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Abstract: Efflux transporters distributed at the apical side of human intestinal epithelial cells actively
transport drugs from the enterocytes to the intestinal lumen, which could lead to extremely poor
absorption of drugs by oral administration. Typical intestinal efflux transporters involved in oral
drug absorption process mainly include P-glycoprotein (P-gp), multidrug resistance proteins (MRPs)
and breast cancer resistance protein (BCRP). Drug efflux is one of the most important factors resulting
in poor absorption of oral drugs. Caco-2 monolayer and everted gut sac are sued to accurately
measure drug efflux in vitro. To reverse intestinal drug efflux and improve absorption of oral drugs,
a great deal of functional amphiphilic excipients and inhibitors with the function of suppressing
efflux transporters activity are generalized in this review. In addition, different strategies of reducing
intestinal drugs efflux such as silencing transporters and the application of excipients and inhibitors
are introduced. Ultimately, various nano-formulations of improving oral drug absorption by in-
hibiting intestinal drug efflux are discussed. In conclusion, this review has significant reference for
overcoming intestinal drug efflux and improving oral drug absorption.

Keywords: efflux transporters; oral drug absorption; functional excipients; inhibitors; inhibiting
intestinal drug efflux; nano-preparations

1. Introduction

Oral administration is the most practical and popular approach due to its good patient
compliance, convenience and low cost compared to other administration routes, and it
could accomplish the purpose of local and systemic treatment. However, the oral absorption
of some drugs is limited due to poor solubility [1,2], poor intestinal permeability [3], liver
first-pass effect and particularly intestinal drug efflux mediated by efflux transporters [4].

Efflux transporters in the gastrointestinal tract mainly include P-gp, MRPs and BCRP [5].
The distribution, expression quantities and spatial location of these efflux transporters are
different in the human intestines. Intestinal efflux transporters are critical factors affect-
ing oral absorption of drugs because these transporters can recognize, bind and excrete
certain drugs into the intestinal lumen. Therefore, inhibiting the activity of intestinal
membrane efflux transporters has gradually become a research hotspot to improve drug
oral absorption [6,7]. It has been widely reported that many amphiphilic pharmaceutical
excipients, such as D-a-tocopheryl polyethylene glycol 1000 succinate [6], Ployethylene
glycols [8] and Pluronic [9], and small molecule compounds known as inhibitors positively
suppress the activity of intestinal efflux transporters. The application of these excipients or
inhibitors to prepare oral drug carriers can significantly improve oral drug absorption by
reducing the intestinal drug efflux [10,11]. In addition, many novel nano-preparations in-
cluding liposomes [12], microemulsions [13], solid lipid nanoparticles [7], and micelles [14],
have significantly improved drugs oral absorption by inhibiting the activity of intestinal
efflux transporters.
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In this review, we systematically summarize intestinal efflux transporters and a va-
riety of functional excipients and inhibitors that inhibit the activity of efflux transporters.
Furthermore, plenty of cell and animal models for measuring drug efflux in vitro are sum-
marized. Finally, different nanocarriers of improving drugs oral absorption are highlighted.
In conclusion, we introduce various methods of inhibiting intestinal efflux transporters
activity in detail, which has a significant reference for improving drugs oral absorption.

2. Intestinal Efflux Transporters

Small intestines of the human body are the main place for the absorption of nutrients
and oral drugs. ATP-binding cassette (ABC) transporters are a class of membrane efflux
transporters modulating the transport of drugs, exogenous and endogenous substances.
Seven subfamilies (A-G) of ABC transporters have been found. Several different types of
ABC membrane transporters distribute in intestinal epithelial cells, and these transporters
could affect substances absorption by transporting substrates from enterocytes to intestinal
lumen or blood in an ATP-dependent manner. Three efflux transporters of the ABC
membrane proteins have been found on the lumen side of enterocytes, including P-gp [15],
MRP2 [16] and BCRP [17], which function as an intestinal barrier due to them pumping
drugs to intestinal lumen. MRP1-5 (other than MRP2) are on the basolateral side of
enterocytes and actively transport oral substances from intestinal epithelial cells into the
blood. Details of intestinal efflux transporters affecting substances absorption are described
as follows.

