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Abstract: Interferon-induced transmembrane protein 3 (IFITM3), a crucial effector of the host’s innate
immune system, prohibits an extensive range of viruses. Previous studies have reported that single
nucleotide polymorphisms (SNPs) of the IFITM3 gene are associated with the expression level and
length of the IFITM3 protein and can impact susceptibility to infectious viruses and the severity of
infection with these viruses. However, there have been no studies on polymorphisms of the bovine
IFITM3 gene. In the present study, we finely mapped the bovine IFITM3 gene and annotated the
identified polymorphisms. We investigated polymorphisms of the bovine IFITM3 gene in 108 Han-
woo and 113 Holstein cattle using direct sequencing and analyzed genotype, allele, and haplotype
frequencies and linkage disequilibrium (LD) between the IFITM3 genes of the two cattle breeds. In
addition, we analyzed transcription factor-binding sites and transcriptional capacity using PROMO
and luciferase assays, respectively. Furthermore, we analyzed the effect of a nonsynonymous SNP of
the IFITM3 gene using PolyPhen-2, PANTHER, and PROVEAN. We identified 23 polymorphisms in
the bovine IFITM3 gene and found significantly different genotype, allele, and haplotype frequency
distributions and LD scores between polymorphisms of the bovine IFITM3 gene in Hanwoo and
Holstein cattle. In addition, the ability to bind the transcription factor Nkx2-1 and transcriptional
capacities were significantly different depending on the c.-193T > C allele. Furthermore, nonsynony-
mous SNP (F121L) was predicted to be benign. To the best of our knowledge, this is the first genetic
study of bovine IFITM3 polymorphisms.

Keywords: cattle; IFITM3; FMDV; IAV; SNP; promoter; Nkx2-1

1. Introduction

Interferon-induced transmembrane protein 3 (IFITM3), a downstream effector of
the interferon signal pathway in the host innate immune system, plays a protective role
against several kinds of infectious viruses, including influenza A viruses (IAVs), Ebola virus
(EBOV), Marburg virus (MARV), severe acute respiratory syndrome coronavirus (SARS-
CoV), dengue virus (DEV), West Nile virus (WNV), Zika virus (ZIKV), foot-and-mouth
disease virus (FMDV), African swine fever virus (ASFV), and SARS-CoV-2 [1–6]. Although
the length and topology of the IFITM3 protein differ slightly among species, the antiviral
capacity of the IFITM3 protein is related to the CD225 domain, which is well conserved
between species and significantly correlated with the expression level and integrity of the
IFITM3 protein [7–11].

In a previous study, a splicing variant inducing the single nucleotide polymorphism
(SNP) rs12252 was shown to be associated with the severity of pandemic influenza A
2009 virus infection. The C allele of the rs12252 SNP was suggested to generate a truncated
isoform of the IFITM3 protein (∆21 IFITM3) and reduce antiviral capacity [3,12]. In addition,
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the rs34481144 SNP, which is located on exon 1 of the IFITM3 gene, was found to be related
to a mechanism by which the transcription of the IFITM3 gene is downregulated [13,14].
An allele inducing transcriptional variation was shown to cause the severity of pandemic
influenza A 2009 virus infection. Furthermore, rs6598045 SNP, which is located on the
proximal promoter region of the IFITM3 gene, is correlated with a mechanism by which
transcription of the IFITM3 gene is regulated [1]. Susceptibility to pandemic influenza A
2009 virus infection was significantly increased with the T allele of the SNP rs6598045, and a
difference in transcriptional capacity was also detected. In chicken, the c.298C > A (L100M)
SNP was found to induce a variation in the topology of the IFITM3 protein and increased
the length of transmembrane domain 2 (TM2) [2]. In addition, the IFITM3 gene is expressed
in primordial germ cells (PGCs), and IFITM3 protein plays a pivotal role in germline
development via PGCs localization [15]. However, although several polymorphisms of the
IFITM3 gene in various species are strongly associated with antiviral capacity and genetic
features of the IFITM3 protein, polymorphisms of the bovine IFITM3 gene have not been
investigated thus far.

In the present study, we investigated the bovine IFITM3 gene in Hanwoo and Holstein
cattle by using direct sequencing and compared the genotype and allele frequencies of the
IFITM3 gene in the two cattle breeds. In addition, we analyzed linkage disequilibrium (LD)
and haplotype frequency of polymorphisms of the bovine IFITM3 gene. We also assessed
differences in a transcription factor-binding site and transcriptional capacity based on
an allele of the IFITM3 gene with a regulatory SNP using PROMO and luciferase assays,
respectively [16]. Furthermore, we annotated the effect of a nonsynonymous SNP of the
IFITM3 gene using PolyPhen-2, PANTHER, and PROVEAN [17–19].

