated, presumably because of oxidative
stress from hypoxia.
MATERIALS AND METHODS

Specimens
We obtained samples from RMATRIX Hawaii Bio-

repository, which obtained its own institutional review boards'
approval. All the subjects gave informed consent. This study
abides by the Declaration of Helsinki principles. About 44
maternal plasma samples from clinically diagnosed severe
preeclampsia patients and 20 control samples (full-term de-
liveries) were selected. The clinical summary of the samples is
provided in Table 1.
Reagents and internal standards
HPLC-grade acetonitrile (ACN) and dichloromethane were

purchased from Sigma-Aldrich (St. Louis, MO), isopropanol
(Optima—LC/MS grade) was purchased from Fisher (New
Jersey, NJ), and methanol (LC-MS grade) was purchased from
J.T. Baker. Water was obtained from a Millipore high-purity
water dispenser (Billerica, MA). The following MS-grade
lipid standards were obtained from Sigma-Aldrich: 1-hepta
decanoyl-2-hydroxy-sn-glycero-3-phosphocholine lysophos-
phatidylcholine (LPC) (17:0/0:0), 1,2-diheptadecanoyl-sn-glyc-
ero-3-phosphocholine phosphatidylcholine (PC) (17:0/17:0),
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1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine phos-
phatidylethanolamine (PE) (17:0/17:0), 1,2-diheptadecanoyl-sn-
glycero-3-phospho-L-serine (sodium salt) phosphatidylserine
(17:0/17:0), N-heptadecanoyl-D-erythro-sphingosylphosphor-
ylcholine 17:0 SM (d18:1/17:0), cholest-5-en-3ß-yl heptadeca-
noate 17:0 cholesteryl ester (CE), 1-palmitoyl-2-oleoyl-sn-
glycerol 16:0-18:1 diglyceride/diacylglycerol, 1-heptadecanoyl-
rac-glycerol 17:0 monoglyceride/monoacylglycerol,
1,2,3-triheptadecanoyl-glycerol triheptadecanoate 17:0 tri-
acylglycerol (TAG), N-heptadecanoyl-D-erythro-sphingosine C17
Cer (d18:1/17:0), 1,2-diheptadecanoyl-sn-glycero-3-phosphate
(sodium salt) 17:0 phosphatidic acid, 1,2-diheptadecanoyl-sn-
glycero-3-phospho-(1′-rac-glycerol) (sodium salt) 17:0 phos-
phatidylglycerol, 1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-eicosate-
traenoyl)-sn-glycero-3-phospho-(1′-myo-inositol) (ammonium
salt) 17:0-20:4 phosphatidylinositol, 1,3(d5)-dinonadecanoyl-2-
hydroxy-glycerol diglyceride/diacylglycerol d5-(19:0/0:0/
19:0), and glyceryl tri(palmitate-d31) triglyceride d31.
Sample preparation
The lipids were extracted from plasma using a modified

Bligh-Dyer method (20) using a 2:2:2 ratio volume of meth-
anol:water:dichloromethane at room temperature after
spiking internal standards (supplemental Table S1) The
organic layer was collected and completely dried under ni-
trogen. Before MS analysis, the dried lipid extract was



reconstituted in 100 μl of buffer B (10:85:5 ACN/isopropyl
alcohol/water) containing 10 mM ammonium acetate and
subjected to LC/MS.

Internal standards and quality controls
Quality control (QC) samples were prepared by pooling

equal volumes of each sample and injected at the beginning
and the end of each analysis and after every 10 sample in-
jections to provide a measurement of the system's stability and
performance as well as reproducibility of the sample prepa-
ration method (21).

Two kinds of controls were used to monitor the sample
preparation and MS. To monitor instrument performance,
10 μl of a dried matrix-free mixture of the internal standards
reconstituted in 100 μl of buffer B (85% isopropyl alcohol:10%
ACN:5% water in 10 mM NH4OAc) was analyzed. As addi-
tional controls to monitor the profiling process, an equimolar
mixture of 15 authentic internal standards and a character-
ized pool of human plasma and test pool (a small aliquot from
the all preeclampsia plasma used in this study) (extracted in
tandem with preeclampsia plasma) were analyzed along with
the preeclampsia plasma samples. Each of these controls was
included several times into the randomization scheme such
that sample preparation and analytical variability could be
monitored constantly.

