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Abstract

Genome-wide sequence divergence between populations can cause hybrid sterility through

the action of the anti-recombination system, which rejects crossover repair of double strand

breaks between nonidentical sequences. Because crossovers are necessary to ensure

proper segregation of homologous chromosomes during meiosis, the reduced recombina-

tion rate in hybrids can result in high levels of nondisjunction and therefore low gamete via-

bility. Hybrid sterility in interspecific crosses of Saccharomyces yeasts is known to be

associated with such segregation errors, but estimates of the importance of nondisjunction

to postzygotic reproductive isolation have been hampered by difficulties in accurately mea-

suring nondisjunction frequencies. Here, we use spore-autonomous fluorescent protein

expression to quantify nondisjunction in both interspecific and intraspecific yeast hybrids.

We show that segregation is near random in interspecific hybrids. The observed rates of

nondisjunction can explain most of the sterility observed in interspecific hybrids through the

failure of gametes to inherit at least one copy of each chromosome. Partially impairing the

anti-recombination system by preventing expression of the RecQ helicase SGS1 during

meiosis cuts nondisjunction frequencies in half. We further show that chromosome loss

through nondisjunction can explain nearly all of the sterility observed in hybrids formed

between two populations of a single species. The rate of meiotic nondisjunction of each

homologous pair was negatively correlated with chromosome size in these intraspecific

hybrids. Our results demonstrate that sequence divergence is not only associated with the

sterility of hybrids formed between distantly related species but may also be a direct cause

of reproductive isolation in incipient species.

Author summary

Different species are kept genetically separated from each other by reproductive isolation,

which can result in the production of sterile hybrids. Despite the central role of
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reproductive isolation in evolutionary biology, the mechanisms underlying hybrid sterility

remain controversial. We focus on one potential cause: genome-wide sequence diver-

gence. Sequence divergence can lead to hybrid sterility by interfering with the proper seg-

regation of chromosomes during gamete production, leading to most gametes lacking at

least one essential chromosome. While hybrid sterility is known to be associated with mis-

segregation in Saccharomyces yeasts, quantification of the frequency of these errors has

been elusive until now. We use the recently developed technique of spore-autonomous

fluorescent protein expression to quantify chromosome segregation errors in gametes

produced by both interspecific and intraspecific yeast hybrids. By doing so, we show that

segregation is near random in interspecific hybrids, accounting for nearly all of the

observed gamete inviability. We also demonstrate that sequence divergence is associated

with sterility of hybrids both between distantly related species and between different

strains of the same species, providing a general mechanism for reproductive isolation in

yeast.

Introduction

Separate species are often reproductively isolated by intrinsic postzygotic mechanisms. The

diverged genomes from two different parental populations may not interact properly when

combined in a hybrid, resulting in reduced fertility, reduced viability, or both [1]. Errors dur-

ing gamete production, particularly problems associated with altered meiotic recombination

between diverged genomes, are becoming recognised as a widespread cause of hybrid sterility

[2]. While recent work on the contribution of meiotic recombination to reproductive isolation

has focused on individual genes [3], seminal studies of the baker’s yeast Saccharomyces cerevi-
siae have established genome-wide sequence divergence as a cause of meiotic errors underly-

ing hybrid sterility [4,5]. Sequence divergence between the genomes of different species is

thought to decrease the rate of meiotic crossing over through the action of the anti-recombina-

tion machinery, which prevents recombination between dissimilar sequences. Low rates of

recombination between diverged genomes can cause problems during hybrid meiosis since at

least one reciprocal exchange (crossover) event per homologous pair of chromosomes is neces-

sary to ensure correct segregation [4,6]. Failure of homologous chromosomes to segregate cor-

rectly (nondisjunction) generates meiotic products (gametic spores) that either contain too

many or too few chromosomes, resulting in reduced hybrid spore viability; all Saccharomyces
chromosomes carry essential genes, and failing to inherit any chromosome results in gamete

inviability. The magnitude of the contribution of nondisjunction to postzygotic reproductive

isolation in Saccharomyces yeasts is not clear because accurate measurements of nondisjunc-

tion rates are not currently available. Attempts to quantify the rate of nondisjunction in Sac-
charomyces hybrids have relied on the analysis of colonies grown from single spores (obtained

by tetrad dissection or random spore analysis). These studies have suffered from numerous

methodological biases stemming from three principal sources: (1) chromosome loss during

mitotic growth, (2) limited sensitivity of the techniques used for measuring ploidy, and (3) the

inability to genotype inviable spores. As a result, neither extra copies of chromosomes nor

missing copies can be accurately quantified using single-spore–derived colonies.

Extra copies of chromosomes (disomes) inherited by haploid spores during meiosis are

highly unstable and prone to mitotic loss following germination [7]. Disomes generally do not

have large effects on the probability of spore germination in S. cerevisiae [8,9] but do tend to

reduce mitotic growth rates relative to eusomic strains [10,11]. As a result, in a growing colony
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derived from a single disomic spore, mutants that lose one copy of a disomic chromosome will

gain a growth advantage over disomic cells and increase in frequency, potentially becoming

the dominant type in a heterogeneous colony. Moreover, by generating stoichiometric imbal-

ances in proteins important for mitotic segregation, aneuploidy itself might increase genomic

instability [12]. Disome loss has been demonstrated using the meiotic products of triploid

yeast [8]. In a triploid meiosis, each chromosome will be inherited as a disome by two of the

spores in the resulting tetrad and as a monosome (single copy) by the other two spores (result-

ing in an average of 8 disomes per spore). However, when chromosomes are counted in colo-

nies derived from the four spores of a four-viable–spore tetrad, disomes are underrepresented

relative to monosomes. The magnitude of the deficit depends on the sensitivity of the assay

used to detect the presence or absence of each chromosome [8,13,14]. When chromosome loss

occurs early in the growth of a colony or is associated with a large increase in growth rate, the

lost chromosome may be present in only a small proportion of cells in the colony when ana-

lysed, and correct diagnosis of disomy in the founding spore would require a highly sensitive

assay. For example, St. Charles and colleagues [8] detected only 853 of 960 expected chromo-

somes in 10 four-viable–spore triploid-derived tetrads using a comparative genome hybridisa-

tion assay, corresponding to an average of 5.3 disomes per spore. When a more sensitive PCR-

based assay was used, they detected 945 of 960 expected chromosomes, corresponding to an

average of 7.6 disomes per cell. Chromosome loss during mitotic growth means that measur-

ing disome frequency in single-spore–derived colonies will always underestimate the true

magnitude of the problem.

The frequencies of disomes in the gametes of yeast hybrids generated by crossing S. cerevi-
siae and S. paradoxus have been estimated using multiple techniques with inconsistent results.

Hunter and colleagues [4] reported highly variable frequencies of disomes for different chro-

mosomes, ranging from 0% (chromosome [Chr] VI) to 27.2% (Chr II) with a mean of 12.2%,

corresponding to 1.95 disomes per cell (mean number of disomes = 16 × mean frequency of

nondisjunction). Disome frequency was measured by karyotyping randomly selected single-

spore-derived colonies using a pulsed field gel electrophoresis (PFGE) technique that allows

visual identification of disomes as either two separate bands or a single band twice as bright as

that corresponding to a monosome. When disomes are present in only a small proportion of

cells in a colony (because of mitotic loss), the sensitivity of detection will depend on whether

the interspecific homologs migrate together or as two distinct bands, with the latter case

affording much greater sensitivity. Indeed, Hunter and colleagues [4] reported high disome

frequencies for the three homologs that migrate as separate bands (mean for Chr I, II, and

VIII = 22.3% or 3.57 disomes per spore) compared to six chromosomes that comigrate (mean

for Chr III, VI, IX, X, XI, and XIV = 7.1% or 1.14 disomes per spore). A more sensitive PCR-

based approach was used to estimate frequencies of extra copies of all 16 chromosomes in

spores derived from the same S. cerevisiae × S. paradoxus cross by Greig and colleagues [15],

who found that S. cerevisiae chromosomes were over-represented in colonies derived from

random spores by 31% (compared to the random-segregation expectation of 33% of viable

spores, see below). They inferred that this degree of over-representation was evidence of high

numbers of disomes (an average of 4.96 disomes per spore) caused by near-random segrega-

tion of homologous chromosomes in hybrid meiosis. Unfortunately, the lack of S. paradoxus
genomic sequences at the time of these experiments made it impossible to confirm that the

over-representation of S. cerevisiae sequences was actually attributable to the presence of dis-

omes. Instead, Greig and colleagues [15] analysed their hybrid-spore–derived colonies by

PFGE—looking only at chromosomes (I, II, and VIII) that could be resolved as separate

bands—and found similar disome frequencies to the average value of 22.3% reported by

Hunter and colleagues [4] with an average of 25.7% (or 4.10 disomes per spore). Thus, PFGE
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results are consistent with a relatively low overall disome frequency when disomes are scored

based on both the number and intensity of bands [4] but also with near-random segregation

when only disomes migrating as two distinct bands are counted [15]. More recently, Kao and

colleagues [16] used a comparative genome hybridization assay on random-viable-spore–

derived colonies and detected an average of 2.29 disomes per spore (14.3%), but the sensitivity

of their assay is difficult to assess.