2. Materials and Methods
2.1. Ethical Statement

Tissue samples from 221 cattle of 2 breeds (108 Hanwoo and 113 Holstein cattle) were
provided from slaughterhouses in the Republic of Korea. All experimental procedures
were approved by the Institute of Animal Care and Use Committee of Chonbuk National
University (CBNU 2018-079).

2.2. Genetic Analysis of the IFITM3 Gene

Genomic DNA was extracted from 20 mg of brain tissue sample using a HiYield
genomic DNA mini kit (Real Biotech Corporation, Banqiao Taiwan). Polymerase chain
reaction (PCR) was carried out to amplify the bovine IFITM3 gene using BioFACT™
Taq DNA Polymerase (BioFACT, Daejeon, Korea). Information on bovine IFITM3 gene-
specific primers and experimental conditions is provided in Table 1. The PCR mixture
contained 2.5 µL of 10× Taq DNA polymerase reaction buffer, 1 µL of genomic DNA,
10 pmol of each primer, 0.5 µL of a 0.2 µM dNTP mixture, 0.2 µL of 0.04 units of Taq DNA
polymerase, and sterile deionized water in a total volume of 25 µL. PCR amplicons were
directly sequenced by using an ABI 3730 sequencer (ABI, Foster City, California, USA), and
sequencing electropherograms were visualized by using Finch TV software (Geospiza, Inc.,
Seattle, WA, USA).

Table 1. Detailed information on specific primer sets used for polymerase chain reaction (PCR).

Name Size Annealing Temperature

F1_F GGCATTTAACGGGTGGATTCAG 774 bp 62 ◦C
F1_R CATGCAGCAGAACAACACACA
F2_F GCCAGAGAAAGGATGGGAGA 692 bp 61 ◦C
F2_R TGAAGGACAGTGACGAGAGG
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2.3. In Silico Analysis

PROMO was utilized to analyze transcription factor-binding sites. Two major haplo-
types based on alleles containing regulatory SNPs in the proximal promoter sequences
of the IFITM3 gene were inputted and analyzed. The effect of the polymorphisms of
the bovine IFITM3 gene was evaluated by PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2/ (accessed on 3 March 2021)), PANTHER (http://www.pantherdb.org/ (accessed on
3 March 2021)), PROVEAN (http://provean.jcvi.org/index.php (accessed on 3 March 2021)),
and AMYCO (http://bioinf.uab.es/amycov04/ (accessed on 3 March 2021)).

2.4. Cell Culture

Embryonic bovine tracheal (EBtr) cells were provided by the Korea Cell Line Bank and
maintained in Eagle’s minimum essential medium (ATCC, Manassas, VA, USA). In order to
prepare the complete growth medium, 10% (v/v) fetal bovine serum (Gibco, Gaithersburg,
MD, USA) was added. EBtr cells were cultured at 37◦C in a humidified atmosphere of 5%
CO2 (v/v) in air.

2.5. Plasmids and Luciferase Assay

The promoter sequences based on alleles of the IFITM3 gene were synthesized and in-
serted into the pGL4.10 [luc2] vector (Promega, Fitchburg, WI, USA). Plasmid construction
and preparation followed standard protocols. The plasmids were transfected using Lipo-
fectamine (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.
The transfected cells were incubated for 30 h, and the promoter activity of the IFITM3 gene
was measured with a Glomax 20/20 luminometer (Promega, Fitchburg, WI, USA) using a
luciferase assay system (Promega, Fitchburg, WI, USA).

2.6. Statistical Analysis

Statistical analyses were performed using SAS version 9.4 (July 2013, SAS Institute,
Inc., Cary, NC, USA). The differences in genotype and allele frequencies of the IFITM3 gene
between cattle breeds were compared using the χ2 test. The Hardy–Weinberg equilibrium
(HWE) test and haplotype and LD analyses of 23 polymorphisms of the bovine IFITM3
gene were performed using Haploview version 4.2 (September 2009, Broad Institute,
Cambridge, MA, USA). Luciferase assays were carried out in three independent exper-
iments, and statistical significance was determined by p-value calculated by two-tailed
Student’s t-test for single comparisons. The symbol “***” indicates p < 0.001.

3. Results
3.1. Identification of Polymorphisms of the Bovine IFITM3 Gene

In order to investigate polymorphisms of the bovine IFITM3 gene, we performed
direct sequencing with IFITM3 gene-specific primers in 108 Hanwoo and 113 Holstein cattle
(Table 1). We identified a total of 23 polymorphisms of the bovine IFITM3 gene, including
1 nonsynonymous SNP (c.361T > C, p.Phe121Leu) and 2 insertion/deletion polymorphisms
(c.249+350_351delCA and c.249+395delG) (Figure 1).

