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Frequency of Switching Touching 
Mode Reflects Tactile Preference 
Judgment
Takumi Yokosaka   1*, Masanobu Inubushi1,2, Scinob Kuroki1 & Junji Watanabe1

We can judge affective aspects of objects by actively exploring them with our hands. Previous studies 
have mainly focused on how the physical properties of an object’s surface affect tactile preference 
evaluations. However, despite the widely accepted notion that the participant’s strategy has a great 
impact on how they explore an object, there is a lack of investigations of hand motion during preference 
judgment and its impact on preference rating. This paper recruits the recurrence plot technique to 
illustrate the temporal dynamics of explorative hand motion. In an experiment, participants were 
asked to freely explore the surface of tactile stimuli and rate their tactile preference for them. The 
temporal dynamics of finger velocity and force were visualized and characterized by using recurrence 
quantification analysis. We found correlations between preference ratings and recurrence features 
that represent the temporal dynamics of explorative hand motion, in addition to correlations between 
preference ratings and conventional time-averaged features (e.g., averaged finger velocity). One unique 
feature that correlated with preference ratings was TREND, which represents to what extent similar 
motion patterns repeatedly occur. The results of a subsidiary analysis supported the possibility that the 
TREND difference can be interpreted as the frequency of switching touching modes (e.g., stroking and 
pushing motions). Taken together, these results suggest that participants tend to perform the same 
hand motion repeatedly for preferable objects, while they tend to combine different touching modes for 
less preferable objects. They also indicate that the recurrence plot scheme is a promising way to extract 
humans’ strategies for tactile exploration.

We often touch and handle a product in stores to consider whether we like it or not. Investigating how we extract 
preference information through touch is important both for an understanding of the mechanism of human tactile 
perception and for designing attractive tactile products. Past studies highlighted the relationships between the 
physical properties of an object’s surface and tactile judgments related to preference. For example, participants 
tended to like surfaces with higher compliance1, while they tended to rate wet surfaces2 and those with a large 
dot spacing3 or large friction coefficient4,5 as disgusting or unpleasant. On the other hand, not only the physical 
properties of a touched surface but also hand motion during tactile exploration are closely linked to tactile per-
ception, since inputs on the skin strongly depend on movement of the skin surface. Indeed, some studies showed 
that hand motion features such as averaged velocity, averaged force, and the peak value of force are correlated with 
evaluations of hardness, roughness, stickiness, and warmth6–11. However, the relationship between hand motion 
and preference evaluation for an object’s surface still remains unclear.

Explorative hand motion comprises a complex mixture of two effects: the effect of physical properties such 
as friction (bottom-up effect) and the effect of participants’ strategy (top-down effect). The top-down effect can-
not be estimated by measuring the physical properties of an object’s surface, and, even when explorative hand 
motion is measured, it cannot be observed under experimental room conditions where participants’ touching 
mode is fixed (in this study, ‘touching mode’ is used to mean certain patterns of hand motion, such as stroking 
and pushing). Thus, few studies have been concerned with this effect. Nevertheless, the top-down effect is indeed 
strong as clearly evidenced by Lederman & Klatzky, who found that participants changed how they touched an 
object depending on what they wanted to judge12. In our previous studies10,11, we repeatedly measured explorative 
hand motion for the same set of texture stimuli by changing the participants’ task, i.e., the perceptual features to 
judge. Interestingly, we found that some ratings of perceptual features (e.g., stickiness) had a robust correlation 
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with participants’ hand motion regardless of the task, while the correlation for some other features (e.g., warmth) 
depended on it. It can be speculated that for some perceptual features, the bottom-up effect is dominant in hand 
motion, while for others, the top-down effect is. Since preference, the main topic of this study, may reflect com-
binations of multiple perceptual aspects, it is highly likely that hand motion to judge preference will change as a 
result of both effects. We hypothesized that studying the strategy used (i.e., how an object is explored) to judge 
preference for an object’s surface will reveal how humans extract information about tactile preference. An earlier 
study, by showing that the averaged velocity of finger motion did not have a correlation with pleasantness ratings, 
suggested that there is no bottom-up effect on hand motion4. However, that study restricted participants’ touch-
ing mode to stroking only; therefore, the effect of the explorative strategy, i.e., the top-down effect, on preference 
judgment remains unknown.

Capturing the features of the touching mode from complex patterns of hand motion is challenging, since the 
touching mode category is not explicit in most cases and participants may use more than one mode. It is known 
that how participants touch an object is time-varying even within a single trial, where the tactile stimulus is 
not changed and physical properties are constant. For example, participants sequentially have used a couple of 
touching modes, such as grasping and stroking, to judge an object’s properties13–16. This view is also supported 
by a constructive approach showing that a robot arm could identify a tactile stimulus with higher accuracy by 
sequentially using multiple touching modes17,18. Other studies have shown that the averaged velocity and force 
tends to increase within a single trial8,19. Clearly, we need a better index than a categorical name or temporally 
averaged value to capture the temporal dynamics of hand motion.