Data-dependent LC-MS/MS for measurements of
lipids

Chromatographic separation was performed on a Shi-
madzu CTO-20A Nexera X2 UHPLC systems equipped with
a degasser, binary pump, thermostatted autosampler, and
column oven (all components manufactured by Shimadzu
[Canby, OR]). The column heater temperature was main-
tained at 55◦C, and an injection volume of 5 μl was used for
all analyses. For lipid separation, the lipid extract was injec-
ted onto a 1.8-μm particle diameter, 50 × 2.1 mm id Waters
Acquity HSS T3 column (Waters, Milford, MA). Elution was
performed using ACN/water (40:60, v/v) with 10 mM
ammonium acetate as solvent A and ACN/water/iso-
propanol (10:5:85 v/v) with 10 mM ammonium acetate as
solvent B. For chromatographic elution, we used a linear
gradient beginning with 60% solvent A and 40% solvent B.
The gradient was ramped in a linear fashion to 98% solvent B
over the first 10 min and was held at 98% solvent B for 7 min.
Thereafter, the composition was returned to 40% solvent B
and 60% solvent A and held for 3 min. The flow rate used for
these experiments was 0.4 ml/min, and the injection volume
was 5 μl. The column was equilibrated for 3 min before the
next injection and ran at a flow rate of 0.400 μl/min for a
total run time of 20 min.

MS data acquisition for each sample was performed in both
positive and negative ionization modes using a TripleTOF
5600 equipped with a DuoSpray ion source (AB Sciex,
Concord, Canada). Column effluent was directed to the ESI
source, and voltage was set to 5,500 V for positive ionization
and 4,500 V for negative ionization mode. The declustering
potential was 60 V, and source temperature was 450◦C for
both modes. The curtain gas flow, nebulizer, and heater gas
were set to 30, 40, and 45, respectively (arbitrary units). The
instrument was set to perform one TOF MS survey scan
(150 ms) and 15 MS/MS scans with a total duty cycle time of
2.4 s. The mass range of both modes was m/z 50–1,200.
Acquisition of MS/MS spectra was controlled by the data-
dependent acquisition function of the Analyst TF software
(AB Sciex, Concord, Canada) with application of following
parameters: dynamic background subtraction, charge moni-
toring to exclude multiply charged ions and isotopes, and
dynamic exclusion of former target ions for 9 s. Collision
energy spread of 20 V was set, whereby the software calcu-
lated the CE value to be applied as a function of m/z.

A DuoSpray source coupled with an automated calibration
system (AB Sciex, Concord, Canada) was utilized to maintain
mass accuracy during data acquisition. Calibrations were
performed at the initiation of each new batch or polarity
change.
Lipid identification and data preprocessing
The raw data were converted to mgf data format using

proteoWizard software (22). The National Institute of Stan-
dards and Technology MS PepSearch Program was used to
search the converted files against LipidBlast (23, 24) libraries
in batch mode. We optimized the search parameters using
the NIST11 library and LipidBlast libraries and compared
them against our lipid standards. The m/z width was deter-
mined by the mass accuracy of internal standards and was set
0.001 for positive mode and 0.005 for negative mode. The
minimum match factor used in the PepSearch Program was
set to 250. The MS/MS identification results from all the files
were combined using an in-house script to create a library
for quantification. The class identification was verified by
comparing the retention time of identified lipid to retention
time of internal standard. All raw data files were searched
against this library of identified lipids with mass and reten-
tion time using Multiquant 1.1.0.26 (ABsciex, Concord, Can-
ada) (25). The oxidized lipids were also identified using
Multiquant. Quantification was done using MS1 data. The
missing values in the data were imputed using K-nearest
neighbor (KNN) method. Internal standards were used to
normalize the data to correct for the variation in instrument
response because of various sources throughout an analyt-
ical assay. The normalization was performed using the
crosscontribution compensating multiple internal standard
normalization methods (26). The QC samples were used to
remove technical outliers and lipid species that were detec-
ted below the lipid class-based lower limit of quantification.
QC samples evenly distributed along analytical runs of the
study were analyzed. After normalization, data from each
mode was combined and the repeated lipids in each mode
were removed based on their reproducibility in QC samples.
In short, data are carefully manually curated after
combining, and only reliable lipids and features (some
marked as unknowns) are kept as final data. The average
coefficient of variation of all the lipids detected in the study
samples was <20%.
Lipidomic data downstream processing
Samples were received in a single batch, with 729 lipid

species detected in total. The nomenclature used for indi-
vidual lipid species begins with the abbreviation of the lipid
class followed by the number of carbon atoms in the molecule
and then by the number of double bonds. Missing values exist
widely in MS-based metabolomics data (27). Missing values
affect normality and variance of data. KNN method was re-
ported to be the best method for restoring them (28). There-
fore, KNN method was used to impute missing lipid values,
similar to earlier work (29). Data were then log transformed
and subjected to median normalization (30), before down-
stream analysis.
Maternal blood lipidomics in severe preeclampsia 3