3.2. Comparison of Genotype and Allele Frequencies of Polymorphisms of the Bovine IFITM3 Gene
among Cattle Breeds

We investigated the differences in allele and genotype frequencies of the bovine
IFITM3 gene between Hanwoo and Holstein cattle. In brief, a total of 19 polymor-
phisms showed significantly different genotype and allele distributions between Han-
woo and Holstein cattle: c.-193T > C, c.249+36G > C, c.249+39T > G, c.249+320G > C,
c.249+350_351delCA, c.249+359G > A, c.249+367G > A, c.249+372C > T, c.249+395delG,
c.249+398G > C, c.249+399C > A, c.249+400A > G, c.249+401G > T, c.249+402T > G,
c.249+405G > A, c.249+455G > T, c.249+472G > C, c.361T > C and c.396C > T. Among the
23 polymorphisms, the c.136C > T, c.249+350_351delCA, c.249+372C > T, c.249+395delG,
c.249+455G > T, and c.249+472G > C polymorphisms were specific to Hanwoo cattle. In ad-
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dition, the c.249+320G > C, c.249+64C > A, c.249+359G > A, and c.396C > T polymorphisms
were specific to Holstein cattle (Table 2).
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Figure 1. Gene map and polymorphisms of the bovine interferon-induced transmembrane protein 3 (IFITM3) gene on
chromosome 29. The open reading frames (ORFs) in exon 1 and exon 2 are marked with black blocks, and white blocks
represent the 5′ and 3′ untranslated regions (UTRs). The outlined horizontal bars indicate the sequenced regions. The
23 novel polymorphisms found in this study are indicated by arrows above the gene.

Table 2. Genotype and allele frequencies of bovine IFITM3 gene polymorphisms in two cattle breeds.

Polymorphism Breed Genotype Frequency, n (%) p-Value Allele Frequency, n (%) p-Value HWE

c.-193C > T CC CT TT C T
Hanwoo 72 (66.67) 34 (31.48) 2 (1.85) <0.0001 178 (82.41) 38 (17.59) <0.0001 0.3729
Holstein 11 (9.73) 46 (40.71) 56 (49.56) 68 (30.09) 158 (69.91) 0.7306

c.-136C > T CC CT TT C T
Hanwoo 107 (99.07) 1 (0.93) 0 (0) 0.4887 215 (99.54) 1 (0.46) 0.4887 0.9614
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.105C > G CC CG GG C G
(p.Pro35Pro) Hanwoo 107 (99.07) 1 (0.93) 0 (0) 1.0 215 (99.54) 1 (0.46) 1.0 0.9614

Holstein 111 (98.23) 2 (1.77) 0 (0) 224 (99.12) 2 (0.88) 0.9244
c.249+32G > C GG GC CC G C

Hanwoo 108 (100) 0 (0) 0 (0) 1.0 216 (100) 0 (0) 1.0 0
Holstein 112 (99.12) 1 (0.88) 0 (0) 225 (99.56) 1 (0.44) 0.9623

c.249+36G > C GG GC CC G C
Hanwoo 41 (37.96) 50 (46.3) 17 (15.74) <0.0001 132 (61.11) 84 (38.89) <0.0001 0.7872
Holstein 12 (10.62) 45 (39.82) 56 (49.56) 69 (30.53) 157 (69.47) 0.5153

c.249+39T > G TT TG GG T G
Hanwoo 41 (37.96) 50 (46.3) 17 (15.74) <0.0001 132 (61.11) 84 (38.89) <0.0001 0.7872
Holstein 12 (10.62) 45 (39.82) 56 (49.56) 69 (30.53) 157 (69.47) 0.5153

c.249+64C > A CC CA AA C A
Hanwoo 108 (100) 0 (0) 0 (0) 1.0 216 (100) 0 (0) 1.0 0
Holstein 112 (99.12) 1 (0.88) 0 (0) 225 (99.56) 1 (0.44) 0.9623

c.249+320G > C GG GC CC G C
Hanwoo 67 (62.04) 40 (37.04) 1 (0.92) <0.0001 174 (80.56) 42 (19.44) <0.0001 0.0582
Holstein 103 (91.15) 10 (8.85) 0 (0) 216 (95.58) 10 (4.42) 0.6226

c.249+350_351delCA WT/WT WT/DEL DEL/DEL WT DEL
Hanwoo 77 (71.3) 31 (28.7) 0 (0) <0.0001 185 (85.65) 31 (14.35) <0.0001 0.0816
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.249+359G > A GG GA AA G A
Hanwoo 108 (100) 0 (0) 0 (0) <0.0001 216 (100) 0 (0) <0.0001 0
Holstein 74 (65.49) 39 (34.51) 0 (0) 187 (82.74) 39 (17.26) 0.0401
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Table 2. Cont.