Here, we introduce nonlinear time series analysis as an effective tool for understanding the temporal dynam-
ics of explorative hand motion, and try to reveal the links between the observed temporal dynamics of unre-
stricted hand motion and preference rating. Nonlinear time series analysis is a well-established method often 
used for analyses of other kinds of explorative motion such as eye movement during scans of radiographs20 and 
wielding-hand motion during judgment of rod length21. One of the useful tools in the nonlinear time series 
analysis is the recurrence plot (RP) technique, which provides insight into the dynamics graphically22. Moreover, 
by calculating some characteristic values from RPs, such as DET, Lmax, and TREND as described below, we 
can quantitatively study the randomness, predictability, and stationarity of the time series, which is referred to 
as recurrence quantification analysis. Our main finding is that the index of stationarity (TREND) had a posi-
tive correlation with preference rating. We also found in a subsidiary analysis that recorded hand motions with 
smaller TREND contained switching of different touching modes. Taken together, these results suggest that 
human observers tend to change touching mode for unfavorable objects but perform similar hand movements 
for favorable ones. They also indicate that nonlinear time series analysis is a promising scheme for describing 
complex temporal dynamics of hand motion and understanding human tactile perception.

Results
Exp. 1: preference rating with 5-seconds free exploration.  In the experiment 1, participants were 
asked to touch one of 30 tactile texture stimuli (Fig. S1a) for five seconds and evaluate the preference level for each 
on a seven-point scale. Each of the 30 tactile stimuli was presented seven times (i.e., each participant performed 
210 trials). Participants could use all fingers and palm of the right hand to explore the surfaces of the tactile stim-
uli and were not constrained in how to touch them. Visual information about the tactile stimuli was not available. 
The average ± standard deviation of reaction times in this experiment was 3.89 ± 0.17 seconds. The preference 
ratings made by participants are shown in Fig. 1.

Recurrence features and the classification.  Index finger velocity = ( )V t V t V t V t( ) ( ), ( ), ( )x y z
= …t T T( 1, 2, ; where is the length of the time series) and the force applied to a tacti le st imulus 

( )F t F t F t F t t T( ) ( ), ( ), ( ) ( 1, 2, )x y z= = …  were measured and recorded during preference ratings. Here, we 
describe how recurrence features are extracted in the case of velocity data V t( ). An example of original movement 
is shown in Fig. 2a, and decomposed velocity trajectories V t V t V t( ), ( ), ( )x y z  are shown in Fig. 2b. The difference in 
the velocity at time i and time j, which is represented as d V i V j( ( ), ( )), can be calculated as the Euclidean distance 
between ( )V i V i V i( ), ( ), ( )x y z  and ( )V j V j V j( ), ( ), ( )x y z  in three-dimensional space. The differences in the velocities 
d V i V j( ( ), ( )) for all combination of time sets i j( , ) can be drawn as a two-dimensional image as shown in Fig. 2b. 
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Figure 1.  Preference ratings for 30 tactile stimuli (Fig. S1a). Error bars denote the standard errors.
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In the recurrence analysis, this matrix is converted to a binarized two-dimensional matrix R i j( , ) according to a 
threshold r. If d V i V j( ( ), ( )) is smaller than the threshold r, R i j( , ) is set to 1 to represent that the velocities V i( ) 
and V j( ) are similar. On the other hand, if d V i V j( ( ), ( )) is larger than r, R i j( , )  is set to 0 to represent that they are 
not similar. RPs can be drawn by taking the points where R i j( , ) 1=  as black dots (recurrence points) and those 
where R i j( , ) 0=  as white dots. The pattern of RPs would be changed according to the threshold r (Fig. 2c). Here, 
we adopted r = 0.1 since the fine structure of the images d V i V j( ( ), ( )) (Fig. 2b) were kept on the RPs and the 
robust statistical correlations between preference ratings and recurrence features were observed (also see 
“Recurrence Features Related to Preference Judgment”).

As a recurrence quantification analysis, we employ the following six statistical quantities: REC% , DET , Lmax, 
ENTR, TREND, and Tmax

23. First, REC%  represents the percentage of recurrence (black) points in the RP. As stated 
above, recurrence points indicate that the velocities (or forces) between two time points are similar. Therefore, if 
participants perform finger motion with a constant velocity (or by applying a constant force), the RPs tend to have 
a lot of recurrence points, i.e., they have a large REC% . If you look at the RPs of two different hand motion as 
shown in Fig. 3 for example, one RP (b) has more recurrence points than the other RP (a) and thus the REC%  of 
the former is larger. Not only when the two time points i and j represent the same phase of repetitive hand move-
ment but also when it accidentally moves at the same speed (or force), the difference in the velocity/force at time 
i and time j would be judged to be similar (i.e., to be a recurrence point) on an RP. It is essential to characterize the 
degree to which the dynamics behind the time series is deterministic or stochastic. DET  is defined as the percent-
age of recurrence points constituting the diagonal lines. When an RP has a lot of diagonal lines as in Fig. 3b, DET  
tends to be larger. That is, large DET  means that many of the recurrence (black) points occurred because of the 
same phase of repetitive hand movement rather than by chance. Lmax is the length of the longest diagonal line 
excluding the main diagonal line (red line in the RP as shown in Fig. 3), which characterizes the predictability of 
the dynamics since a longer diagonal line means that similar motions were conducted for a longer period of time. 
ENTR is the entropy of the probability distribution of line length (also see the histogram in Fig. 3), which reflects 
the complexity of the motion. The RP for more complex motion tends to have more variation in the length of the 
diagonal lines as shown in Fig. 3b. TREND is defined as the regression coefficient for REC%  as a function the 
distance to the main diagonal line (the slope of the red fitted line in Fig. 3), which reflects to what extent a motion 
changed over the time course (or statistical stationarity) and plays a central role in our study. If motion changes 
with passing time within a trial, the similarities of velocities/forces between two time points tend to decrease as 
the interval between the two time points increases (e.g., Fig. 3b). On the other hand, if the same motion pattern 
occurs repeatedly, the difference in motions would periodically change and can be small even when comparing 
two time points having large interval (e.g., Fig. 3a). The relationship between REC%  and the distance to the main 
diagonal line and the slope of the fitted line can depict the global change (the gradual decrease or later increase) 
in similarity as shown in Fig. 3. Tmax is the length of the longest vertical line in an RP (orange line in the RP as 
shown in Fig. 3), which characterizes the longest time interval during which the motion is not active relatively. As 
shown in Fig. 2, the period having relatively small velocity tends to form a black area on the RP. Thus, a larger 
black area (i.e., larger Tmax) indicates that relatively small motion is conducted for a longer time. Compared with 
the motion in Fig. 3a, the velocities of the motion in Fig. 3b are smaller, which results in larger Tmax. In addition, 
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Figure 2.  Examples of motion and RPs. (a) Finger motion in three-dimensional space. (b) Velocity profiles in 
each axis and two-dimensional image of the difference between V i( ) and V j( ), which is d V i V j( ( ), ( )). (c) RPs 
R i j( , ) when threshold r is varied. In this figure, recurrence points (points where =R i j( , ) 1) are plotted in black.
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to compare the recurrence features with conventional features, we calculated the average velocity and force across 
one trial as the feature MEAN . Thus, we calculated 14 features in total (i.e., REC% , DET , Lmax, ENTR, TREND, 
Tmax, and MEAN  for velocity and force).