Source of variation analysis and data screen
The lipidomic dataset of maternal plasma has a total of 729

lipid species. In order to select features capable of dis-
tinguishing preeclampsia and control statuses, a preliminary
screen was conducted based on the source of variation (SOV)
analysis, to explore the contributions of different clinical/
physiological factors to the overall lipidomics changes. Only
lipid species with a preeclampsia/control F statistic value >1
were included in further analysis, which meant that for these
screened lipids, the sample preeclampsia/control status had a
regression sum of square larger than error sum of square.
This screening process finally identified 280 such lipid
species.
Differential lipid species identification
R limma package was used to identify the differentially

expressed lipids between preeclampsia/control status, with
adjustment of confounders with F statistic >1. The lipids with
P values <0.01 were selected into a significant list. Lipids that
also associate with any confounders were removed from the
list. We further used a subset of samples without gestational
diabetes or smokers for differential lipid analysis similarly, in
order to exclude possible confounding from smoking and
gestational diabetes that only exist among the cases. Lipid
species overlapped between the two significant lists were
selected as the final list of differential lipid species associated
with preeclampsia.
Weighted gene coexpression network analysis
Before weighted gene coexpression network analysis

(WGCNA) performance, the normalized lipid values were
adjusted via limma (31). This time, the normalized value of
each lipid species was predicted using preeclampsia/control
status, and the confounding factors are shown in Table 1,
including smoking status, baby gender, maternal ethnicity,
maternal age, parity, prepregnancy BMI, gestational diabetic
status, chronic hypertension status, membrane rupture sta-
tus, abruption, and neonatal malformation status, and then
the regression coefficient on preeclampsia/control variable
plus the residual value was used to compute the adjusted
lipid species value, with confounding effects regressed out.
Next, the preeclampsia and control samples were separated
into different groups and then analyzed by WGCNA sepa-
rately (32). For both groups, the WGCNA estimated a soft
threshold (power) of 4 with RsquaredCut of 0.85 and verbose
of 5. Using these criteria, the WGCNA constructed modules
with minModuleSize of 10, mergeCutHeight of 0.25, deep-
Split of 2, and verbose of 3. Then topological overlap value
between these lipid species was computed from the adja-
cency score as well as their connectivity values. The topo-
logical overlap value was further converted to a distance
value by subtracting it from 1, providing a distance matrix
covering all lipid pairs, which was next used to cluster the
lipids using hierarchical clustering, and lipid modules could
be identified from the resulting dendrogram. Within each
module, only lipid pairs with a topological overlap value >0.5
were retained.

For the integrated analysis using all preeclampsia and
control samples, the WGCNA suggests a soft threshold
(power) of 8. Using the power of 8, the WGCNA con-
structed modules with the same of other parameters as
described previously and performed module-trait associa-
tion analysis.
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Classification model
To identify the best machine learning model to distinguish

preeclampsia and control samples using lipidomic features,
Lilikoi was used to construct seven different classifier models
(33), including C4.5 decision tree (RPART), gradient boosting
machine, random forest (RF), logistic regression with elastic
net regularization, linear discriminant analysis, support vector
machine, and nearest shrunken centroids (prediction analysis
for microarrays). The 64 samples were first split 80/20 into
training and test datasets, and then, the classifier model was
trained (on the training set) using a 10-fold crossvalidation
method. The best model was selected based on the F statistics
and balanced accuracy in the test dataset. To determine if
adding confounding factors would improve the classifier's
performance, potential clinical confounding factors were also
added in addition to the lipid features selected by the best
model. In the prediction model, the Lilikoi parameters dividep,
dividseed, and times were set to 0.8, 1,996, and 10, respectively.

Lipid pathway and phenotype mapping
To map metabolic pathways to lipid species, first, their m/z

value, ion adduct information, and lipid class information
were used as a query to perform a bulk search in the LIPID
MAPS database. For a query “lipid class,” all isomers with the
same carbon and double bond numbers are returned as the
search results. Next, the query lipid and the systematic names
of these isomers were used as the input to map to standard
Human Metabolome Database, PubChem, and Kyoto Ency-
lopedia of Genes and Genomes IDs in lilikoi. These IDs were
then used for the corresponding pathway analysis.