Polymorphism Breed Genotype Frequency, n (%) p-Value Allele Frequency, n (%) p-Value HWE

c.249+367G > A GG GA AA G A
Hanwoo 22 (20.37) 85 (78.7) 1 (0.93) <0.0001 129 (59.72) 87 (40.28) <0.0001 p < 0.0001
Holstein 82 (72.57) 31 (27.43) 0 (0) 195 (86.28) 31 (13.72) 0.091

c.249+372C > T CC CT TT C T
Hanwoo 81 (75) 26 (24.07) 1 (0.93) <0.0001 188 (87.04) 28 (12.96) <0.0001 0.4871
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.249+395delG WT/WT WT/DEL DEL/DEL WT DEL
Hanwoo 90 (83.33) 18 (16.67) 0 (0) <0.0001 198 (91.67) 18 (8.33) <0.0001 0.3448
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.249+398G > C GG GC CC G C
Hanwoo 15 (13.89) 91 (84.26) 2 (1.85) <0.0001 121 (56.02) 95 (43.98) <0.0001 p < 0.0001
Holstein 76 (67.26) 37 (32.74) 0 (0) 189 (83.63) 37 (16.37) 0.0374

c.249+399C > A CC CA AA C A
Hanwoo 12 (11.11) 96 (88.89) 0 (0) <0.0001 120 (55.56) 96 (44.44) <0.0001 p < 0.0001
Holstein 86 (76.11) 27 (23.89) 0 (0) 199 (88.05) 27 (11.95) 0.1492

c.249+400A > G AA AG GG A G
Hanwoo 27 (25) 81 (75) 0 (0) <0.0001 135 (62.5) 81 (37.5) <0.0001 p < 0.0001
Holstein 89 (78.76) 24 (21.24) 0 (0) 202 (89.38) 24 (10.62) 0.2066

c.249+401G > T GG GT TT G T
Hanwoo 26 (24.07) 82 (75.93) 0 (0) <0.0001 134 (62.04) 82 (37.96) <0.0001 p < 0.0001
Holstein 88 (77.88) 25 (22.12) 0 (0) 201 (88.94) 25 (11.06) 0.1861

c.249+402T > G TT TG GG T G
Hanwoo 21 (19.44) 87 (80.56) 0 (0) <0.0001 129 (59.72) 87 (40.28) <0.0001 p < 0.0001
Holstein 85 (75.22) 28 (24.78) 0 (0) 198 (87.61) 28 (12.39) 0.1328

c.249+405G > A GG GA AA G A
Hanwoo 12 (11.11) 92 (85.19) 4 (3.7) <0.0001 116 (53.7) 100 (46.3) <0.0001 p < 0.0001
Holstein 80 (70.8) 33 (29.2) 0 (0) 193 (85.4) 33 (14.6) 0.691

c.249+455G > T GG GT TT G T
Hanwoo 31 (28.7) 67 (62.04) 10 (9.26) <0.0001 129 (59.72) 87 (40.28) <0.0001 0.0026
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.249+472G > C GG GC CC G C
Hanwoo 83 (76.85) 25 (23.15) 0 (0) <0.0001 191 (88.43) 25 (11.57) <0.0001 0.1738
Holstein 113 (100) 0 (0) 0 (0) 226 (100) 0 (0) 0

c.361T > C TT TC CC T C
(p.Phe121Leu) Hanwoo 39 (36.11) 46 (42.59) 23 (21.3) <0.0001 124 (57.41) 92 (42.59) <0.0001 0.1799

Holstein 0 (0) 14 (12.39) 99 (87.61) 14 (6.19) 212 (93.81) 0.4827
c.396C > T CC CT TT C T

(p.Ile132Ile) Hanwoo 108 (100) 0 (0) 0 (0) <0.01 216 (100) 0 (0) <0.01 0
Holstein 103 (91.15) 10 (8.85) 0 (0) 216 (95.58) 10 (4.42) 0.6226

3.3. LD and Haplotype Analyses of the Bovine IFITM3 Gene

Since breed-specific polymorphisms were identified, we carried out LD analysis of
the 23 polymorphisms of the bovine IFITM3 gene in Hanwoo and Holstein cattle. The LD
scores for the Hanwoo and Holstein cattle are shown in Tables 3 and 4, respectively. In
brief, 27 high LD scores were identified in Hanwoo cattle, including two Hanwoo-specific
LD scores (between c.249+320G > C and c.249+367G > A and between c.249+395delG and
c.249+472G > C). In addition, 26 high LD scores were identified in Holstein cattle, including
one Holstein-specific LD score (between c.105C > G and c.249+32G > C).