We conducted an agglomerative hierarchical clustering analysis with group averaging linkage to assess simi-
larity between features. The results are shown in the top panels of Fig. 4. In these graphs, DET  and ENTR are 
always neighboring each other in velocity and force, and the same is true for REC%  and Tmax, suggesting that these 
neighboring features resulted in a similar trend. Indeed, these features show a higher correlation with each other 
(r = 0.89–0.99; Table S1a and b).

Recurrence features related to preference judgment.  Next, we computed Spearman’s correlation rs 
between features for velocity and preference ratings to find features related to preference evaluation (Fig. 4a, bot-
tom). The preference ratings had positive correlations with TREND and MEAN  and negative correlations with 

REC%  and Tmax. To gain further insight into the relationship between TREND for velocity and preference ratings, 
we checked the velocity RPs of each participant. Though the results have some variation between individuals, 
almost all (nine of ten; also see Fig. 5) participants showed a positive correlation between TREND and preference 
ratings. To save space, here we only show the RPs of one participant who showed the largest correlation to illus-
trate the relationships between TREND and preference ratings. Figure 6a shows nine trials that had the smallest 
TREND, nine that had a medium TREND, and nine that the largest TREND out of 210 trials. The RPs of the large 
TREND group show finer and more uniform patterns, while those of the small TREND group show more blocked 
patterns. Figure 6b shows fitted lines for the transition of REC%  across distance from the main diagonal line 
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Figure 3.  Examples of motion patterns, velocity trajectories, RPs, and visualized definitions of recurrence 
features. A participant performed a lateral stroking motion repeatedly in (a) and combined some explorative 
motions in (b). Since REC%  at k = 0 is not used in the original definition of TREND, we plotted the k- REC%  
function with k = 0 discarded.
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Figure 4.  Results of cluster analysis for motion features (top) and Spearman’s correlation between motion 
features and preference ratings (bottom) for velocity (a) and force (b). Error bars denote the 95% confidence 
interval calculated by the bootstrap method33. Asterisks denote that the correlation coefficient was significantly 
different from 0 (see also Methods).
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(slope of the fitted line is TREND) for each panel in Fig. 6a. The REC% s of large TREND group show repetitive 
patterns of increases and decreases, while those of small TREND group show monotonic decreases. The regular 
fluctuation of REC%  for the large TREND group might reflect the repetition of the same touching modes ( REC%  
as a function of distance from the main diagonal line in Fig. 3a corresponds to this group). A similar trend was 
observed for other participants. Given the positive correlation with preference ratings, this finding supports the 
notion that participants repeated the same touching mode for more preferable stimuli but switched touching 
modes for less preferable stimuli. The positive correlation with MEAN  of velocity (the conventional feature) 
shows that, when touching less preferable stimulus, participants tended to move their fingers more slowly. Fig. 7 
illustrates the RPs of one participant who showed a strong correlation between MEAN  and preference ratings; it 
consists of examples of small-MEAN  trials, medium-MEAN  trials, and large-MEAN  trials out of 210 trials. The 
RPs had more black areas in small-MEAN  trials, which shows that relatively small hand motion for longer periods 
of time results in larger black areas in the RPs. If hand motion were small for a longer time, REC%  and Tmax would 
be large by definition. Thus, in contrast to MEAN , these two features would have negative correlations with pref-
erence ratings, which was observed (Fig. 8). Comparing Figs. 7 and 8, one can see that the categorization and 
patterns of RPs seem similar, though the direction of the effect is opposite (RPs with larger black areas appear in 
the group of large REC%  and Tmax, while similar RPs appear in the group with small MEAN  of velocity). Indeed, 
the REC%  and Tmax strongly correlated with MEAN  (r = −0.84–0.90; Table S1).