Causality analysis
We sorted the 11 lipids deemed significantly associated with

severe preeclampsia by time series according to the gesta-
tional ages of samples. Then, we used the lmtest package
(version 0.9-37) on R platform (version 3.6.3) to perform the
Granger causality test for potential causality relationships
among lipids and preeclampsia. A causality interaction is
significant when P < 0.05. Significant causality interactions
were collected for further analysis.

RESULTS

Overview of the study cohort and lipidomics results
The study is a nested case and control study from a

precollected population-based biobank from the Uni-
versity of Hawaii. Maternal plasma of 64 samples
(44 severe preeclampsia patients and 20 controls) was
used for this study. Table 1 shows the demographic and
major clinical characteristics of the subjects. As ex-
pected, the patients with severe preeclampsia delivered
significantly earlier than the controls (average gesta-
tional age of 35.82 weeks vs. 39.10 weeks, P = 4.80e-9).
Gestational diabetes is also significantly associated with
preeclampsia (P = 0.013), confirming previous reports
that gestational diabetes is a risk factor for pre-
eclampsia (34, 35). In addition, parity is also associated
with the preeclampsia group (P = 0.017), as expected
(36). Other risk factors, including smoking and chronic
hypertension, show less than significant associations
with severe preeclampsia (P = 0.088 and 0.085,



respectively), which may be due to the limited obser-
vations of smokers and patients with chronic hyper-
tension in this study. Beyond the correlation between
preeclampsia and other clinical factors, we also per-
formed correlation analysis among all clinical factor
pairs (Fig. 1A). Supplemental results in Table 1, corre-
lations are widely detected between preeclampsia/
control status and other variables, such as gestational
age (Pearson's correlation coefficient = −0.533) and
gestational diabetes (Pearson's correlation coefficient =
0.307). Gestational diabetes, the other significant clinical
factor sharing comobility with preeclampsia, is also
correlated with other variables, such as BMI.

The untargeted lipidomic experiments were per-
formed by Michigan Regional Comprehensive Metab-
olomics Resource Core, using an LC tandem MS
(LC/MS/MS) lipidomics assay (see the Materials and
Methods section). The resulting lipidomics dataset is
composed of a total of 729 annotated lipid species. The
B

C D

A

Fig. 1. Exploratory analysis of preeclampsia and control samples
samples (20 control vs. 44 preeclampsia samples). Significant correl
results across the 64 samples using 729 lipid species. C: SOV result
F statistic values of at least 1 (F statistic of the error term). D: Heat ma
confounding factors. The columns are lipids, and rows are clinica
correlation coefficient value between the lipid and the clinical fact
internal controls are listed in supplemental Table S1,
and the metabolomics data for both positive and
negative modes are included in supplemental Table S2.
The principal component analysis plot, with case/con-
trol samples, as well as pool and plasma controls is
shown in supplemental Fig. S1. To identify lipids that
are truly associated with preeclampsia (rather than
because of other confounders), a preliminary screen
was conducted on the lipid species using the SOV
analysis. A total of 280 lipid species with preeclampsia/
control F statistic values >1 were selected for subse-
quent analyses. As a confirmation, the ranking of pre-
eclampsia/control status is improved from the seventh
in the whole dataset (Fig. 1B) to the first in the filtered
metabolomics subset with 280 lipids (Fig. 1C).

We next examined the correlations between the
clinical variables and the 280 screened lipid species by
heat map (Fig. 1D). Hierarchical clustering analysis on
the 280 lipid species shows three main clusters. Clusters
. A: Correlation matrix of the phenotypic variables on the 64
ations (P < 0.05) are shown with *. B: Source of variation (SOV)
s across the 64 samples using 280 lipid species, which all have
p showing the correlations between the 280 lipid species and the
l factors. Each entry of the heat map represents the Pearson
or.
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1, 2, and 3 are composed of 179, 52, and 49 lipid species,
respectively. Cluster 2 is significantly enriched in diac-
ylglycerol lipids (P = 7.90e-3; odds ratio = 3.02) and PE
(P = 4.38e-2; odds ratio = 2.39). Cluster 3 has a large
enrichment in two kinds of OxPLs: oxidized phospha-
tidylethanolamine (OxPE; P = 9.35e-6, odds ratio = 5.71)
and oxidized PC (OxPC, P = 3.04e-4, odds ratio = 5.71)
but have a significant reduction in the level of TAG
(P = 1.66e-2, odds ratio = 0.14). No lipid species is
detected as significantly enriched in cluster 1. In sum-
mary, the results provide the initial evidence that lip-
idomic changes are associated with severe
preeclampsia, despite the complexity because of other
D

E

A

B

C

Fig. 2. WGCNA network comparison between preeclampsia and c
and control (B), respectively. Each node represents a lipid species.
eclampsia samples. D: Table showing more properties of modules
module density and enriched lipids in each module. E: Heat map
networks (A and B), between control versus preeclampsia. Connectiv
value in the preeclampsia network minus that in the control netwo
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clinical variables. The complex correlations between
preeclampsia and other clinical variables suggest that
their relationships may be mediated through molecules
including lipids studied here.