Nondisjunction frequencies are further biased by the inability to score dead spores. If a

chromosome pair segregates randomly, half the time it will segregate correctly and half the

time incorrectly. Therefore, under random segregation of a chromosome, 50% of spores

should exhibit the consequences of nondisjunction: 25% will contain two copies of the chro-

mosome (disomes) and 25% will contain no copies of the chromosome (nullosomes) [6]. How-

ever, since the 25% of spores that fail to inherit at least one copy cannot be scored, one third of

observed spores should contain disomes and two thirds should contain monosomes, resulting

in a maximum observed nondisjunction frequency of only 33%. Additionally, any disome

(such as Chr VI [10]) or combination of disomes that reduces the likelihood of germination

will be underrepresented in analyses of viable-spore–derived colonies. However, apart from

Chr VI, there is little evidence that the presence of disomes or combinations of disomes has

large effects on the likelihood of spore germination [8,9].

Mitotic disome loss, insensitive disome detection, and the inability to score dead spores

mean that karyotype data from the colonies produced by viable spores can only be used to

determine a lower bound for nondisjunction rates, preventing the causes of hybrid sterility

from being quantified. Accurate assessment of nondisjunction rates is therefore crucial to

understanding the contribution of meiotic mis-segregation to postzygotic reproductive isola-

tion in yeast. Under the simple assumption that spores inheriting zero copies of any chromo-

some are inviable, but disomes do not affect the likelihood of germination, random

segregation of homologous chromosomes is sufficient to explain all of the observed inviability

of S. cerevisiae × S. paradoxus hybrid spores: the probability of inheriting at least one copy of

each chromosome would be 0.7516 or 1.0%, equivalent to the measured viability of spores pro-

duced by these interspecific hybrids [4,17]. Consequently, the high rate of mis-segregation

reported by Greig and colleagues [15] would explain nearly all of the infertility observed in

interspecific hybrids (0.76316 = 1.3% viability). The lower rate reported by Hunter and col-

leagues [4] would allow much higher spore viability (0.89116 = 15.9% viability) than observed,

meaning that other mechanisms such as toxic disomy or additional forms of hybrid incompat-

ibility must be invoked to explain the low fertility of interspecific hybrids. Accurate assessment

requires a sensitive assay that measures the frequency of disomes in spores directly (preferably

in tetrads themselves) and independently of spore viability. Here, we have used a spore-auton-

omous fluorescent protein expression assay developed by Thacker and colleagues [18] based

on a similar system developed in Arabidopsis [19] to accurately measure meiotic mis-segrega-

tion in yeast hybrids.

Materials and methods

Strain construction

The spore-autonomous expression system developed by Thacker and colleagues [18] (received

as a kind gift from Scott Keeney) expresses a fluorescent protein (GFP, mCerulean, or tdTo-

mato) under the control of the spore-autonomous YKL050c promoter and the PGK1 termina-

tor. Each fluorescent protein is paired with a promoter/terminator combination from a

different Saccharomyces species (GFP: S.mikatae; mCerulean: S. bayanus; tdTomato: S.

kudriavzevii). Unfortunately, we found that although these constructs resulted in spore-
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autonomous expression when integrated into the genome of the S. cerevisiae strain used here

(Y55), when integrated into the genome of our S. paradoxus strain (N17), they resulted in very

weak expression in both spores and vegetative diploids. Swapping the heterologous YKL050c
promoter for the species-specific version resulted in some improvement (see S1 Text and S1

Fig), but expression in S. paradoxus and hybrid spores remained weak. We therefore swapped

the YKL050c promoter for a different spore-autonomous promoter: the DIT1 (YDR403w) pro-

moter [20]. The DIT1 gene is expressed exclusively in sporulating cells, with transcripts first

appearing 8–10 hours after transfer to sporulation medium and reaching maximal levels after

12–14 hours, corresponding to the time of prospore enclosure. Expression of both GFP and

tdTomato under a strain-specific DIT1 promoter resulted in strong spore-specific and spore-

autonomous fluorescence in S. cerevisiae, S. paradoxus, and F1 hybrids.

Fluorescent protein expression was placed under control of theDIT1 promoter by replacing

the endogenous DIT1ORF in the desired S. cerevisiae or S. paradoxus haploid (S4 Fig) with

the entire construct developed by Thacker and colleagues [18] except for the YKL050c pro-

moter (i.e., from the start codon of GFP or tdTomato to the end of the URA3 or LEU2 cassette,

respectively). These constructs, PDIT1_GFP_URA3 and PDIT1_RFP_LEU2, were then inte-

grated into selected loci on each chromosome to allow analysis of segregation of all chromo-

some pairs (S4 Fig). Full details of strain construction are provided in the S1 Text.

Scoring meiotic segregation in parents and hybrids

Sporulation was performed as described by Thacker and colleagues [18]. Briefly, prototrophic

diploid S. cerevisiae, S. paradoxus, or (inter- or intraspecific) F1 hybrids were inoculated into 5

mL of liquid 1% YPA presporulation medium (1% Difco yeast extract, 2% Bacto peptone, 1%

potassium acetate) and grown overnight at 30˚C. Cells in 1 mL of each overnight culture were

harvested by centrifugation, washed in water, resuspended in 2 mL liquid sporulation medium

(2% potassium acetate), and incubated with shaking for 24 h. Slides were prepared by mount-

ing 10 μL of sporulated cultures under a coverslip, sealing with nail polish, and squashing

gently to flatten tetrads. We only scored tetrads for which all four spores were present, clearly

visible, and easily distinguishable from those of neighbouring tetrads. Fluorescence was manu-

ally scored in tetrads using either a Zeiss Axio Scope A.1 (Zeiss, Jena, Germany) equipped with

Filter Sets 38HE (GFP) and 43HE (tdTomato) and a Zeiss EC Plan-NEOFLUAR 100× oil

immersion objective or a Zeiss Axio Imager M1 equipped with Filter Sets 38 (GFP) and 20

(tdTomato) and a Zeiss EC Plan-NEOFLUAR 40×/0.75 Ph2 objective. Each tetrad was identi-

fied under visible light, scored for GFP and then tdTomato (or vice versa), and then double-

checked. The vast majority of tetrads either had 2 green spores and 2 red spores (correct segre-

gation) or 2 nonfluorescent spores and 2 spores that were both green and red (meiosis I non-

disjunction, Fig 1). A total of 4.0% (2,062/51,112) of tetrads exhibited other fluorescence

patterns. Of these, the most frequent patterns were 3 spores of one colour and 1 of the other

(likely a gene conversion event between the fluorescent markers) or 2 spores of one colour, 1

of the other, and 1 nonfluorescent spore (likely a meiosis II nondisjunction event). Because

these patterns were not consistent with meiosis I nondisjunction, they were included in the

total tetrad counts as having segregated correctly. Our estimates of the total nondisjunction

frequency may therefore be slightly conservative.