We also assessed Spearman’s correlations between features for force and preference ratings (Fig. 4b, bottom). 
The MEAN of force did not have significant correlation with preference ratings. The TREND positively correlated 
with preference ratings. To gain further insight into the correlation between TREND and preference ratings, we 
checked the force RPs of each participant. Fig. 9a illustrates the RPs of one participant who showed a strong cor-
relation, and the panels are grouped into smallest-TREND trials, medium-TREND trials, and largest-TREND tri-
als. Fitted lines for the transition of REC%  across distance from the main diagonal line in each trial are shown in 
Fig. 9b. Like TREND for velocity, the results show that the smaller TREND group exhibits a blocked pattern, sug-
gesting transitions between different motion patterns; while the larger TREND group shows finer uniform pat-
terns, though there are some exceptions. The REC%  and Tmax for force are negatively correlated with preference 
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Figure 5.  (a) Scatter plots between preference ratings and TRENDs for each participant and for averaged data 
across all participants. The values of TRENDs were normalized (average and standard deviation were 1 and 0, 
respectively) within each participant. The 30 blue dots in each panel represent 30 tactile stimuli, and seven 
repetitions were averaged within each stimulus. The 30 red dots represent the 30 tactile stimuli. Among the ten 
participants, one showed large (more than 0.5), two showed medium (0.3–0.5), and five showed small (0.1–0.3) 
correlations based on Cohen’s Guidelines34. (b) Examples of averages and standard deviations of preference 
ratings, MEANs, and TRENDs for velocity for each stimuli for the participant, who showed the largest 
correlation between TREND and preference ratings.
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ratings. The large REC%  and Tmax group show large black areas (Fig. 10), which may reflect relatively small push-
ing motion. If this is the case, we can consider that participants tended to apply a small force to the surface for a 
long time when touching tactile stimuli rated as less favorable.

One might wonder if larger black areas in RPs reflects stops/pauses of hand motion. Here, to investigate how 
long participants stopped both stroking and pushing motions, we conducted an additional analysis. We created a 
new RP by ANDing the velocity RP and force RP and extracted the length of the longest vertical line on the new 
RP (Fig. S2a), which allows us to find black areas that were black (recurrence points) in both the velocity RP and 
force RP (i.e., we can speculate that participants did not perform both fast stroking and strong pushing in the 
black areas in the new RP). We refer to the length of the longest vertical line in the new RP as the ‘stopping period’. 
The histogram of the stopping periods is shown in Fig. S2b. Most of ‘stopping periods’ were shorter than 0.5 sec, 
and only 0.02% of all trials contained more than a 1.0-sec stopping period. From these results, we can consider 
that most of the large black areas indicate short stops for hand motion transitions (e.g., changing touching modes 
or the direction of their motion) rather than a longer pause of hand motion.

In summary, our results showed that TREND, MEAN, REC% , and Tmax for velocity and TREND, REC% , and 
Tmax for force had correlations with preference ratings. It appears that these features can be divided into two major 
groups based on their tendencies. The REC%  and Tmax tended to increase with increasing black area in RPs (Figs. 8 
and 10), which is also true for DET , Lmax, and ENTR. As illustrated in Fig. 11, this is because a larger black area 
(recurrence area) results in a higher density of recurrence points ( REC% ), a higher density of diagonal lines 
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Figure 6.  Examples of RPs of velocity grouped by TREND value. Each RP was obtained with each trial for a 
single participant, whose absolute value of correlation between TREND and preference ratings was highest. We 
sorted all 210 trials (30 tactile stimuli x 7 repetitions) based on the TREND values and extracted the nine trials 
with the smallest TREND (Small), nine with an intermediate TREND (Medium), and nine with the largest 
TREND (Large). (a) RPs of velocity for trials with the smallest, medium, and largest TREND. (b) Relationships 
between REC%  and distance k from diagonal line for trials with the smallest, medium, and largest TREND. Red 
lines denote linear regression lines, whose slopes are known as TREND. The averages ± standard errors of 
preference ratings are 3.22 ± 0.44, 4.22 ± 0.52, and 4.44 ± 0.55 for smallest, medium, and largest TREND, 
respectively. Although one might consider that the first panel of the medium group appears to be an exceptional 
trial, TREND by definition is unrelated to the density of recurrence points, and thus a dense RP could be 
grouped with relatively sparse RPs.
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(DET ), a longer longest diagonal line (Lmax), a larger variation of diagonal line length (ENTR), and a longer long-
est vertical line (Tmax). The velocity MEAN  tended to decrease with increasing black area, too. The trials having 
larger black areas in RPs tended to consist of a slow motion phase and a fast motion phase (also see the example 
in Fig. 2b). The longer the slow motion phase is, the smaller the velocity MEAN  will be, only if the velocities dur-
ing the fast motion phase are similar between trials. On the other hand, TREND showed a unique feature in the 
sense that it can take almost the same value regardless of the densities of black areas, as shown in Fig. 11. Since 
past studies mainly focused on the effect of MEAN on preference ratings, here we discuss the other feature, 
TREND, in more detail.
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Figure 7.  RPs of velocity for trials having smallest, medium, and largest MEAN  values. The averages ± standard 
errors of preference ratings are 2.67 ± 0.42, 4.00 ± 0.35, and 6.22 ± 0.31 for smallest, medium, and largest 
MEAN , respectively.
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Subsidiary analysis: labeling touching mode switching by observing recorded motion.  The 
experiment 1 revealed that the recurrence feature TREND can be a good index of preference rating, and it reflects 
quantitative changes in how participants touched (i.e., change in stationarity of hand motion). We observed that 
repeating the same touching mode (e.g., lateral stroking motion in Fig. 3a) results in larger TREND, but whether 
the larger TREND can be attributed to participants’ use of the same touching mode remains unclear. To briefly 
check whether the trials with larger TREND generally represent the same (or fewer switch of) touching mode, we 
conducted a subsidiary analysis where participants labeled the timing of the switching of touching modes by 
observing the measured motion. Point-light motions were rendered as stimuli, based on recorded finger motions 
in the experiment 1 (27 trials from Fig. 6a and 27 trials from Fig. 9a). The position of the index fingertip and 
applied force for a tactile stimulus were illustrated as the position and size of the point-light, respectively (Fig. 12 
and supplementary movie). Ten observers who did not participate in the experiment 1 (i.e., they did not explore 
the stimuli) were asked to observe point-light motion and mark all the points in time where they thought the 
manner in which participants touched had changed.