We also examined the haplotype distribution of the 23 polymorphisms of the bovine
IFITM3 gene in Hanwoo and Holstein cattle. Detailed information on the haplotype
distributions of bovine IFITM3 gene polymorphisms in Hanwoo and Holstein cattle is
provided in Tables 5 and 6, respectively. In summary, a total of 12 major haplotypes were
identified in Hanwoo cattle (Table 5). Among the 12 haplotypes, the TCCGCGCGWtG-
GCWtGCAGTGGGCC haplotype had the highest frequency (14.8%), followed by the
CCCGGTCGWtGGCWtGCAGTGGGCC (11.6%) and CCCGGTCGDelGACWtCAGTGAG-
GTC (7.9%) haplotypes. In Holstein cattle, a total of six major haplotypes were identi-
fied (Table 6). Among these six haplotypes, the TCCGCGCGWtGGCWtGCAGTGGGCC
haplotype had the highest frequency (43.4%), followed by the CCCGGTCGWtGGCWt-
GCAGTGGGCC (16.4%) and TCCGCGCGWtAGCWtGCAGTGGGCC (9.7%) haplotypes.
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Table 3. Linkage disequilibrium (LD) scores among 23 polymorphisms of the bovine IFITM3 gene in Hanwoo.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23

P1 - - - - - - - - - - - - - - - - - - - - - - -
P2 0.022 - - - - - - - - - - - - - - - - - - - - - -
P3 0.001 0 - - - - - - - - - - - - - - - - - - - - -
P4 - - - - - - - - - - - - - - - - - - - - - - -
P5 0.335 0.007 0.003 - - - - - - - - - - - - - - - - - - - -
P6 0.335 0.007 0.003 - 1 - - - - - - - - - - - - - - - - - -
P7 - - - - - - - - - - - - - - - - - - - - - - -
P8 0.001 0.019 0.019 - 0.001 0.001 - - - - - - - - - - - - - - - - -
P9 0.036 0.001 0.001 - 0.107 0.107 - 0 - - - - - - - - - - - - - - -
P10 - - - - - - - - - - - - - - - - - - - - - - -
P11 0.072 0.007 0.007 - 0.044 0.044 - 0.358 * 0.156 - - - - - - - - - - - - - -
P12 0.032 0.001 0.001 - 0.095 0.095 - 0.036 0.268 - 0.131 - - - - - - - - - - - -
P13 0.019 0 0 - 0.143 0.143 - 0.022 0.015 - 0.061 0.013 - - - - - - - - - - -
P14 0.168 0.006 0.006 - 0.091 0.091 - 0.175 0.132 - 0.634 0.044 0.071 - - - - - - - - - -
P15 0.171 0.006 0.006 - 0.081 0.081 - 0.256 0.209 - 0.73 0.084 0.073 0.907 - - - - - - - - -
P16 0.128 0.008 0.008 - 0.056 0.056 - 0.318 0.234 - 0.775 0.121 0.055 0.651 0.75 - - - - - - - -
P17 0.131 0.008 0.008 - 0.058 0.058 - 0.311 0.229 - 0.792 0.116 0.056 0.666 0.765 0.98 - - - - - - -
P18 0.144 0.007 0.007 - 0.05 0.05 - 0.273 0.248 - 0.771 0.131 0.061 0.746 0.843 0.89 0.907 - - - - - -
P19 0.126 0.006 0.005 - 0.121 0.121 - 0.234 0.194 - 0.708 0.123 0.078 0.799 0.891 0.696 0.71 0.745 - - - - -
P20 0.111 0.007 0.003 - 0.001 0.001 - 0.111 0.248 - 0.248 0.177 0.102 0.212 0.304 0.321 0.329 0.332 0.236 - - - -
P21 0.028 0.001 0.001 - 0 0 - 0.032 0.012 - 0.088 0.139 0.306 * 0.103 0.105 0.079 0.08 0.088 0.028 0.194 - - -
P22 0.226 0.006 0.006 - 0.263 0.263 - 0.038 0.101 - 0.001 0.111 0.067 0.016 0.014 0.007 0.007 0.012 0.028 0.24 0.097 - -
P23 - - - - - - - - - - - - - - - - - - - - - - -

P1: c.-193T > C; P2: c.-136C > T; P3: c.105C > G; P4: c.249+32G > C; P5: c.249+36G > C; P6: c.249+39T > G; P7: c.249+64C > A; P8: c.249+320G > C; P9: c.249+350_351delCA; P10: c.249+359G > A; P11:
c.249+367G > A; P12: c.249+372C > T; P13: c.249+395delG; P14: c.249+398G > C; P15: c.249+399C > A; P16: c.249+400A > G; P17: c.249+401G > T; P18: c.249+402T > G; P19: c.249+405G > A; P20: c.249+455G > T;
P21: c.249+472G > C; P22: c.361T > C; P23: c.396C > T. Bold text indicates strong LD with > 0.3 value. * indicate Hanwoo-specific strong LD scores.