2.1. P-gp

P-gp translated by ABCB1 gene (MDR1 gene) is one of ABC transporters in humans
and rodents and widely distributes in the whole intestines [18]. The expression of P-gp
in the intestines gradually increases from the duodenum to the colon and chiefly in the
colon and distal small intestine [19]. Several nutrients and xenobiotics affect the expression
of intestinal efflux transporters. The intestinal expression of P-gp obviously increased
after rats received a fiber meal [20]. A wide variety of drugs such as paclitaxel, docetaxel,
doxorubicin, and digoxin are not orally bioavailable due to intestinal P-gp pumps extruding
these drugs from enterocytes to intestinal tract. To solve this problem, plenty of inhibitors
(inhibiting P-gp activity or decreasing P-gp expression) such as verapamil, flavonoids,
alkaloids, elacridar, tariquidar and zosuquidar, can be co-delivered with P-gp substrates
to improve drug oral absorption by decreasing drugs efflux. More typical substances
identified by P-gp or inhibiting P-gp activity are listed in Table 1.

2.2. MRPs

MRPs, the C subfamily of ABC transporters family, contain 9 proteins (MRP1-9),
among which only MRP1-5 are related to the membrane transport of substances and have
been reported to exist in intestine and colon of human [21]. Due to MRP2 special locality
and relatively large expression quantities, it becomes one of the main intestinal efflux
transporters that pumps certain substrates into the intestinal lumen. Intestinal MRP2 is
to protect the organism from toxicants but it also affects some drugs absorption. It has
been found that MRP2 is mainly expressed in the duodenum and jejunum, which may be
related to its function [22]. Multiple factors modulate the expression of intestinal MRP2.
Fructose-induced metabolic syndrome decreased intestinal MRP2 activity and expression,
which could be reversed by geraniol and vitamin C [23]. The substrates of MRP2 include
metabolites of endogenous and exogenous substances and organic anion compounds. More
substrates and inhibitors of MRP2 are summarized in Table 1.

2.3. BCRP

BCRP is the second member of the G subfamily of ABC superfamily (ABCG2). Some
substances can be pumped from enterocytes into the intestinal lumen by ABCG2. Therefore,
ABCG2 can protect organisms from xenobiotics but it also reduces the oral absorption of
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drugs [24]. Studies have shown that BCRP extensively distributes in human intestines and
its distribution is mainly concentrated in jejunal epithelial cells. Representative substrates
and inhibitors of ABCG2 are summarized in Table 1. Researchers have found that some
substrates (CYT387, Gefitinib, sorafenib etc.) of ABCG2 are also substrates of P-gp or
MRP2 [24].

Table 1. Substrates and inhibitors of three main intestinal efflux transporters.

Transporters Substrates Inhibitors Refs.

P-gp

digoxin, rhodamine-123, verapamil, rapamycin,
cimetidine, silybin, atenolol, citalopram,

mitoxantrone, doxorubicin, fexofenadine,
rhodamine 123, aliskiren, betrixaban, celiprolol,

paclitaxel and vincristine.

verapamil, cyclosporine A, elacridar,
tariquidar, zosuquidar, alkaloids,

flavonoids, pyrimidine aminobenzene
derivatives, 4-indolyl quinazoline
derivatives, quercetin, ivermectin,

Royleanone, HM30181A,
thilphenylbenzofuran derivatives,

encequidar, CBT-1®.

[14,25–36]

MRP2

Valsartan, pravastatin, cisplatin, silybin,
doxorubicin, sulfobromophthalein,
dinitrophenyl-s-glutathione, calcein,

methotrexate, ezetimibe glucuronide, resveratrol,
etoposide, statins, and fexofenadine.

MK571, indomethacin, cyclosporin A,
Nomegestrol acetate sulfated

metabolites, indomethacin, ivermectin.
[31,37–47]

ABCG2
5-FU, silybin, zidovudine, cimetidine, nilotinib,

bisantrene, ciprofloxacin, resveratrol,
doxorubicin, mitoxantrone and topotecan.

pyrimidine aminobenzene derivatives,
reserpine, Ko143, reserpine, ivermectin. [38,41,43–45,48–51]

3. Models
3.1. Cell Models

In order to measure drugs efflux in vitro, several commonly used cell models such
as Caco-2 monolayer and MDCK monolayer are well established [38]. The structure and
function of Caco-2 monolayer and MDCK monolayer are consistent with the intestinal
enterocytes. Since Caco-2 monolayer expresses a large number of efflux transporters, it is
used to investigate whether certain small molecule compounds and excipients can inhibit
efflux transporters activities [52,53]. In addition, MDCK monolayer and Caco-2 monolayer
are also applied to investigate whether specific efflux transporters are involved in drugs
transport [54].