The average numbers of reported touching mode changes across observers are illustrated in Fig. 13. The trials 
were divided into smallest, medium, and largest TREND of velocity (Fig. 13a) and those of force (Fig. 13b). A 
one-way repeated measures ANOVA showed a significant effect of velocity TREND (F(2, 27) = 15.44, 

η< . = .p 0 01, 0 512 ). Ryan’s method showed that the average number of motion changes in the trials with min-
imum TREND was significantly larger than that in those with medium TREND ( = . < .t(18) 4 03, p 0 01) and 
with maximum TREND ( = . < .t(18) 5 33, p 0 01). On the other hand, a one-way repeated measures ANOVA 
showed no significant effect of force TREND ( η= . < . = .F(2, 27) 15 44, p 0 01, 0 512 ). These results show that 
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Figure 9.  Examples of RPs of force grouped by TREND value. Each RP was obtained with each trial for a single 
participant, whose absolute value of correlation between TREND and preference ratings was highest. We sorted 
all 210 trials (30 tactile stimuli x 7 repetitions) based on the TREND values and extracted nine trials with 
smallest TREND (Small), nine with a medium TREND (Medium), and nine with the largest TREND (Large). (a) 
RPs of force for trials with the smallest, medium, and largest TREND. (b) Relationships between REC%  and 
distance k from the main diagonal line for trials with the smallest, medium, largest TREND. Red lines denote 
regression lines (i.e., the slopes correspond to TREND). The averages  ±  standard errors of preference ratings are 
3.22 ± 0.52, 3.11 ± 0.29, and 4.89 ± 0.55 for smallest, medium, and largest TREND, respectively.
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the observers tended to report more switching of the touching mode in trials with the smallest TREND of velocity, 
whereas they tended not to report more switching in trials with the smallest TREND of force.

Exp. 2: preference rating with motion constraint.  To see the top-down effect of explorative motion on 
the preference rating from other view point, we conducted an additional experiment wherein participants in the 
experiment 1 also judged preference for the same tactile stimuli set using only stroking motion or only pushing 
motion. We compared the preference ratings with those in the experiment 1 (since we did not constrain how 
participants touched the stimuli in the experiment 1, we refer to that as ‘free-touch condition’).

We compared the preference ratings for each condition (free-touch condition, stroking condition, and push-
ing condition) to assess whether tactile preference is affected by touch motion. The results are shown in Fig. 14. A 

egraLllamS Medium

%
R

E
C

Tm
ax

Figure 10.  RPs of force for the trials with smallest, medium, and largest REC%  and Tmax.
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two-way repeated ANOVA with touch condition (free-touch, stroking, and pushing) and tactile stimulus as fac-
tors shows that there were significant effects of tactile stimuli ( = .F(29, 261) 21 5, p 0 01< . , η = .0 592 ) and the 
interaction effect between the touch condition and tactile stimuli ( = .F(58, 522) 5 22, p 0 01< . , η = .0 042 ), while 
the effect of the touch condition was not significant ( = .F(2, 18) 2 94, < .p 0 08, 0 012η < . ). A post-hoc compar-
ison showed that the preference ratings in the stroking condition were identical to those in the free-touch condi-
tion, while those for some tactile stimuli in the pushing condition changed and tended to get close to a moderate 
rating. These results are consistent with the hypothesis that preference judgments can be affected by how a surface 
is explored.

Exp. 3: preference rating without time constraint.  One might suspect that the time constraint in our 
experiment (i.e., participants had to explore tactile stimuli for five seconds) resulted in the correlation between 
recurrence features and preference ratings. It can be speculated that participants performed a purposeless motion 
after they had decided their preference rating in their mind. Here, we repeated the experiment without a time 

Figure 12.  Example of visual stimuli used in the subsidiary analysis. Index finger movements recorded in the 
experiment 1 were shown as point-light motion. A white line showed movement trajectory, which was not 
rendered in the experiment. The horizontal bar below the point-light motion is a time gauge for the movie. 
Observers marked orange time points on the time gauge when they thought that the touching mode had 
changed.
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Figure 13.  Results of subsidiary analysis. The open circles and line denote averaged results. Gray circles and 
lines denote the results for each participant. Error bars denote 95% confidence intervals calculated by bootstrap 
method.
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constraint, where participants could stop explorative motion whenever they were ready to make a preference 
rating. The average  ±  standard deviation of reaction time in this experiment was 2.25  ±  0.58 sec. We computed 
the correlations between recurrence features for velocity and preference ratings (Fig. 15), which are in good agree-
ment with the results of the experiment 1 (Fig. 4b). This indicates that observed correlations between recurrence 
features and preference ratings were not artifacts caused by our experimental paradigm (i.e., the constraint of 
exploration time). In addition, since eight of ten participants in this experiment did not participate in the exper-
iment 1, the correlation between TREND and preference ratings is robust to some extent for changes of 
participants.