Table 4. Linkage disequilibrium (LD) scores among 23 polymorphisms of the bovine IFITM3 gene in Holstein cattle.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23

P1 - - - - - - - - - - - - - - - - - - - - - - -
P2 - - - - - - - - - - - - - - - - - - - - - - -
P3 0.021 - - - - - - - - - - - - - - - - - - - - - -
P4 0.01 - 0.498 * - - - - - - - - - - - - - - - - - - - -
P5 0.897 - 0.02 0.01 - - - - - - - - - - - - - - - - - - -
P6 0.897 - 0.02 0.01 1 - - - - - - - - - - - - - - - - - -
P7 0.002 - 0 0 0.002 0.002 - - - - - - - - - - - - - - - - -
P8 0.01 - 0 0 0.012 0.012 0 - - - - - - - - - - - - - - - -
P9 - - - - - - - - - - - - - - - - - - - - - - -

P10 0.04 - 0.002 0.001 0.044 0.044 0.021 0.01 - - - - - - - - - - - - - -
P11 0.008 - 0.006 0.028 0.009 0.009 0.028 0.22 - 0.005 - - - - - - - - - - - - -
P12 - - - - - - - - - - - - - - - - - - - - - - -
P13 - - - - - - - - - - - - - - - - - - - - - - -
P14 0.018 - 0.002 0.001 0.021 0.021 0.001 0.175 - 0.011 0.568 - - - - - - - - - - - -
P15 0.013 - 0.001 0.001 0.014 0.014 0.001 0.261 - 0.001 0.709 - - 0.693 - - - - - - - - -
P16 0.021 - 0.001 0.001 0.022 0.022 0.001 0.301 - 0.002 0.604 - - 0.607 0.876 - - - - - - - -
P17 0.024 - 0.001 0.001 0.025 0.025 0.001 0.287 - 0 0.571 - - 0.635 0.834 0.867 - - - - - - -
P18 0.03 - 0.001 0.001 0.032 0.032 0.001 0.25 - 0 0.61 - - 0.597 0.879 0.84 0.799 - - - - - -
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Table 4. Cont.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23

P19 0.005 - 0.005 0.026 0.006 0.006 0.001 0.203 - 0.001 0.726 - - 0.572 0.656 0.558 0.526 0.562 - - - - -
P20 - - - - - - - - - - - - - - - - - - - - - - -
P21 - - - - - - - - - - - - - - - - - - - - - - -
P22 0.065 - 0.001 0 0.063 0.063 0 0.001 - 0.014 0.01 - - 0.012 0.009 0.008 0.008 0.009 0.011 - - - -
P23 0.001 - 0 0 0.001 0.001 0 0.002 - 0.002 0.007 - - 0.009 0.006 0.006 0.006 0.007 0.008 - - - -

P1: c.-193T > C; P2: c.-136C > T; P3: c.105C > G; P4: c.249+32G > C; P5: c.249+36G > C; P6: c.249+39T > G; P7: c.249+64C > A; P8: c.249+320G > C; P9: c.249+350_351delCA; P10: c.249+359G > A; P11:
c.249+367G > A; P12: c.249+372C > T; P13: c.249+395delG; P14: c.249+398G > C; P15: c.249+399C > A; P16: c.249+400A > G; P17: c.249+401G > T; P18: c.249+402T > G; P19: c.249+405G > A; P20: c.249+455G > T;
P21: c.249+472G > C; P22: c.361T > C; P23: c.396C > T. Bold text indicates strong LD with > 0.3 value. * indicates Holstein cattle-specific strong LD scores.

Table 5. Haplotype frequencies of bovine IFITM3 gene polymorphisms in Hanwoo.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 Hanwoo
(n = 216)

T C C G C G C G Wt G G C Wt G C A G T G G G C C 32 (0.148)
C C C G G T C G Wt G G C Wt G C A G T G G G C C 25 (0.116)
C C C G G T C G Del G A C Wt C A G T G A G G T C 17 (0.079)
C C C G G T C G Wt G G C Wt G C A G T G T G T C 14 (0.065)
C C C G G T C G Wt G A C Wt C A G T G A G G T C 10 (0.046)
C C C G G T C C Wt G A C Wt C A G T G A G G C C 9 (0.042)
C C C G G T C C Wt G G C Wt G C A G T G T G T C 8 (0.037)
C C C G G T C G Wt G G T Wt G C A G T G T C T C 8 (0.037)
C C C G C G C C Wt G A C Wt C A G T G A G G C C 7 (0.032)
C C C G C G C G Wt G G C Del G C A G T G T C T C 7 (0.032)
C C C G C G C G Wt G G C Wt G C A G T G T G T C 6 (0.028)
C C C G G T C G Del G A T Wt C A G T G A G G T C 5 (0.023)