Results and discussion

We observed extremely high levels of chromosomal nondisjunction during meiosis in inter-

specific hybrids formed between S. cerevisiae strain Y55 and S. paradoxus strain N17 (Fig 2).

On average, each chromosome pair failed to segregate during meiosis I in 40.3% of hybrid

Meiotic nondisjunction causes hybrid sterility in yeast
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Fig 1. Spore-autonomous expression of fluorescent proteins under the DIT1 promoter. Hybrid diploids were

created by crossing a MATα strain with a single chromosome marked with pDIT1_tdTomato with a MATa strain

marked with pDIT1_GFP at the same position on the same chromosome. Sporulation of these diploids generates asci

containing 4 spores (tetrads). Correct segregation of homologous chromosomes during meiosis I results in tetrads

containing 2 GFP-expressing spores and 2 tdTomato-expressing spores. Under meiosis I nondisjunction, homologous

chromosomes fail to segregate, resulting in 2 spores expressing both GFP and tdTomato and 2 spores expressing

neither. Left panel = GFP fluorescence; middle panel = tdTomato fluorescence; right panel = overlay. Here, we show 7

tetrads produced by sporulating YDP1480 × YDP1559 hybrid diploids, 5 of which show correct segregation and 2 of

which show nondisjunction (yellow spores in overlay). GFP, green fluorescent protein; tdTomato, tandem dimer

Tomato fluorescent protein.

https://doi.org/10.1371/journal.pbio.2005066.g001

Fig 2. An interspecific cross between S. cerevisiae and S. paradoxus exhibits extremely high rates of meiosis I

nondisjunction. Black circles represent the nondisjunction rate for each of 16 homologous chromosome pairs.

Underlying data can be found in S1 Data. Random segregation would correspond to a nondisjunction frequency of 0.5,

while perfect segregation would correspond to a nondisjunction frequency of 0.0. Chromosome lengths represent the

total amount of alignable sequence per chromosome pair between the genomes of the two species. Length estimates

were obtained using the complete genomes of S. cerevisiae strain SK1 (instead of Y55) and S. paradoxus strain CBS432

(instead of N17) because these are the most closely related strains for which end-to-end assemblies are available [22].

The alignable regions of these two genomes are 87.8% identical (9,784,711 out of 11,146,833 sites). The length of Chr

XII (indicated by the grey arrowhead) omits the tandem rDNA repeats, which could not be assembled; the true size of

Chr XII may be twice as long as presented. Chr, chromosome; rDNA, ribosomal DNA.

https://doi.org/10.1371/journal.pbio.2005066.g002
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sporulation events, with a total of 6,276 out of 15,588 tetrads exhibiting nondisjunction. If

spores containing at least one copy of each chromosome are viable, the observed nondisjunction

rates would result in a spore viability of 2.7%, comparable to approximately 1% observed experi-

mentally [4,17]. Thus, the loss of chromosomes due to meiosis I nondisjunction can explain

nearly all of the infertility in hybrids between these two species. Nondisjunction was extremely

rare in the nonhybrid parental strains, occurring in only 0.15% (7/4,527) of tetrads in the S. cere-
visiae Y55 parent and 0.06% (3/5,145) of tetrads in the S. paradoxusN17 parent. The observed

parental nondisjunction frequencies are similar to previously reported values [18,21], indicating

our genetic manipulations have not inflated meiotic mis-segregation. We observed similar levels

of nondisjunction to those reported above using species-specific YKL050c promoters across five

tested chromosomes (43.8% in N17 × Y55 hybrids compared to 41.0% for the same five chro-

mosomes using theDIT1 promoter), although this system was more difficult to score (S1 Fig).

Most chromosomes exhibited similar levels of mis-segregation, and no relationship was

observed between the rate of nondisjunction and chromosome length (Fig 2: Spearman rank

correlation rs = −0.085, P = 0.754). One marked exception was Chr XII, which segregated

much more reliably than did any other chromosome (nondisjunction rate of only 31.6%). To

confirm the generality of this lower rate of mis-segregation of Chr XII in interspecific hybrids,

we examined the segregation of Chr I, VII, and XII in crosses between S. cerevisiae strain Y55

and the additional S. paradoxus strains YPS138 and N44 and in a cross between S. paradoxus
strain N17 and the additional S. cerevisiae strain S288C (Fig 3). We found that Chr XII had

lower rates of nondisjunction than did Chr I and VII in all interspecific hybrids tested. Chr XII

contains a single long ribosomal DNA (rDNA) tract in Saccharomyces yeasts consisting of an

uninterrupted stretch of 150–200 identical or nearly identical approximately 9,100 base pair

head-to-tail tandem repeats [23]. Recombination is very frequent in the rDNA of S. cerevisiae

Fig 3. Chromosome XII shows reduced nondisjunction in interspecific hybrids. Chr XII exhibited a markedly lower

nondisjunction rate than did other chromosomes in interspecific hybrids between S. cerevisiae strain Y55 and S.
paradoxus strain N17 (data reproduced from Fig 2). We confirmed this result by examining the segregation of three

chromosome pairs (I, VII, and XII) in crosses between S. cerevisiae strain Y55 and two other S. paradoxus strains from

different clades: the American B strain YPS138 and the Far Eastern strain N44, as well as a cross between S. paradoxus
strain N17 and a second S. cerevisiae strain, the laboratory model S288C. Underlying data can be found in S1 Data.

Error bars represent binomial 95% confidence intervals calculated using JavaStat (http://statpages.info/confint.html).

Chr, chromosome.

https://doi.org/10.1371/journal.pbio.2005066.g003
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[24], and this region has been shown to promote mitotic chromosome segregation fidelity

[25]. It is intriguing to speculate that the large size and repetitive nature of the rDNA may pro-

mote crossovers between hybrid sister chromosomes, ensuring correct segregation during

meiosis. The 18S, 5S, and 25S ribosomal-RNA–encoding regions, but not the intergenic spac-

ers, are almost perfectly conserved between S. cerevisiae and S. paradoxus [26–28], providing

an excellent template for double-strand–break repair. If anti-recombination is responsible for

the high rates of nondisjunction in yeast hybrids, it seems reasonable that the long tracts of

identity associated with rDNA would help to rescue segregation on Chr XII as shown in Fig 3.

The failure of homologous chromosomes to segregate correctly during meiosis I in hybrids is

often attributed to the activity of mismatch repair and anti-recombination systems that prevent

recombination between divergent DNA sequences [4,5,21]. We used our spore-autonomous

fluorescent markers to compare the recombination rate between two loci on Chr XI in S. cerevi-
siae strain Y55, S. paradoxus strain N17, and their interspecific hybrid as described by Thacker

and colleagues [18]. We calculated the map distance between YKR005c and YKL050c, located

approximately 100 kb apart on Chr XI, to be 36.1 cM in Y55 and 32.9 cM in N17 but only 0.4 cM

in their hybrid (S3 Fig). Thus, at least in this region of the genome, the recombination rate in the

interspecific hybrids is only 1% of that in the parents. Given meiosis in S. cerevisiae typically

involves 90 crossovers [29], extrapolating our observation across the genome suggests that inter-

specific hybrids experience only about 1 crossover per meiosis—a value comparable to that of 2.7

crossovers per viable spore found in hybrids of the same two species [16]. Intraspecific hybrids

between closely related parents have previously been shown to suffer from reduced recombina-

tion as well. In a genome-wide screen, Martini and colleagues [30] found that hybrids between S.
cerevisiae strains S288C and SK1 (a very close relative of Y55 and about 0.7% diverged from

S288C) underwent an average of only 73 crossovers per meiosis, but disrupting the anti-recombi-

nation geneMSH2 restored the number of crossovers to the level seen in the parents (>90).

To further investigate the consequences of impaired anti-recombination on meiotic non-

disjunction in our interspecific hybrids, we used strains in which expression of the RecQ heli-

case SGS1 was placed under the control of the CLB2 promoter, which is strongly repressed

during meiosis [31]. Sgs1 is required for rejection of homeologous recombination [32], and

the pCLB2_SGS1 construct has previously been found to reduce nondisjunction in partial

hybrids between S. cerevisiae and S. paradoxus [33]. Consistent with these results, we found

substantially reduced nondisjunction of four tested chromosomes (II, VII, XII, and XIII) in

interspecific hybrids with impaired anti-recombination relative to wild-type controls (Fig 4).