Discussion
In this study, we investigated whether hand motion features characterizing temporal dynamics have correlations 
with preference ratings. We found that not only averaged finger velocity within a trial (conventional finding) but 
also some recurrence features had correlations with preference ratings. In particular, TREND, which reflects to 
what extent similar recurrent patterns repeatedly occur, correlated with preference ratings in both velocity and 
force data. These correlations between the recurrence features and preference ratings were replicated even when 
participants made their preference ratings without a time constraint. The results of a subsidiary labelling analysis 
showed that the switching of touching mode was more obvious for observers in trials with small velocity TREND 
than it was in trials with large TREND. Taken together, these results suggest that participants tend to keep on 
performing the same touching mode when touching more preferable stimuli, while they tend to switch touching 
modes when touching less preferable stimuli.

The correlation between averaged velocity and preference ratings shows that participants tended to move their 
finger faster on textures rated as more favorable. Both the bottom-up and top-down effect would be able to 
explain the correlation. In the context of the bottom-up effect, the reason for the correlation might be that tex-
tures having higher friction tend to be rated as less preferable4 and prevent participants’ smooth motion. On the 
other hand, in the context of the top-down effect, it can be speculated that participants tried to move their finger 
faster on the more preferable texture to get useful information or to fully enjoy it. In contrast to the conventional 
time-averaging feature reflecting a mixture of the two effects, TREND is a more suitable index to represent the 
top-down effect since the stationarity/changing of the hand motion dynamics would mainly reflect participants’ 
strategy.

Switching touching modes for unfavorable stimuli might be explained by the analogous to research on ambig-
uous visual stimuli. It was reported that picture stimuli of ambiguous faces and food items were rated as less 
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Figure 14.  Preference ratings for each tactile stimulus in the free-touch condition (i.e., the results in the 
experiment 1), stroking condition and pushing condition. Error bars denote the standard errors.
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Figure 15.  Results of Spearman’s correlation between motion features and preference ratings for velocity in the 
experiment without a time constraint. Error bars denote the 95% confidence interval calculated by the bootstrap 
method33. Asterisks denote that the correlation coefficient was significantly different from 0 (also see Methods).
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pleasant, possibly because these stimuli are difficult to categorize24–27. When this is also true for tactile domain, 
ambiguous tactile stimuli also make participants feel unfavorable toward them and would induce the use of 
combinations of different touching modes to accumulate more detailed information about them. In other words, 
switching of touching modes may reflect elaborate tactile exploration for ambiguous stimuli. One future direction 
to test this possibility is to measure stimulus identification performance in addition to preference ratings. Another 
possible reason for detailed exploration is that unfavorable stimuli were judged as dangerous. As participants 
could not see the tactile stimuli, they may have been concerned about the possibility of injury by the stimuli and 
thus carefully collected information about them. Not only the influence of less preferable stimuli but also that of 
more preferable stimuli can be considered. In our experiment, participants tended to repeat the same touching 
mode for a stimulus rated as more preferable at least for the length of tactile exploration in our experiment. It 
can be speculated that an optimal touching mode might make a touched stimulus more preferable (e.g., leather’s 
surface is preferable when rubbing it gently and a sponge’s surface is preferable when pushing it). Indeed, in the 
preference rating experiment during motion constraint tasks, we showed that preference ratings could be affected 
by how participants touched tactile stimuli, which might support this possibility. Investigating the optimal touch-
ing mode that makes each touched material more preferable will elucidate this possibility.

We also assessed whether the five-second constraint for the explorations in the experiment 1 resulted in the 
correlation between recurrence features and preference ratings because, if the five seconds was longer than par-
ticipants’ judgment, participants might have touched a stimulus in a semi-systematic manner after they had read-
ied to judge. Indeed, since the reaction time in the experiment without a time constraint (2.25 seconds) was 
shorter than that in the experiment 1 (3.89 seconds), our participants might have been able to judge tactile pref-
erences earlier than the predetermined exploration time i.e., 5 sec. Nevertheless, the correlation pattern between 
recurrence features and preference ratings was very similar to that in the experiment 1. This finding indicates 
that observed correlations between recurrence features and preference ratings cannot be explained solely the 
five-second constraint. Participants would continue tactile exploration for preference judgment even after they 
made their ratings rather than stop meaningful exploration and touch in a semi-systematic manner for unpre-
ferred stimuli.

One might argue that there is a possible discrepancy in TREND (i.e., linear fitting) from the actual k- REC%  
data, due to the apparent fluctuation of REC%  with changes in k (Fig. 6). Since REC%  seems to exponentially 
decrease as a function of k in some trials, we tried to fit = α−ef(x) x  to k- REC% . Although the exponential 
decrease function has differing degrees of fitting (Fig. S3), the correlation between factor α and preference ratings 
was 0.74, which is larger than that between original TREND and preference ratings (r = 0.61). Note that factor α 
might reflect the same type of quantity as mean velocity since it had a strong correlation with mean velocity 
(r = 0.94). Thus, we cannot simply conclude that factor α is an improved version of a (i.e., original TREND). Since 
there seems to be an initial steep change in REC%  followed by a smooth decrease, the linear function may fit bet-
ter by discarding REC%  data around small k. We tested this possibility (Fig. S4) and found that although the fit-
ting performance seems to be improved, the correlation with preference ratings dropped (Table S2). It can be 
speculated that the REC%  data around small k play a role as a baseline to estimate to what extent REC%  decreases 
with bigger k (TREND was originally designed to extract this feature; Fig. S5), and this information is essential for 
estimation of the preference. Exploring a function that is able to explain the nonlinear relationship and to charac-
terize the overall tendency would be needed in a future study.