Correlation network analysis of lipidomics in
relation to preeclampsia

To elucidate the relationships between lipidomics
and severe preeclampsia, we next constructed the cor-
relation networks for preeclampsia and control samples
separately, using WGCNA method on the 280 screened
lipid species (32). As shown in Fig. 2A–D, in both pre-
eclampsia and control conditions, the networks contain
−4

−2

−4

−2

ontrol samples. A and B: WGCNA network in preeclampsia (A)
C: Overlap between modules of networks in control and pre-
in networks of control versus preeclampsia samples, including
of lipids with significant connectivity difference in WGCNA
ity value is defined as increased or decreased if the connectivity
rk is larger than 5 or less than −5, respectively.



TAG-enriched module (turquoise color) and OxPL-
enriched module (blue color). The TAG-enriched
modules in both the preeclampsia and control group
correspond well with significant overlap, so does the
OxPL-enriched module (Fig. 2C). However, the OxPL-
enriched network module is more densely connected
in preeclampsia (density = 0.72) than in control
(density = 0.50). Moreover, the enrichment of OxPE
only shows in preeclampsia but not in the control
samples, as shown in Fig. 2D. Confirming this, a com-
bined WGCNA analysis using both preeclampsia and
control samples shows significant positive association
(P = 0.03, correlation = 0.28) of OxPL-enriched module
with preeclampsia (supplemental Fig. S2). OxPLs have
been previously associated with a variety of diseases,
including arteriosclerosis, diabetes, and cancers (37).
The increase in both the enrichment of OxPLs as well
as their interconnections suggest that preeclampsia is
another OxPL-related disorder. On the other hand, the
TAG-enriched turquoise network module has lower
connection density in preeclampsia (density = 0.28)
than in control (density = 0.34).

To further explore the lipid correlation differences
between preeclampsia and control samples, we spe-
cifically extracted lipid species with significant
changes in network connectivity values. We obtained
the network connectivity value for every node, by
summing over the weights (weighted correlations) of
all edges from a node. Then, we identified lipids with
connectivity changes between case and control condi-
tions of greater than 5 (lipids with increased connec-
tivity) or less than −5 (lipids with decreased
connectivity). With such a stringent cutoff threshold,
seven lipids are identified with increased connectivity,
and 84 lipids are with decreased connectivity (Fig. 2E).
TAG and diacylglycerol are the only two enriched
lipid classes with decreased connectivity (Fig. 2D, E),
suggesting that their biogenesis processes are dis-
rupted in preeclampsia. Of the seven lipids with
increased connectivity in preeclampsia, four are OxPE
or OxPC lipids, corroborating the earlier WGCNA
results of increased module density and lipid enrich-
ment (Fig. 2A–C). Together, these results show that
oxidative lipid genesis is enhanced in severe
preeclampsia.