Chr XII exhibited the largest response to impairing anti-recombination in hybrids, with a

3.2-fold improvement in segregation compared to approximately 2-fold for the others. Paren-

tal strains exhibited extremely low levels of nondisjunction whether anti-recombination was

impaired or intact. Our results add to the mounting evidence that anti-recombination is

largely responsible for the sterility of these interspecific hybrids. Indeed, recent work has dem-

onstrated that disabling the activity of multiple components of the anti-recombination

machinery during meiosis results in a large improvement in S. cerevisiae × S. paradoxus hybrid

spore viability (from <1% to>30%) associated with a decrease in disome frequency and an

increase in crossover frequency of similar magnitudes [34].

The relevance of meiotic nondisjunction of homologous chromosomes in S. cerevisiae × S.

paradoxus hybrids to models of speciation has been questioned because of the high genetic

divergence between these species (12.2% sequence divergence); many reproductively isolated

species are much less diverged [1,35]. Despite these objections, deletion of the mismatch repair

geneMSH2 has been found to improve the fertility—relative to their parents—of intraspecific

hybrids formed by crossing different strains of S. paradoxus [21]. Indeed, very small numbers

of mismatches can greatly reduce the rate of recombination in Saccharomyces: a single

Meiotic nondisjunction causes hybrid sterility in yeast
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mismatch in a 350-base pair sequence was found to reduce homologous recombination 3- to

4-fold, and two to three additional mismatches reduced the frequency of recombination 9-fold

relative to identical sequences [36]. Mismatch-repair–controlled anti-recombination is

thought to cause the crossover frequency to fall exponentially with sequence divergence, and

the rate of decline is strongest for near-identical sequences [36]. Consequently, meiosis I non-

disjunction should be observable in hybrids formed between closely related populations. To

determine the importance of meiotic nondisjunction to the fertility of intraspecific hybrids, we

examined segregation in the spores of a diploid formed by crossing S. paradoxus strains from

the European and Far Eastern clades [37]: N17 and N44 (1.4% sequence divergence). We

found this cross produced 63.9% viable spores (253 viable out of 396 total spores), slightly

lower than the value of 77.1% reported in [38] for a similar cross (CBS432 × N44). The average

nondisjunction rate in intraspecific hybrids was much lower than observed in interspecific

hybrids, with only 3.4% of homologous pairs failing to segregate (Fig 5). If, as above, we

assume that all spores inheriting at least one copy of each chromosome are viable, then the

observed levels of nondisjunction would result in 75.7% spore viability. Therefore, as observed

in interspecific hybrids, nondisjunction can explain most of the infertility in hybrids formed

between much more closely related strains (S2 Fig). We confirmed the occurrence of nondis-

junction in intraspecific hybrids by examining segregation of Chr I in a second S. paradoxus
cross (N17 × YPS138, 3.5% genetic divergence), which showed a similar nondisjunction fre-

quency (10.8%) to that seen in the N17 × N44 hybrids (10.7%, S1 Data, S2D Fig). Even a cross

between two very closely related S. cerevisiae strains (Y55 × S288C, 0.6% genetic divergence)

exhibited detectable levels of Chr I nondisjunction (1.1%; none was observed for the Y55

parent).

In contrast to the roughly uniform nondisjunction rates for different chromosomes in the

interspecific hybrid, we observed a strong negative correlation between chromosome length

Fig 4. Impaired anti-recombination reduces meiosis I nondisjunction in interspecific hybrids. Eliminating

expression of the RecQ helicase Sgs1 during meiosis (open symbols) lowered the rate of nondisjunction to

approximately half of that seen in wild-type interspecific N17 × Y55 hybrids (closed symbols) for three of the tested

chromosomes (II, VII, and XIII) and approximately one third for Chr XII. Underlying data can be found in S1 Data.

Error bars represent binomial 95% confidence intervals calculated using JavaStat (http://statpages.info/confint.html).

Chr, chromosome.

https://doi.org/10.1371/journal.pbio.2005066.g004
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and the rate of nondisjunction in the intraspecific hybrid (Spearman rank correlation rs =

−0.860, P< 0.0001); the relationship is log–log linear with a slope of −1.79 (Fig 5). This nega-

tive relationship was expected since crossover frequency is tightly associated with chromosome

size in S. cerevisiae intraspecific hybrids (S288C × YJM789, SNP-based genomic distance

99.54% identical [37]) in which the number of crossovers per chromosome increases by

approximately 0.6 per 100 kb of chromosome length [29,39]. If longer chromosomes are more

likely to experience at least one crossover event, then they should exhibit lower rates of nondis-

junction. Indeed, we found that only Chr I and VI exceeded a nondisjunction frequency of 5%

in the intraspecific hybrid; these two chromosomes also have the highest probabilities of exhib-

iting zero crossovers in homozygous parents [29]. We cannot explain why the negative rela-

tionship between nondisjunction and chromosome length is so clear in our analysis of an

intraspecific hybrid (Fig 5) but undetectable in our analysis of an interspecific hybrid (Fig 2).

Given the very low frequency of recombination in interspecific hybrids, it is possible that our

analysis simply lacked the power to detect a weak negative correlation. Alternatively, it is also

possible that rare crossovers in these hybrids are more likely to occur on longer chromosomes

but that this is balanced by a bias in crossover-independent mechanisms towards rescuing seg-

regation of shorter nonexchange chromosomes [29].

The levels of nondisjunction we observed in intraspecific and interspecific meiosis are likely

attributable to sequence divergence between the two parents. A strong negative relationship

between S. paradoxus hybrid spore viabilities and parental genetic distances was reported by

Liti and colleagues [38]. After correction for inviability associated with chromosomal rear-

rangements, they found this relationship was best fit by an exponential decay function. In con-

trast, examining hybrids formed between strains of S. cerevisiae—a less genetically diverse

group than S. paradoxus—Hou and colleagues [40] reported no correlation between hybrid

spore viabilities and parental genetic distances. However, if the spore viabilities measured by

Hou and colleagues [40] are adjusted to account for the effects of chromosomal

Fig 5. Short chromosomes fail to disjoin at higher rates than long chromosomes in an intraspecific S. paradoxus
hybrid. Circles represent the nondisjunction frequency for each of the 16 homologous chromosome pairs in hybrids

formed between the S. paradoxus strains N17 and N44. Underlying data can be found in S1 Data. Chromosome

lengths represent the total amount of alignable sequence per chromosome pair between the genomes of each species.

Length estimates were obtained using the complete genomes of S. paradoxus strains CBS432 (instead of N17) and N44

[22]. The alignable regions of these two genomes are 98.6% identical (11,358,261 identical sites out of 11,516,349 total

sites). The grey line represents the line of best fit: log nondisjunction = −2.12 − 1.79(log length).

https://doi.org/10.1371/journal.pbio.2005066.g005
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rearrangements as done by Liti and colleagues [38], a strong negative correlation immediately

becomes apparent (S2 Fig). Indeed, the relationship is similar to that reported for S. paradoxus
hybrids (and consistent with the results presented here for nondisjunction in the N17 × N44

hybrid): spore viability decreases by roughly 1.25% for each 0.1% parental sequence diver-

gence. We further show a similar negative relationship in a separate S. cerevisiae data set col-

lected for the 100-genomes strains (S2 Fig, [41]). It therefore seems entirely plausible that

small amounts of sequence divergence can contribute to reproductive isolation and incipient

speciation.