Our study showed a correlation between preference ratings and time-averaged velocity, which was not 
observed in a previous study4. This apparent discrepancy can be explained by the difference in the objective 
of that study. The past study focused on stimuli’s frictional properties associated with pleasantness sensation. 
Participants’ explorative motion was restricted to lateral sliding motion of their index finger on a small stimulus 
plate. Therefore, the revealed relationship between pleasantness ratings and finger velocity mainly reflected the 
physical interaction between the finger and stimulus surface. In our study, on the other hand, participants’ motion 
was not restricted since our focus was on participants’ voluntary exploration strategy in addition to the physical 
interaction. Thus, the correlation between preference ratings and averaged velocity in our study would be based 
on participants’ voluntary strategy rather than physical interaction.

There were some differences between the velocity and force results. The preference ratings correlated with 
MEAN  of velocity but not with MEAN  of force. It is known that stroking motion, related to hand velocity, is use-
ful for judging texture and that pushing motion, related to pushing force, is useful for judging hardness6,7,12. 
Exploring texture information might be deeply linked to preference judgment rather than hardness information. 
In addition, while both velocity TREND and force TREND had correlations with preference ratings, the subsidiary 
analysis showed more switching touching-mode with decreasing TREND for velocity but not for force. This might 
result from difficulty in judging force switching. In our experiment, hand velocity was represented as the speed of 
point-light motion, while pushing force was represented as its size. It can be speculated that judging changes in 
force from changes in size was not intuitive, and thus our observers had difficulty in imagining the original force 
pattern. If this is the case, detection performance would be improved when pushing force is rendered in another 
way, such as a three-dimensional vector.

We treated the tip of the index finger as representative of the whole hand and measured and analyzed its posi-
tion. We choose the index finger because it is known to be most often used for manual exploration, and the rest 
of the hand is less involved28. Still, the previous study focused on the judgment of basic tactile properties such as 
roughness and hardness, and little is known about how humans move their hands and fingers to judge tactile pref-
erence. Measuring and analyzing position data of other fingers or coordination between fingers might be useful 
for investigating humans’ exploration strategy for preference judgment.
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In this study, we showed that nonlinear time series analysis is useful for visualizing and quantifying the tempo-
ral dynamics of explorative hand motion during preference judgment and can contribute to our understanding of 
the top-down effect (participants’ strategy). Through this analysis, we could quantify the dynamic temporal fea-
tures (e.g., frequency of touching-mode switching), which had never been found in conventional time-averaging 
analysis. Though we could estimate switching between touching modes by using the analysis, each touching mode 
itself could not be identified since methods for identifying touching modes are still in progress29–31. Developing 
an identification method for each switched touching mode in a trial is warranted to analyse participants’ strategy 
in detail.

In summary, using nonlinear time series analysis, we investigated the links between the dynamic features of 
explorative hand motion and tactile preference judgment. We found that preference ratings correlated with 
TREND, MEAN, REC% , and Tmax for velocity of hand motion and with TREND, REC% , and Tmax for force. The 
correlations with velocity MEAN, REC% , and Tmax would reflect that participants tended to perform relatively 
small hand motions longer when touching unfavorable stimuli. What is more, the positive correlation with 
TREND (reflecting to what extent similar motion occurs again) suggests that we tend to change touching modes 
for an unfavorable object, while we touch a favorable one with a constant touching mode. Through observation of 
RPs and the subsidiary analysis, we found the possibility that the velocity TREND can work as an index of the 
frequency of touching-mode switching within a trial, which suggests that TREND may reflect participants’ strat-
egy to extract information about tactile preference. Nonlinear time series analysis is a promising method to 
investigate human’s top-down strategy in tactile exploration.

Methods
Exp. 1: preference rating with 5-seconds free exploration.  Participants.  Ten naïve volunteers (five 
females) with an age range of 20–37 years participated in the experiment. All participants were right-handed 
and had normal or corrected-to-normal vision, and they had no known abnormalities of their tactile and motor 
systems. They had no specialized knowledge about psychophysical experiments and were unaware of the purpose 
of the experiments. They gave written informed consent before the experiment began. The experimental protocol 
was approved by the NTT Communication Science Laboratories Research Ethics Committee and was performed 
in accordance with ethical standards outlined by the Declaration of Helsinki.

Apparatus and stimuli.  Participants sat at a table on which a tactile stimulus was placed. A black cover visually 
obscured the hand and tactile stimulus from the participants’ view. Thirty different materials, such as fabrics, 
leather, metals, and woods, were used as tactile stimuli. All the tactile stimuli were 30-mm thick and their surfaces 
were 100 × 100 mm squares. Index finger positions were recorded by tracking a retroreflective marker attached to 
the fingernail with four OptiTrack cameras (OptiTrack, Flex13, 120 Hz). Contact force on the tactile stimulus was 
recorded with a haptic force plate (Tech Gihan, 1000 Hz).