Lipids and their pathways associated with severe
preeclampsia

To exclude effects from potential confounding fac-
tors, we also analyzed the overall lipid concentration
changes by adjusting for confounding. Since the SOV
analysis shows six potential confounders (Fig. 1C), we
conducted generalized linear regression using severe
preeclampsia condition and six other clinical con-
founders. As a result, 28 lipid species are identified as
significantly (P < 0.01) different regarding the severe
preeclampsia condition (supplemental Fig. S3). Among
them, nine lipids also have significant associations with
other confounders (P < 0.01), leaving 19 lipids signifi-
cantly different because of severe preeclampsia con-
dition only. Since smoking (n = 7) and gestational
diabetes (n = 11) only appear in cases (Table 1), we also
used the subset of 46 samples that are nonsmokers
without gestational diabetes for differential lipid anal-
ysis, with adjustment for confounding (supplemental
Fig. S4). The subset-based (n = 46) analysis yielded 28
lipids significantly (P < 0.01) different in the severe
preeclampsia condition (supplemental Fig. S5). Among
them, five lipids also have significant (P < 0.01) associ-
ation with gestational age and ethnicity, leaving
23 lipids uniquely associated with severe preeclampsia.
Finally, we intersected the unique 19 lipids in the full set
and the unique 23 lipids in the subset of 46 samples and
obtained 11 lipids that are highly and specifically asso-
ciated with severe preeclampsia (Fig. 3A). There are
two LPCs: LPC 15:0 and LPC 20:5; PC 35:1e; two lyso-
phosphatidylethanolamines (LPEs): LPE 18:2 and LPE
20:4; CE 22:5, Cer (Cer-NS) d30:1, LPE (PE) 37:2; and
three LPCs/PCs: LPC 16:0/PC 16:0e, LPC 16:1/PC 16:1e,
LPC 18:2e/PC18:2e. The LPCs/PCs are the lipids with
similar spectrum that their existence can be identified
by the MS2 spectrum, but their quantity cannot be
separated by the MS1 spectrum, which is used for lipid
quantification. Most of the 11 lipids are downregulated
in severe preeclampsia, except PE 37:2 (Fig. 3A, B and
supplemental Table S3). Among the 10 downregulated
lipids, LPE 18:2, LPE 20:4, CE 22:5, Cer-NS d30:1, and
PC35:1e also have reduced network connectivities in
WGCNA, suggesting their dual attenuations on both
lipid concentrations and correlations.

To understand the functional role of the lipids with
significantly different concentrations only because of
preeclampsia versus control, we attempted pathway
enrichment analysis on the 11 lipids. However, this task
was not easy, as the current shotgun lipidomic tech-
nique can only identify lipids by their class group and
total number of carbons and double bonds, rather than
providing definitive and unique identifications. To
overcome this issue, we performed isomer searches of
each lipid species first, then used all the lipid isomers
together to search for the corresponding Human
Metabolome Database, PubChem, and Kyoto Encylo-
pedia of Genes and Genomes pathways (see the
Materials and Methods section). As a result, all 11 lipid
species yielded associated pathways (Fig. 3C). Cer Cer-
NS d30:1 is overall reduced in preeclampsia samples.
Cer is involved in various signaling pathways, including
insulin signaling pathway, cell apoptosis, and stress
response (Fig. 3C). PCs and LPCs are overall reduced in
preeclampsia, and they are linked to phospholipid (PL)
metabolism. Decreased PL metabolism is associated
with preterm delivery, a major clinical feature in pre-
eclampsia (38). On the other hand, as the only lipid
increased in preeclampsia, PE 37:2 is linked to various
infection and immune response pathways, including
“pathogenic Escherichia coli infection” and autophagy
Maternal blood lipidomics in severe preeclampsia 7
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B

Fig. 3. Lipids show significantly different levels in preeclampsia and control samples. A: Heat map of the 11 lipids with significant
difference between preeclampsia and control samples. B: Box plots of the 11 lipids in our lipidomics data. C: Bipartite graph of
lipids in (A) and their affiliated metabolic pathways. Elliptical nodes: lipid. Rectangular nodes: pathways from HMDB, PubChem,
and KEGG databases. Blue color: downregulation in preeclampsia. Orange color: upregulation in preeclampsia. Note: lipids
without any metabolomic pathway affiliations are omitted. The unseparated LPCs/PCs are shown in the same plot. *P < 0.05,
**P < 0.01, ***P < 0.001.
process, both of which increase risk of preeclampsia (39,
40).

A metabolomics-based preeclampsia biomarker
model

An important application of lipidomics is to screen
for potential disease biomarkers. To achieve this, we
split samples with 80/20 ratio as training and test
datasets, respectively. We performed feature selection
among the 11 lipids, using a criteria of information gain
value greater than 0.1. We compared the performance
of several popular machine learning algorithms in Lil-
ikoi R package in the test dataset to obtain the best
classification methods for the lipidomics data (Fig. 4A).
8 J. Lipid Res. (2021) 62 100118
These classification algorithms include linear discrimi-
nant analysis, RFs, logistic regression with elastic net
regularization, gradient boosting machine, support
vector machine, nearest shrunken centroids (prediction
analysis for microarrays), and decision tree (RPART).
We used F1 statistics and balanced accuracy metrics to
evaluate the models, given the unbalanced size of the
preeclampsia and control samples. RF is selected as the
final best model from the training dataset, and it yields
the F1 statistic, area under the receiver operating
characteristic curve and balanced accuracy of 0.94, 0.81,
and 0.88, respectively, in the test dataset (Fig. 4A). The 11
lipids in the RF model show high correlations with
preeclampsia but not any other clinical confounders