We have shown that meiosis I nondisjunction alone can explain nearly all of the sterility of

the yeast hybrids studied here, simply because of spores failing to inherit essential chromo-

somes. If the unexplained spore inviability can be attributed to disomy arising from nondis-

junction, then no other mechanism would be necessary to explain yeast hybrid sterility. The

magnitude of the effect of meiotic mis-segregation on hybrid sterility has previously been hard

to gauge because of technical difficulties in accurately quantifying nondisjunction rates. More-

over, since previous evidence for the association between nondisjunction and postzygotic

reproductive isolation was restricted to crosses between highly diverged species (S. cerevisiae
and S. paradoxus), a major role of sequence divergence as a cause of hybrid sterility between

closely related populations has often been dismissed [1,35,42,43]. Here, we show that nondis-

junction can explain most of the hybrid fertility defect observed not only for interspecific

crosses but also for an intraspecific cross between much more closely related strains. These

results suggest that even small amounts of sequence divergence can directly contribute to post-

zygotic reproductive isolation, consistent with the negative correlation between hybrid spore

viability and parental sequence divergence observed both within and between species (S2 Fig,

[38,44,45]).

We do not mean to suggest that anti-recombination is the sole mechanism underlying post-

zygotic reproductive isolation in yeast. Chromosomal rearrangements can clearly contribute

to the genetic isolation of Saccharomyces populations [40,46], and we have intentionally cho-

sen collinear strains to remove these effects. Furthermore, although there is no evidence for

lethal genic incompatibilities between the genomes of S. cerevisiae and S. paradoxus [16,47],

negative epistasis does reduce hybrid viability between these two species in particular environ-

ments [3,48]. It is also possible that either the number of spores per tetrad [49] or the efficiency

with which diploids sporulate might be affected by negative epistasis between hybrid genomes

[50,51], potentially reducing the total number of hybrid gametes produced rather than their

viability. Similarly, strong cytonuclear incompatibilities, which reduce hybrid viability and can

prevent later generation hybrids from even entering meiosis, have been observed in crosses

between species of Saccharomyces yeasts [52]. However, growth and sporulation rates are

highly dependent on environmental conditions, and thus the contribution of these factors to

reproductive isolation between yeast species is difficult to assess because they cannot be

directly observed in nature.

Chromosomal mechanisms of speciation (including both rearrangements and sequence

divergence) are often dismissed as unimportant because they generate underdominance [53].

Mutations that result in nondisjunction in heterozygotes (or hybrids) will be initially deleteri-

ous since rare mutants will predominantly mate with wild types. Consequently, these mutants

should not rise to the frequency necessary to establish a new breeding population in which cor-

rect segregation occurs. We agree that underdominance reduces the likelihood of chromo-

somal mechanisms of speciation acting in obligately sexual organisms, which includes virtually

all animals. However, underdominance is not necessarily a problem in facultatively sexual

organisms, like yeast, in which a single mutant can rapidly establish a highly inbred population

by clonal propagation. Although most speciation research is focused on obligate sexuality,
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facultative sexuality should not be ignored; many plants, most fungi, and nearly all unicellular

eukaryotes are facultatively sexual, and this mode of reproduction is considered the ancestral

state of all eukaryotes [54]. Clearly, many mechanisms can contribute to postzygotic reproduc-

tive isolation, and how these mechanisms interact to drive speciation in yeast remains an open

question [55,56]. Nevertheless, the importance—to speciation in facultatively sexual organ-

isms, at least—of small amounts of sequence divergence should not be overlooked.

Supporting information

S1 Fig. Nondisjunction frequency in interspecific hybrids measured using species-specific

YKL050c-promoted fluorescent protein expression. Although the fluorescent signal was very

weak compared to the DIT1-promoted fluorescent protein expression, we did attempt to score

the nondisjunction frequency in interspecific N17 × Y55 hybrids for 5 different chromosome

pairs (chromosome numbers indicated below points). Underlying data can be found in S1

Data. We obtained similar results with a mean nondisjunction frequency of 43.8% compared

to 41.0% for the same 5 chromosomes using the DIT1 promoter. As for the DIT1 system, non-

disjunction was extremely rare in the parents: Y55 = 0.072% (1/1,380 tetrads); N17 = 0.067%

(1/1,484 tetrads).

(PDF)

S2 Fig. Genetic divergence between parents is negatively correlated with spore viability in

S. cerevisiae hybrids. The relationship between spore viability and parental genetic distance

was investigated by Hou and colleagues [S1] for hybrids obtained by crossing various S. cerevi-
siae strains with S288C. (A) These data are reproduced here using the same colour scheme.

That study reported ‘no apparent correlation [. . .] between the estimated genetic divergence of

the parental pairs and the resulting offspring viability [. . .] indicating that general DNA

sequence differences were not sufficient to explain the observed reproductive isolation’. In our

reanalysis, we found a negative, albeit not statistically significant, correlation between hybrid

spore viability and parental genetic divergence (rs = −0.2578, N = 58, P = 0.0507). However,

two groups (indicated by red and yellow points) represent hybrids formed between parents

with different chromosomal arrangements. The red points are hybrids formed between S288C

and strains carrying a Chr VIII to XVI reciprocal translocation with an ECM34-SSUI break-

point [S1-S3]. The region on Chr VIII involved in this translocation is near the telomere and

contains no essential genes, and consequently this rearrangement should cause only 25% of

hybrid spores to be inviable. The yellow points represent hybrids between S288C and strains

containing a translocation between two large chromosomal regions (YJM454: between the

right arm of Chr V and the left arm of Chr XIV; CECT10266: between the left arm of Chr VII

and the right arm of Chr XII) that each contains at least one essential gene [S1]. These two

rearrangements are expected to cause a 50% reduction in spore viability in these hybrids. (B)

Following the practice of Liti and colleagues [S4], we have corrected the observed spore viabili-

ties for the effects of known chromosomal rearrangements in the groups represented by red

and yellow points. The corrected spore viabilities are highly correlated with parental genetic

divergence (rs = −0.5289, N = 58, P< 0.0001). Thus, after correcting for the effects of chromo-

somal rearrangements, parental genetic divergence was a clear predictor of hybrid spore viabil-

ity even among closely related parents (slope = −1.25% viability per 0.1% genetic divergence).

Hybrids represented by blue points contain no known rearrangements and were therefore

not adjusted. Omitting these blue points from the analysis has no effect on our conclusion

(rs = −0.3954,N = 52, P = 0.0037), nor does restricting the analysis to only the high-fertility col-

linear pairs represented by grey and blue points (rs = −0.3406, N = 42, P = 0.0166). (C) Spore via-

bilities of intraspecific S. cerevisiae hybrids were independently measured by [S2] as part of the
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‘100 genomes’ project; each strain was crossed with S288C to generate intraspecific hybrids.

Since not all major chromosomal rearrangements have been identified for these strains, we

have restricted our analysis to hybrids formed between parents identified as having collinear

genomes (hybrid spore viability >75%) in [S2]. Full genomes for strains that Strope and col-

leagues [S2] provided hybrid fitness measures for but no genomic sequences were obtained

from Genbank (YJM1281 = YPS163: JRIC00000000; YJM1290 = S1278b: JRIQ01000000;

YJM1293 = RM11_1a: JRIP01000000; YJM145 = YJM789: AAFW02000000; YJM1077 = SK1:

GCA_002057885.1). The genome sequence of strain YJM1628 was used for the isogenic strain

YJM1615. Genetic distances were determined by aligning whole genomes using REALPHY

[S5] and calculating % identity using Geneious 10.2.3 based on 8,813,278 aligned sites. Once

again, hybrid spore viability was significantly correlated with parental genetic divergence (rs =

−0.2769, N = 79, P = 0.0135). The negative relationship was very similar to that in (B) with a

slope = −1.33% viability per 0.1% genetic divergence (grey line). The slope was only slightly

changed by the omission of the homozygous S288C parent (−1.35% viability per 0.1% genetic

divergence). Underlying data can be found in S1 Data. (D) Predicted spore viability (red

points) arising from crosses generated in this study based on NDJs (black points ± 95% confi-

dence intervals; see S1 Data) observed for Chr I (Y55 × Y55, N17 × N17, Y55 × S288C,

N17 × N44, N17 × YPS138, N17 × Y55, YPS138 × Y55, N44 × Y55, N17 × S288C). Spore via-

bility was calculated by assuming that Chr I nondisjunction was representative for all 16 chro-

mosomes, that spores inheriting disomes were viable, and that spores that fail to inherit a

copy of one or more chromosomes are inviable. The probability of inheriting at least one

copy of each chromosome is therefore equal to [(1 − NDJ) + (NDJ/2)]16. The dotted red line

represents the relationship between spore viability and genetic divergence reported by Liti

and colleagues [S4]. Our method underestimates spore viabilities for intraspecific hybrids

because Chr I has a higher than average rate of nondisjunction in these strains (Fig 5). Under-

lying data can be found in S1 Data. Genetic divergences in panel D were taken directly from

Liti and colleagues [S4]. Chr, chromosome; NDJ, nondisjunction frequency.