Others * 68 (0.315)

P1: c.-193T > C; P2: c.-136C > T; P3: c.105C > G; P4: c.249+32G > C; P5: c.249+36G > C; P6: c.249+39T > G; P7: c.249+64C > A; P8: c.249+320G > C; P9: c.249+350_351delCA; P10: c.249+359G > A; P11:
c.249+367G > A; P12: c.249+372C > T; P13: c.249+395delG; P14: c.249+398G > C; P15: c.249+399C > A; P16: c.249+400A > G; P17: c.249+401G > T; P18: c.249+402T > G; P19: c.249+405G > A; P20: c.249+455G > T;
P21: c.249+472G > C; P22: c.361T > C; P23: c.396C > T. * Others contain rare haplotypes with frequency < 0.02.

Table 6. Haplotype frequencies of bovine IFITM3 gene polymorphisms in Holstein cattle.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 Holstein
(n = 226)

T C C G C G C G Wt G G C Wt G C A G T G G G C C 98 (0.434)
C C C G G T C G Wt G G C Wt G C A G T G G G C C 37 (0.164)
T C C G C G C G Wt A G C Wt G C A G T G G G C C 22 (0.097)
T C C G C G C C Wt G A C Wt C A G T G A G G C C 8 (0.035)
C C C G G T C G Wt G G C Wt G C A G T G G G T C 7 (0.031)
T C C G C G C G Wt A A C Wt C A G T G A G G C C 5 (0.022)

Others * 49 (0.217)

P1: c.-193T > C; P2: c.-136C > T; P3: c.105C > G; P4: c.249+32G > C; P5: c.249+36G > C; P6: c.249+39T > G; P7: c.249+64C > A; P8: c.249+320G > C; P9: c.249+350_351delCA; P10: c.249+359G > A; P11:
c.249+367G > A; P12: c.249+372C > T; P13: c.249+395delG; P14: c.249+398G > C; P15: c.249+399C > A; P16: c.249+400A > G; P17: c.249+401G > T; P18: c.249+402T > G; P19: c.249+405G > A; P20: c.249+455G > T;
P21: c.249+472G > C; P22: c.361T > C; P23: c.396C > T. * Others contain rare haplotypes with frequency < 0.02.
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3.4. The Transcription Factor-Binding Capacity of the Bovine IFITM3 Gene

We found two regulatory SNPs in the proximal promoter region of the bovine IFITM3
gene, and c.-193T > C showed significantly different genotypes and allele distributions
in Hanwoo and Holstein cattle (Table 2). We analyzed the transcription factor-binding
capacity of the bovine IFITM3 gene according to the c.-193T > C alleles using PROMO.
Interestingly, the haplotype with the T allele and the haplotype with the C allele differed in
their ability to bind transcription factor Nkx2-1 (Figure 2).
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Figure 2. Analysis of the transcription factor-binding abilities of 2 haplotypes of the proximal promoter sequence of the
bovine IFITM3 gene. (A) The transcription factor-binding site according to c.-193T > C allele. Red boxes and arrows indicate
differences in the transcription-binding sites of the haplotype of -193T > C with the T allele and the haplotype of -193T > C
with the C allele. (B) Magnified view of the locus containing c.-193T > C region showing differences in Nkx2-1 binding
between the haplotype with the T allele of -193T > C and the haplotype with the C allele of -193T > C.

3.5. Promoter Activities Based on Alleles of Regulatory SNPs in the Proximal Promoter Region of
the Bovine IFITM3 Gene

We investigated the differences in promoter activity according to the alleles of pro-
moter SNPs, which showed different genotype and allele frequencies in Hanwoo and
Holstein cattle (Table 2). The T-type promoter, which contained the T allele of c.-193T > C,
was more prevalent in Hanwoo cattle. The C-type promoter, which contained the C al-
lele of c.-193T > C, was more prevalent in Holstein cattle. Notably, the C-type promoter
significantly increased the expression level of mRNA compared to that of the T-type
promoter (Figure 3).

3.6. In Silico Annotation of a Nonsynonymous SNP of the Bovine IFITM3 Gene

The impact of the nonsynonymous SNP c.361T > C (F121L) of the bovine IFITM3 gene
identified in this study was analyzed by PolyPhen-2, PANTHER, and PROVEAN. Notably,
the F121L mutation was predicted to be benign by all three programs (Table 7).
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Figure 3. Promoter activity of the bovine IFITM3 gene. Promoter activities of the bovine IFITM3 gene
with 2 promoter types. The symbol “***”, indicates p < 0.001. RLUs indicate relative luciferase light
units. NC indicates negative control.