BA

C D

Fig. 4. Biomarker classification model for preeclampsia. A: Performance of machine learning models on predicting severe pre-
eclampsia using 11 potential lipid markers. Comparison of seven popular classification models on training data (left). From left to
right: random forest (RF), gradient boosting (GBM), support vector machine (SVM), linear discriminant analysis (LDA), elastic net
(LOG), decision tree (RPART), and nearest shrunken centroids (PAM). The performance on testing data from the winning method
RF, based on training data, is shown on the right. All samples were randomly split into training data (80%) and testing data (20%) 10
times. The average value and standard error are shown for three performance metrics: area under the ROC curve (AUC), F1 statistic,
and balanced accuracy. B: Heat map of correlation coefficients between 11 potential lipid markers and clinical variables. C: Precision-
recall curve of RF model using 11 markers on: training data for severe preeclampsia and testing data for severe preeclampsia,
gestational diabetes, and chronic hypertension, respectively. D: Normalized variable importance scores for the 11 lipid markers in the
RF model.
(Fig. 4B), suggesting that they are biomarkers specific to
preeclampsia. To confirm this, we used this classifica-
tion model built for preeclampsia to predict its classi-
fication capability for other confounders, using the
testing dataset. For gestational diabetes and chronic
hypertension classification, it yields area under the
receiver operating characteristic curve of 0.23 and 0.16,
respectively, in the precision-recall curves (Fig. 4C),
confirming the specificity of the 11 lipid-biomarker
model for severe preeclampsia. Among the 11 lipid
biomarkers, 10 belong to cluster 1 in Fig. 1D, where the
lipids are predominantly negatively correlated with
preeclampsia, and PE 37:2 is the only lipid belonging to
cluster 2 in Fig. 1D. According to the feature impor-
tance ranking, LPE 18:2, Cer-NS d30:1, and PE 37:2 are
the top three most important lipids predictive of severe
preeclampsia, with the scaled feature important scores
of 0.122, 0.115, and 0.107.
Maternal blood lipidomics in severe preeclampsia 9



Predicted causality relationships among lipids and
preeclampsia

Beyond the aforementioned correlation analysis, we
also explored the potential causal relationship between
the 11 lipids and severe preeclampsia, using a Granger
causality test (41). The results show significant (P < 0.05)
causality interactions from LPC 16:1/PC 16:1e, LPC 18:2/
PC 18:2e, LPC 15:0, LPC 16:1, LPC 18:2, LPC 20:5 to PC
35:1e, and then from PC 35:1e to severe preeclampsia
(Fig. 5). It is interesting to see causal interactions from
PC of smaller molecular weights (PC 16:1e and PC 18:2e)
to that of larger molecular weights (PC 35:1e). Since LPC
can be converted to and from PC, there appears the
“pulling effect” from substrate LPCs (LPC 15:0, LPC 16:1,
LPC 18:2, and LPC 20:5) to PC (PC 35:1e).
DISCUSSION

Preeclampsia is a complex and heterogeneous dis-
order of pregnancy (1). To improve our understanding
of severe preeclampsia, we conducted a lipidomics
study on a unique multiethnic cohort in Hawaii. To
exclude the potential impact of mixed ethnicity as well
as other confounding factors, we excluded lipids that
are associated with any of these confounding factors in
the linear regression model. As a result, among 30
significantly differential lipid species associated with
severe preeclampsia, 11 lipids have exclusive associa-
tions with severe preeclampsia but not any other clin-
ical features.

One of the most significant and novel findings in this
study is the increased correlation and intensities among
OxPE and OxPC lipids in preeclampsia. Similar in-
creases of OxPLs have been observed and associated
with various other diseases, such as arteriosclerosis,
diabetes, and cancer (37). OxPLs have a known close
relationship with oxidative stress. In preeclampsia,
hypoxia is one of the most important features and a
Preeclampsia
LPC 15:0

LPC 16:1/PC 16:1e

LPC 18:2/PC 18:2e

PC 35:1e

LPC 20:5

Down        Up

Fig. 5. Predicted causality interactions among lipids and pre-
eclampsia. Edges are from causes to results. Blue nodes are
downregulated lipids, whereas red one is preeclampsia. Only
significant (P < 0.05) causality interactions are shown. No sig-
nificant causality interaction was found for upregulated lipid.
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source of oxidative stress (42). This hypoxic condition
in preeclampsia is derived from the incomplete
remodeling of spiral arteries by extracellular tropho-
blasts in this disease. Furthermore, such spiral arteries
cannot provide adequate blood to the placenta, result-
ing in a hypoxic condition (43). Thus, we speculate that
enhancement of OxPL correlation is the result of
oxidative stress induced by hypoxia.