(PDF)

S3 Fig. Recombination rate in interspecific hybrids is 1% that observed in parental types.

We investigated recombination between two loci located approximately 100 kb apart on Chr

XI: YKL050c and YKR005c. From genetic maps in S. cerevisiae strain S288C (https://wiki.

yeastgenome.org/index.php/Combined_Physical_and_Genetic_Maps_of_S._cerevisiae), we

estimated the map distance of these two loci at approximately 35 cM, the approximate

limit at which linkage can be calculated by tetrad analysis without empirically derived cor-

rection [S6]. We marked YKL050c with PYKL050c-GFP_URA3 and YKR005c with PDIT1-

RFP_LEU2 in both S. cerevisiae strain Y55 and S. paradoxus strain N17 and scored tetrads

produced by parental diploids and hybrid diploids as the PD (2 red spores and 2 green

spores), the NPD (2 red/green [represented here as yellow] spores and 2 nonfluorescent

spores), or as the T (1 red/green spore, 1 red spore, 1 green spore, and 1 nonfluorescent

spore). Tetrads not matching any of these three categories were omitted from the analysis

(Y55 = 13, N17 = 7, Y55 × N17 = 20). Since nondisjunction is extremely rare in parental

types, we calculated genetic distances in parents according to the standard equation [S6]:

100(T + 6NPD)/2(PD + NPD + T). In hybrids, the low number of Ts observed indicates

that single crossover events are rare; the frequency of double crossover events must there-

fore be negligible, and all non-parental ditypes can be ascribed to nondisjunction events

[S7]. We therefore estimated the genetic distance between these loci in hybrids as 100T/2

(PD + T). Chr, chromosome; NPD, non-parental ditype; PD, parental ditype; T, tetratype.

(PDF)
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S4 Fig. Strain construction diagram. LEU2 and URA3 were knocked out using antibiotic

resistance cassettes (in most cases eitherHYGMX or KANMX) in haploid S. cerevisiae strains

Y55 and S288C and/or S. paradoxus strains (N17, N44, and YPS138) to allow selection for the

integration of spore-autonomous fluorescent protein expression cassettes (tdTomato, or RFP, was

linked to LEU2, while GFP was linked toURA3). Fluorescent constructs, excluding the promoters,

were amplified from plasmids pSK691 (RFP_LEU2) and pSK726 (GFP_URA3) and placed under

the control of the endogenous YKL050c orDIT1 promoter by replacing the appropriate ORF,

generating strains with ykl050c::RFP_LEU2, ykl050c::GFP_URA3, and dit1::RFP_LEU2, dit1::

GFP_URA3 genomic regions. The integrated fluorescent constructs plus the appropriate endoge-

nous strain-specific promoters (PYKL050c-RFP_LEU2, PYKL050c-GFP_URA3, PDIT1-RFP_LEU2,

and PDIT1-GFP_URA3) were then amplified from genomic DNA and integrated at the desired

site on each chromosome. GFP-marked haploids were mated to strains of the opposite mating

type with RFP at the allelic position to generate parental or hybrid diploids, which were then spor-

ulated to examine meiotic segregation. See S1 Text for details. GFP, green fluorescent protein;

ORF, open reading frame; RFP, red fluorescent protein; tdTomato, tandem dimer Tomato fluo-

rescent protein.

(PDF)

S1 Data. Raw data used to produce figures. Data include numbers of tetrads scored as having

correct segregation (different cells) or nondisjunction (same cells) for wild-type and anti-

recombination–impaired (pCLB2_SGS1) parents and hybrids marked at each chromosome

with the DIT1-promoted (‘DIT1 promoter’ sheet) or YKL050c-promoted (‘YKL050c promoter’

sheet) spore-autonomous fluorescent reporter. Tetrads with ‘other’ patterns of segregation

were included in the total counts but not in the nondisjunction counts. The ‘100 genomes

hybrids’ sheet includes hybrid spore viability data from [S2] and genetic distances from S288C

calculated using REALPHY [S5].

(XLSX)

S1 Text. Supporting materials and methods. Includes strain tables, primer tables, and sup-

porting references.

(PDF)

Acknowledgments

We thank L. Becks and C. Bekpen for help and advice with fluorescence and confocal micros-

copy. F. Bertels performed the REALPHY [57] whole genome alignments.

Author Contributions

Conceptualization: David W. Rogers, Duncan Greig.

Data curation: David W. Rogers.

Formal analysis: David W. Rogers.

Funding acquisition: Duncan Greig.

Investigation: David W. Rogers, Ellen McConnell, Jasmine Ono.

Methodology: David W. Rogers, Ellen McConnell, Jasmine Ono, Duncan Greig.

Project administration: David W. Rogers, Jasmine Ono, Duncan Greig.

Supervision: David W. Rogers, Duncan Greig.

Meiotic nondisjunction causes hybrid sterility in yeast

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005066 November 12, 2018 14 / 17

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005066.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005066.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2005066.s006
https://doi.org/10.1371/journal.pbio.2005066


Validation: David W. Rogers, Ellen McConnell, Jasmine Ono.

Visualization: David W. Rogers.

Writing – original draft: David W. Rogers.

Writing – review & editing: David W. Rogers, Ellen McConnell, Jasmine Ono, Duncan Greig.

References
1. Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer Associates; 2004.

2. Balcova M, Faltusova B, Gergelits V, Bhattacharyya T, Mihola O, Trachtulec Z, et al. Hybrid sterility

locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet. 2016; 12: 1–16.

https://doi.org/10.1371/journal.pgen.1005906 PMID: 27104744

3. Hou J, Schacherer J. Negative epistasis: a route to intraspecific reproductive isolation in yeast? Curr

Genet. 2016; 62: 25–29. https://doi.org/10.1007/s00294-015-0505-y PMID: 26164016

4. Hunter N, Chambers SR, Louis EJ, Borts RH. The mismatch repair system contributes to meiotic steril-

ity in an interspecific yeast hybrid. EMBO J. 1996; 15: 1726–1733. https://doi.org/10.1002/j.1460-2075.

1996.tb00518.x PMID: 8612597

5. Chambers SR, Hunter N, Louis EJ, Borts RH. The mismatch repair system reduces meiotic homeolo-

gous recombination and stimulates recombination-dependent chromosome loss. Mol Cell Biol. 1996;

16: 6110–6120. PMID: 8887641

6. Marston AL, Tham WH, Shah H, Amon A. A genome-wide screen identifies genes required for centro-

meric cohesion. Science. 2004; 303: 1367–1370. https://doi.org/10.1126/science.1094220 PMID:

14752166

7. Zhu J, Pavelka N, Bradford WD, Rancati G, Li R. Karyotypic determinants of chromosome instability in

aneuploid budding yeast. PLoS Genet. 2012; 8: e1002719. https://doi.org/10.1371/journal.pgen.

1002719 PMID: 22615582

8. St Charles J, Hamilton ML, Petes TD. Meiotic chromosome segregation in triploid strains of Saccharo-

myces cerevisiae. Genetics. 2010; 186: 537–550. https://doi.org/10.1534/genetics.110.121533 PMID:

20697121

9. Parry EM, Cox BS. The tolerance of aneuploidy in yeast. Genet Res. 1970; 16: 333–340. https://doi.org/

10.1017/S0016672300002597 PMID: 5512257

10. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, et al. Effects of aneuploidy on cel-

lular physiology and cell division in haploid yeast. Science. 2007; 317: 916–924. https://doi.org/10.