Table 7. In silico annotations of polymorphism of the bovine IFITM3 gene.

Polymorphism Methods Score Prediction

c.361T > C (F121L) PolyPhen-2 0.001 Benign
PANTHER 2 Probably benign
PROVEAN −0.357 Neutral

4. Discussion

Previous studies have reported that overexpression of the IFITM3 protein inhibits an
extensive range of viruses under experimental conditions [20–22]. This propensity has
been consistently reported under natural conditions. The duck species that are known to
be resistant to avian influenza virus showed elevated expressions of the IFITM3 protein
compared to that in the chicken species that are known to be susceptible to avian influenza
virus. In addition, the genetic polymorphisms of Ross chickens, a kind of broiler, were
significantly different from those of Dekalb White chickens, a kind of layer. Broilers show
more resistance to viral infection than layers, a notable feature of the IFITM3 gene [2]. In
humans, the SNPs rs34481144 and rs6598045 of the human IFITM3 gene, which are related
to the modulated expression of this gene, showed prominent associations with the severity
and susceptibility of pandemic influenza A 2009 virus infection, respectively [1,13,14]. In
addition, the SNP rs12252, which influences the length of the IFITM3 protein, was found
to be related to susceptibility to pandemic influenza A 2009 virus infection. Furthermore,
recent studies have reported that the IFITM3 protein is also involved in not only immune-
related functions but also embryogenesis and feed efficiency [15,23].

Thus, in the present study, we investigated polymorphisms of the bovine IFITM3
gene, which can affect the expression level or function of the IFITM3 protein. We found a
total of 23 polymorphisms in the bovine IFITM3 gene. In addition, Hanwoo and Holstein
cattle showed significantly different genotype and allele frequencies and breed-specific
polymorphisms (Table 2). The LD scores and haplotype frequencies of the polymorphisms
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also showed different distributions between the two cattle breeds (Tables 3–6). These
results indicate that the IFITM3 genes in Hanwoo and Holstein cattle have significantly
different genetic properties, including genotype, allele, and haplotype frequencies and LD
scores. In addition, we annotated a regulatory SNP (c.-193T > C) and a nonsynonymous
SNP (c.361T > C, F121L) of the bovine IFITM3 gene. Strikingly, the C-type haplotype with
the C allele of c.-193T > C and the T-type haplotype with the T allele of c.-193T > C differed
in their ability to bind transcription factor Nkx2-1, and the C-type haplotype exhibited
elevated expression of the IFITM3 gene compared to the T-type haplotype (Figure 3). Since
the T allele is frequently observed in Holstein cattle while the C allele is frequently ob-
served in Hanwoo cattle, this result suggests a significant difference in the expression
of the bovine IFITM3 gene between the cattle breeds. Indeed, Nkx2-1, a member of the
Nkx-homeodomain factor family, is related to the regulation of organ development. In
addition, Nkx2-1 is associated with several diseases, including benign hereditary chorea,
choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress. Further-
more, Nkx2-1 has a function in organ development, and it is involved in morphogene-
sis [24,25]. Since the IFITM3 protein is also related to cellular developmental processes,
further investigation of the relationship between IFITM3 and Nkx2-1 is highly desirable in
the future. We also annotated a nonsynonymous SNP (c.361T > C, F121L) by using in silico
annotation tools. The F121L mutation was predicted to be benign (Table 7). Since several
viruses have been reported to be associated with the IFITM3 gene, future study of the
characterization of the bovine IFITM3 gene in other local cattle breeds is highly desirable.

5. Conclusions

In conclusion, we finely mapped the bovine IFITM3 gene and annotated regulatory
and nonsynonymous SNPs. We identified 23 polymorphisms of the bovine IFITM3 gene
and significantly different genotype, allele, and haplotype distributions and LD scores for
these polymorphisms of the bovine IFITM3 gene between Hanwoo and Holstein cattle. In
addition, transcription factor-binding ability and transcriptional capacity were significantly
different depending on regulatory SNP alleles. A nonsynonymous SNP (F121L) was
predicted to be benign. To the best of our knowledge, this is the first genetic report of
bovine IFITM3 polymorphisms.
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Abbreviations

IFITM3 Interferon-induced transmembrane protein 3
SNPs Single nucleotide polymorphisms
LD Linkage disequilibrium
IAVs Influenza A viruses
EBOV Ebola virus
MARV Marburg virus
SARS-CoV Severe acute respiratory syndrome coronavirus
DEV Dengue virus
WNV West Nile virus
ZIKV Zika virus
FMDV Foot-and-mouth disease virus
ASFV African swine fever virus
COVID-19 Coronavirus disease 2019
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