Changes in several lipid classes may contribute to
multiple clinical features of severe preeclampsia
(Fig. 6). The first link is from the increase of PE 37:2,
which mediates the pathways of pathogenic E. coli
infection as well as autophagy processes (Fig. 3C), both
of which have a close relationship to inflammation (39)
and have been implicated in the mechanisms respon-
sible for gestational diabetes (44), hypertension (45, 46),
and preterm delivery (47, 48). This lipid can specifically
interact with the bundle-forming pilus of pathogenic
E. coli for bacterial autoaggregation and adherence to
host cells and contribute to infection (49). In autophagy
process, the microtubule-associated protein 1A/1B-light
chain 3 (LC3) in cytosol can conjugate to PE to form
LC3-PE conjugate (LC3-II), which is recruited to auto-
phagosomal membranes (50). LC3-II was shown to in-
crease in placenta, indicating an increased autophagic
activity during the pathogenesis of this disorder (51).
Second, Cer (Cer-NS d30:1) is also decreased in severe
preeclampsia (Fig. 3A). Cer is a sphingolipid bioactive
molecule that induces apoptosis and other forms of cell
death and triggers autophagy (52) (Fig. 3C). Cer is also
involved in the mechanism of diabetes by regulating
the insulin signaling pathway as a second messenger
(53). Alteration of Cer is associated with hypertension
(54), presumably through apoptosis/cell death. Third,
LPCs and PCs are significantly reduced in severe pre-
eclampsia (Fig. 3A). PCs are the main PLs of cell
membranes (up to 50%), and their downregulation
likely causes cell membrane damage, which can
contribute to preeclampsia by maternal/fetal tissue
injuries and increasing the risks of infection and
inflammation (55). LPEs, LPCs, and PCs are involved in
PL metabolisms. Interestingly, reduced PL metabolisms
are significantly associated with preterm delivery, a
major clinical feature of severe preeclampsia (38).

Comparisons among our study with previous lip-
idomics preeclampsia studies reveal certain degree of
consistency, such as lower levels in neutral lipids such as
sterols (17), reduction in Cer (19), increased oxidized
lipids (e.g., OxPC) (18). One earlier lipidomics biomarker
study was particularly interesting (18), where serums of
mostly Caucasian women were collected in 12–14 weeks
of pregnancies. The authors had a discovery set of
27 controls and 29 preeclampsia patients and a valida-
tion set of 43 controls and 37 preeclampsia cases. They
identified 23 potential biomarkers for early onset pre-
eclampsia, among them the largest lipid class was PC.
Although not the same lipids, we identified four PCs as
potential biomarkers for severe preeclampsia. One
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Fig. 6. A proposed model of lipidomic changes in the pathogenesis of severe preeclampsia.
major advantage of our study compared with this study
is the abundance of annotated lipids, which helps to
reconstruct the lipidomic landscape bioinformatically,
allowing much better understanding of the metabolic
mechanisms beyond biomarkers. In addition, the dif-
ference of lipid biomarkers between two studies can
also be explained by different objectives: severe pre-
eclampsia versus early onset preeclampsia. Another
study on placental lipid profiles from 23 preeclampsia
pregnancies showed higher neutral lipid content than
68 healthy controls (40% higher TAG and 33% higher
CE) as well as increases in most PC lipid species. The
authors concluded that placenta has a lipid storage
status under preeclampsia condition (56). Their result in
placentas is almost completely complementary to our
maternal blood observations (57), suggesting a “source
and sink” scenario at play, that is, the deprivation of
these lipids in the blood supplies the lipid storage in
preeclamptic placentas.

In summary, our study highlights the lipidomic
changes manifested in severe preeclampsia patients
and points to plausible lipid metabolic mechanisms. We
have identified a close relationship between OxPLs and
preeclampsia, presumably through the oxidative stress
mechanisms because of hypoxia. We propose that the
decreases in many lipids (e.g., LPCs, PCs, and LPEs) in
serum are potential specific markers for severe pre-
eclampsia, and their changes can be explained by the
PL-centered lipidomic axis. These molecular changes
coherently mediate dysregulation in biological func-
tions, such as insulin signaling, immune response and
PL metabolism.
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