1126/science.1142210 PMID: 17702937

11. Thorburn RR, Gonzalez C, Brar GA, Christen S, Carlile TM, Ingolia NT, et al. Aneuploid yeast strains

exhibit defects in cell growth and passage through START. Mol Biol Cell. 2013; 24: 1274–1289. https://

doi.org/10.1091/mbc.E12-07-0520 PMID: 23468524

12. Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, et al. Aneuploidy drives genomic

instability in yeast. Science. 2011; 333: 1026–1030. https://doi.org/10.1126/science.1206412 PMID:

21852501

13. Campbell D, Doctor JS, Feuersanger JH, Doolittle MM. Differential mitotic stability of yeast disomes

derived from triploid meiosis. Genetics. 1981; 98: 239–255. PMID: 7035289

14. Campbell DA, Doolittle MM. Coincident chromosomal disomy in meiotic dyads from triploid yeast. Curr

Genet. 1987; 12: 569–576. https://doi.org/10.1007/BF00368058 PMID: 3332249

15. Greig D, Louis EJ, Borts RH, Travisano M. Hybrid speciation in experimental populations of yeast. Sci-

ence. 2002; 298: 1773–1775. https://doi.org/10.1126/science.1076374 PMID: 12459586

16. Kao KC, Schwartz K, Sherlock G. A genome-wide analysis reveals no nuclear Dobzhansky-Muller pairs

of determinants of speciation between S. cerevisiae and S. paradoxus, but suggests more complex

incompatibilities. PLoS Genet. 2010; 6: 1–12. https://doi.org/10.1371/journal.pgen.1001038 PMID:

20686707

17. Greig D, Borts RH, Louis EJ, Travisano M. Epistasis and hybrid sterility in Saccharomyces. Proc R Soc

L B Biol Sci. 2002; 269: 1167–1171. https://doi.org/10.1098/rspb.2002.1989 PMID: 12061961

18. Thacker D, Lam I, Knop M, Keeney S. Exploiting spore-autonomous fluorescent protein expression to

quantify meiotic chromosome behaviors in Saccharomyces cerevisiae. Genetics. 2011; 189: 423–439.

https://doi.org/10.1534/genetics.111.131326 PMID: 21840861

Meiotic nondisjunction causes hybrid sterility in yeast

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005066 November 12, 2018 15 / 17

https://doi.org/10.1371/journal.pgen.1005906
http://www.ncbi.nlm.nih.gov/pubmed/27104744
https://doi.org/10.1007/s00294-015-0505-y
http://www.ncbi.nlm.nih.gov/pubmed/26164016
https://doi.org/10.1002/j.1460-2075.1996.tb00518.x
https://doi.org/10.1002/j.1460-2075.1996.tb00518.x
http://www.ncbi.nlm.nih.gov/pubmed/8612597
http://www.ncbi.nlm.nih.gov/pubmed/8887641
https://doi.org/10.1126/science.1094220
http://www.ncbi.nlm.nih.gov/pubmed/14752166
https://doi.org/10.1371/journal.pgen.1002719
https://doi.org/10.1371/journal.pgen.1002719
http://www.ncbi.nlm.nih.gov/pubmed/22615582
https://doi.org/10.1534/genetics.110.121533
http://www.ncbi.nlm.nih.gov/pubmed/20697121
https://doi.org/10.1017/S0016672300002597
https://doi.org/10.1017/S0016672300002597
http://www.ncbi.nlm.nih.gov/pubmed/5512257
https://doi.org/10.1126/science.1142210
https://doi.org/10.1126/science.1142210
http://www.ncbi.nlm.nih.gov/pubmed/17702937
https://doi.org/10.1091/mbc.E12-07-0520
https://doi.org/10.1091/mbc.E12-07-0520
http://www.ncbi.nlm.nih.gov/pubmed/23468524
https://doi.org/10.1126/science.1206412
http://www.ncbi.nlm.nih.gov/pubmed/21852501
http://www.ncbi.nlm.nih.gov/pubmed/7035289
https://doi.org/10.1007/BF00368058
http://www.ncbi.nlm.nih.gov/pubmed/3332249
https://doi.org/10.1126/science.1076374
http://www.ncbi.nlm.nih.gov/pubmed/12459586
https://doi.org/10.1371/journal.pgen.1001038
http://www.ncbi.nlm.nih.gov/pubmed/20686707
https://doi.org/10.1098/rspb.2002.1989
http://www.ncbi.nlm.nih.gov/pubmed/12061961
https://doi.org/10.1534/genetics.111.131326
http://www.ncbi.nlm.nih.gov/pubmed/21840861
https://doi.org/10.1371/journal.pbio.2005066


19. Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP. Pollen tetrad-based visual

assay for meiotic recombination in Arabidopsis. Proc Natl Acad Sci U S A. 2007; 104: 3913–3918.

https://doi.org/10.1073/pnas.0608936104 PMID: 17360452

20. Briza P, Breitenbach M, Ellinger A, Segall J. Isolation of two developmentally regulated genes involved

in spore wall maturation in Saccharomyces cerevisiae. Genes Dev. 1990; 4: 1775–1789. https://doi.org/

10.1101/gad.4.10.1775 PMID: 2249774

21. Greig D, Travisano M, Louis EJ, Borts RH. A role for the mismatch repair system during incipient specia-

tion in Saccharomyces. J Evol Biol. 2003; 16: 429–437. https://doi.org/10.1046/j.1420-9101.2003.

00546.x PMID: 14635842

22. Yue J-X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, et al. Contrasting evolutionary genome dynamics

between domesticated and wild yeasts. Nat Genet. 2017; 49: 913–924. https://doi.org/10.1038/ng.3847

PMID: 28416820

23. Petes TD. Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci U S A.

1979; 76: 410–414. https://doi.org/10.1073/pnas.76.1.410 PMID: 370829

24. Ganley ARD, Kobayashi T. Monitoring the rate and dynamics of concerted evolution in the ribosomal

DNA repeats of Saccharomyces cerevisiae using experimental evolution. Mol Biol Evol. 2011; 28:

2883–2891. https://doi.org/10.1093/molbev/msr117 PMID: 21546356

25. Quintana Rincon DM. Role of the ribosomal DNA repeats on chromosome segregation of Saccharomy-

ces cerevisiae. PhD Thesis. Massey University; 2016.

26. Ganley ARD, Kobayashi T. Highly efficient concerted evolution in the ribosomal DNA repeats: total

rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007; 17:

184–191. https://doi.org/10.1101/gr.5457707 PMID: 17200233

27. James S, Cai J, Roberts I, Collins M. A phylogenetic analysis of the genus Saccharomyces based on

18S rDNA gene sequences: description of Saccharomyces kunashirensis sp. nov. and Saccharomyces

martinae sp. nov. Int J Syst Bacteriol. 1997; 47: 453–460. https://doi.org/10.1099/00207713-47-2-453

PMID: 9103636

28. Kurtzman CP, Robnett CJ. Phylogenetic relationships among species of Saccharomyces, Schizosac-

charomyces, Debaryomyces, Schwanniomyces determined from partial ribosomal RNA sequences.

Yeast. 1991; 7: 61–72. https://doi.org/10.1002/yea.320070107 PMID: 2021083

29. Krishnaprasad GN, Anand MT, Lin G, Tekkedil MM, Steinmetz LM, Nishant KT. Variation in crossover

frequencies perturb crossover assurance without affecting meiotic chromosome segregation in Saccha-

romyces cerevisiae. Genetics. 2015; 199: 399–412. https://doi.org/10.1534/genetics.114.172320

PMID: 25467183

30. Martini E, Borde V, Legendre M, Audic S, Regnault B, Soubigou G, et al. Genome-wide analysis of het-

eroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombina-

tion pathways. PLoS Genet. 2011; 7(9): e1002305. https://doi.org/10.1371/journal.pgen.1002305

PMID: 21980306

31. Oh SD, P LJ, Taylor AF, Smith GR, Hunter N. RecQ helicase, Sgs1, and XPF-family endonuclease,

Mus81- Mms4, resolve aberrant joint molecules during meiotic recombination. Mol Cell. 2008; 31: 324–

336. https://doi.org/10.1016/j.molcel.2008.07.006 PMID: 18691965

32. Goldfarb T, Alani E. Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in hetero-

duplex rejection, mismatch repair and nonhomologous tail removal. Genetics. 2005; 169: 563–574.

https://doi.org/10.1534/genetics.104.035204 PMID: 15489516

33. Amin AD, Chaix ABH, Mason RP, Badge RM, Borts RH. The roles of the Saccharomyces cerevisiae

RecQ helicase SGS1 in meiotic genome surveillance. PLoS ONE. 2010; 5: e15380. https://doi.org/10.