Procedure.  Participants were instructed to freely explore the surface of a tactile stimulus to judge the preference 
level. They put their right index finger at the start position and started their exploration after a beep sound. Since 
it is known that participants tend to prefer a more familiar stimulus (longer exposure to a stimulus) not only in 
the visual domain but also in the tactile domain32, we fixed the duration of tactile exploration at five seconds to 
avoid the effect on participants’ judgment that might be caused by differences in explorative duration. When a 
second beep sound was presented after five seconds, they put their hand back at the start position and rated how 
much they preferred the tactile stimulus on a seven-point scale by pressing keys with their left hands. Each of the 
30 tactile stimuli was presented in random order.

Analyses.  To compute Spearman’s correlation, each feature and preference rating were averaged across repeti-
tion, standardized for each participant (i.e., the mean and standard deviation were zero and one, respectively), 
and averaged across participants (see also Fig. 5b for the variation of repetition for each stimuli). To judge whether 
a correlation between a motion feature and preference rating was above chance, we computed the confidence 
interval where the motion feature and preference rating had no correspondence. We randomly shuffled the order 
of the data and computed Spearman’s correlation coefficient for the data. After repeating the process ten thousand 
times, we assessed whether a certain range of the confidence interval included the original correlation coefficient. 
The ranges of the confidence interval were Bonferroni-corrected so that p was 0.05 totally.

We resampled the finger velocity data and applied force at 30 Hz and calculated the RPs from the time series 
data without any state space reconstruction, since our focus was on understanding recurrence features based on 
the time series data. For RPs, we used finger velocity and applied force after participants had finished the reaching 
movement from the start position to the surface of tactile stimuli. The end time of the reaching movement was 
defined as the first point in time where the velocity of the index finger in the vertical direction became zero while 
the finger was on the surface of a tactile stimulus. The length of each trial was always five seconds, while the start 
point for analysing hand motion (i.e., the end time of reaching movement) depended on each trial; therefore, the 
data lengths for analysing hand motion varied across trials. For this reason, we normalized Lmax and Tmax by 
dividing the values by the data length for the hand motion analysis.

We conducted a cluster analysis to classify the 12 recurrence features and two time-averaging features. The 
distances matrix was calculated as a correlation matrix between the features subtracted from 1 (i.e., dissimilarity 
matrix). The correlations were calculated by using the standardized values (the mean and standard deviation were 
zero and one, respectively) of the features extracted from 300 conditions (10 participants × 30 tactile stimuli; 
seven repetitions were averaged).
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The definitions of recurrence features are as follows.
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Reaction time was defined as the time when a participants started to touch a tactile stimulus (i.e., end time of 
reaching movement) until the second beep signaling that five seconds had passed.

Subsidiary analysis: labeling touching mode switching by observing recorded motion.  Participants.  
Two of the authors (TY and SK) and eight volunteers (two females) with an age range of 22–36 years participated 
in the analysis. All participants had normal or corrected-to-normal vision. The eight volunteers were unaware of 
the purpose of the analysis. They gave written informed consent before the experiment began. The protocol was 
approved by the NTT Communication Science Laboratories Research Ethics Committee and was performed in 
accordance with ethical standards outlined by the Declaration of Helsinki.

Apparatus and stimuli.  Visual stimuli were displayed on a computer screen (HP, ProDisplay P232, 1980 × 1080, 
60 Hz). In the visual stimuli, the finger position and force of the participant whose TRENDs showed the highest 
correlation with preference ratings were drawn. Finger positions were drawn as white circles by a three-dimensional 
rendering program from a top-down view. Force applied to tactile stimuli in three dimensions was converted to 
absolute distance from the origin and represented by the size of the white circles. A time bar was displayed under 
the finger motion (see Fig. 12). Each finger motion was repeatedly played until participants finished answering.

Procedure.  Participants were asked to view finger motion created from the results of the experiment 1 and 
report the time points where finger motion changed by clicking the time bar. After participants had completed 
their answer, they could view the next finger motion. They could observe each finger motion as many times as 
desired until they finished their answers. A participant evaluated 54 finger motions (i.e., trials with smallest, 
medium, and largest TREND shown in Fig. 6a and Fig. 9a). The presentation order of the finger motions was 
randomized.

Exp. 2: preference rating with motion constraint.  Participants.  Ten volunteers in the experiment 1 
also participated in this experiment. The other conditions were the same as in the experiment 1.

Procedure.  The procedure in this additional experiment was the same as in the experiment 1 except that the par-
ticipants were instructed to explore the surface of tactile stimulus with only stroking motion (stroking condition) 
or only pushing motion (pushing condition). We did not specify the speed of hand motion and the amount of 
contact force. These two conditions were rotated every 30 tactile stimuli and each tactile stimulus were evaluated 
seven times per condition.

Exp. 3: preference rating without time constraint.  The general procedure of this experiment was sim-
ilar to that of the experiment 1. Differences from the experiment 1 were as follows.

Participants.  Ten naïve volunteers (eight females) with an age range of 21–45 years participated in the experi-
ment. Two participants in the experiment 1 also participated in this experiment. The other conditions were the 
same as in the experiment 1.

Procedure and analysis.  Twenty-four different materials were used as tactile stimuli (Fig. S1b). Participants were 
instructed to freely explore the surface of a tactile stimulus and make the preference rating for the touched stim-
ulus as soon as possible. Each of the 24 tactile stimuli was presented four times in random order. Reaction time 
was defined as the time when a participant started to touch a tactile stimulus until they made the preference rating 
by pressing a button.
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