1371/journal.pone.0015380 PMID: 21085703

34. Bozdag GO. Genetic and evolutionary analysis of diversification and reproductive isolation in yeast. Ph.

D. Thesis, Christian-Albrechts-Universität zu Kiel. 2015.

35. Sniegowski P. Mismatch repair: origin of species? Curr Biol. 1998; 8: R59–61. https://doi.org/10.1016/

S0960-9822(98)70035-1 PMID: 9427635

36. Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S. Dual roles for DNA sequence identity and the mis-

match repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997;

94: 9757–9762. https://doi.org/10.1073/pnas.94.18.9757 PMID: 9275197

37. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic

and wild yeasts. Nature. 2009; 458: 337–341. https://doi.org/10.1038/nature07743 PMID: 19212322

38. Liti G, Barton DBH, Louis EJ. Sequence diversity, reproductive isolation and species concepts in sac-

charomyces. Genetics. 2006; 174: 839–850. https://doi.org/10.1534/genetics.106.062166 PMID:

16951060

Meiotic nondisjunction causes hybrid sterility in yeast

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005066 November 12, 2018 16 / 17

https://doi.org/10.1073/pnas.0608936104
http://www.ncbi.nlm.nih.gov/pubmed/17360452
https://doi.org/10.1101/gad.4.10.1775
https://doi.org/10.1101/gad.4.10.1775
http://www.ncbi.nlm.nih.gov/pubmed/2249774
https://doi.org/10.1046/j.1420-9101.2003.00546.x
https://doi.org/10.1046/j.1420-9101.2003.00546.x
http://www.ncbi.nlm.nih.gov/pubmed/14635842
https://doi.org/10.1038/ng.3847
http://www.ncbi.nlm.nih.gov/pubmed/28416820
https://doi.org/10.1073/pnas.76.1.410
http://www.ncbi.nlm.nih.gov/pubmed/370829
https://doi.org/10.1093/molbev/msr117
http://www.ncbi.nlm.nih.gov/pubmed/21546356
https://doi.org/10.1101/gr.5457707
http://www.ncbi.nlm.nih.gov/pubmed/17200233
https://doi.org/10.1099/00207713-47-2-453
http://www.ncbi.nlm.nih.gov/pubmed/9103636
https://doi.org/10.1002/yea.320070107
http://www.ncbi.nlm.nih.gov/pubmed/2021083
https://doi.org/10.1534/genetics.114.172320
http://www.ncbi.nlm.nih.gov/pubmed/25467183
https://doi.org/10.1371/journal.pgen.1002305
http://www.ncbi.nlm.nih.gov/pubmed/21980306
https://doi.org/10.1016/j.molcel.2008.07.006
http://www.ncbi.nlm.nih.gov/pubmed/18691965
https://doi.org/10.1534/genetics.104.035204
http://www.ncbi.nlm.nih.gov/pubmed/15489516
https://doi.org/10.1371/journal.pone.0015380
https://doi.org/10.1371/journal.pone.0015380
http://www.ncbi.nlm.nih.gov/pubmed/21085703
https://doi.org/10.1016/S0960-9822(98)70035-1
https://doi.org/10.1016/S0960-9822(98)70035-1
http://www.ncbi.nlm.nih.gov/pubmed/9427635
https://doi.org/10.1073/pnas.94.18.9757
http://www.ncbi.nlm.nih.gov/pubmed/9275197
https://doi.org/10.1038/nature07743
http://www.ncbi.nlm.nih.gov/pubmed/19212322
https://doi.org/10.1534/genetics.106.062166
http://www.ncbi.nlm.nih.gov/pubmed/16951060
https://doi.org/10.1371/journal.pbio.2005066


39. Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. High-resolution mapping of meiotic cross-

overs and non-crossovers in yeast. Nature. 2008; 454: 479–485. https://doi.org/10.1038/nature07135

PMID: 18615017

40. Hou J, Friedrich A, De Montigny J, Schacherer J. Chromosomal rearrangements as a major mechanism

in the onset of reproductive isolation in saccharomyces cerevisiae. Curr Biol. 2014; 24: 1153–1159.

https://doi.org/10.1016/j.cub.2014.03.063 PMID: 24814147

41. Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes

strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and

emergence as an opportunistic pathogen. Genome Res. 2015; 125: 762–774. https://doi.org/10.1101/

gr.185538.114

42. Hou J, Fournier T, Schacherer J. Species-wide survey reveals the various flavors of intraspecific repro-

ductive isolation in yeast. FEMS Yeast Res. 2016; 16: 1–8. https://doi.org/10.1093/femsyr/fow048

PMID: 27288348

43. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science.

2008; 315: 476–480. https://doi.org/10.1126/science.1127573 PMID: 17255503

44. Hittinger CT. Saccharomyces diversity and evolution: A budding model genus. Trends Genet. 2013; 29:

309–317. https://doi.org/10.1016/j.tig.2013.01.002 PMID: 23395329

45. Dujon BA, Louis EJ. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genet-

ics. 2017; 206: 717–750. https://doi.org/10.1534/genetics.116.199216 PMID: 28592505

46. Charron G, Leducq JB, Landry CR. Chromosomal variation segregates within incipient species and cor-

relates with reproductive isolation. Mol Ecol. 2014; 23: 4362–4372. https://doi.org/10.1111/mec.12864

PMID: 25039979

47. Greig D. A screen for recessive speciation genes expressed in the gametes of F1 hybrid yeast. PLoS

Genet. 2007; 3: e21. https://doi.org/10.1371/journal.pgen.0030021 PMID: 17305429

48. Hou J, Friedrich A, Gounot J-S, Schacherer J. Comprehensive survey of condition-specific reproductive

isolation reveals genetic incompatibility in yeast. Nat Commun. 2015; 6: 7214. https://doi.org/10.1038/

ncomms8214 PMID: 26008139

49. Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, et al. Spore number control and breed-

ing in Saccharomyces cerevisiae: A key role for a self-organizing system. J Cell Biol. 2005; 171: 627–

640. https://doi.org/10.1083/jcb.200507168 PMID: 16286509

50. Stelkens RB, Brockhurst MA, Hurst GDD, Miller EL, Greig D. The effect of hybrid transgression on envi-

ronmental tolerance in experimental yeast crosses. J Evol Biol. 2014; 27: 2507–2519. https://doi.org/

10.1111/jeb.12494 PMID: 25262771

51. Dettman JR, Sirjusingh C, Kohn LM, Anderson JB. Incipient speciation by divergent adaptation and

antagonistic epistasis in yeast. Nature. 2007; 447: 585–588. https://doi.org/10.1038/nature05856

PMID: 17538619

52. Chou JY, Leu JY. Speciation through cytonuclear incompatibility: Insights from yeast and implications

for higher eukaryotes. BioEssays. 2010; 32: 401–411. https://doi.org/10.1002/bies.200900162 PMID:

20414898

53. Kliman RM, Rogers BT, Noor MAF. Differences in (G+C) content between species: a commentary on

Forsdyke’s “chromosomal viewpoint” of speciation. J Theor Biol. 2001; 209: 131–140. https://doi.org/

10.1006/jtbi.2000.2242 PMID: 11401455

54. Dacks J, Roger AJ. The first sexual lineage and the relevance of facultative sex. J Mol Evol. 1999; 48:

779–783. https://doi.org/10.1007/PL00013156 PMID: 10229582

55. Louis EJ. Population genomics and speciation in yeasts. Fungal Biol Rev. 2011; 25: 136–142. https://

doi.org/10.1016/j.fbr.2011.06.001
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