3.1.1. Caco-2 Monolayer

Caco-2 cells (20–80 generation) are derived from colon adenocarcinoma and differ-
entiated into a complete polarized monolayer on day 21 and this monolayer is similar
to the intestinal epithelial layer that contains brush borders, tight junctions and efflux
transporters [55]. It has been confirmed that lots of efflux transporters including P-gp,
MRP2 and BCRP distribute in Caco-2 cells. For Caco-2 monolayer, the expression of ef-
flux transporters gradually increases along with culture time and reaches a stable level
on day 21. When the transepithelial electrical resistance (TEER) of Caco-2 monolayer
surpassed 200 Ω·cm2, it indicated that this monolayer could be used for studying the
absorption and efflux of drugs [56].

The Caco-2 monolayer model composes of cells, apical side (A) and basolateral side (B).
The transport direction of drug from B to A indicates drug efflux, while that of drug from A
to B indicates drug influx. The apparent permeability coefficients Papp(A-B) and Papp(B-A) rep-
resent drugs absorption and efflux situation, respectively [52]. The drug efflux ratio is the
value of Papp(B-A)/Papp(A-B). When the value exceeds 2, it means that efflux transporters may
participate in drugs transport [52]. The functions of Caco-2 monolayer are intuitively sum-
marized in Figure 1, including measuring drug efflux and investigating whether functional
excipients or compounds could inhibit efflux transporters activity [38,52–54]. Inhibitors of
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P-gp, MRP2 and BCRP were pretreated to Caco-2 monolayer, respectively, and then the
efflux ratio of theaflavins obviously decreased compared to the control group (without
adding inhibitors), which indicated that the three efflux transporters influenced theaflavins
absorption [57]. Meropenem (MER) was loaded into nanoparticles packed Eudragit® RSPO
polymeric matrix to form nano-in-micro hierarchical microspheres (MER-RSPO) [58]. Com-
pared to free MER solution, the MER efflux ratio for MER-RSPO significantly reduced
from 2.62 to 0.35 in Caco-2 monolayer. In order to investigate whether poloxamines can
inhibit P-gp pumps activity, Caco-2 monolayer pretreated with poloxamines was treated
with doxorubicin (a P-gp substrate) [53]. The intracellular accumulated amounts of dox-
orubicin greatly increased, which indicated that poloxamines inhibited P-gp-mediated
doxorubicin efflux. To explore more effective selective P-gp inhibitors, Caco-2 monolayer
was pretreated with seven known P-gp inhibitors and then coped with Paclitaxel (PTX,
a P-gp substrate) [52]. The results of PTX efflux ratio showed that LY335979 obviously
selective reduced PTX efflux [52].
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Figure 1. Caco-2 monolayers to evaluate the drug absorption and efflux and investigate functional
excipients or inhibitors. A: the apical side is used as drugs donor to measure drugs absorption. B: the
basolateral side used as drugs donor to research drugs efflux. C: drugs influx. D and E: studying
whether compounds and excipients could prevent drugs from being pumped to the apical side of
monolayer by efflux transporters. F: the drugs efflux mediated by efflux transporters.

3.1.2. MDCK Monolayer

The cultivation of Madin-Darby canine kidney (MDCK) monolayer is 2–4 days which is
shorter than that of Caco-2 monolayer, and the TEER of MDCK monolayer is closer to that of
human intestinal epithelium. The mechanism of measuring drug efflux MDCK monolayer
is similar to Caco-2 monolayer. In addition, MDCK cells transfected with the gene of a
specific efflux transporter could be used to research the effect of this transporter on drugs
absorption and efflux [59]. MDCK cells are separately transfected with MDR1 gene, MRP2
gene and BCRP gene to obtain MDR1-MDCK, MRP2-MDCK and BCRP-MDCK cells that
can express specific efflux transporters. MDCK monolayer can be used to explore substrates
and inhibitors of efflux transporters. In Caco-2 monolayer and MRP2-MDCK/BCRP-MDCK
monolayer, MRP2/BCPR inhibitors significantly decreased the efflux ratio of Silybin, which
indicated that Silybin was the substrate of MRP2 and BCRP pumps [38]. Compared to free
berberine hydrochloride (BBH, a P-gp substrate), the efflux ratio of BBH for the mixture of
BBH and natural nanoparticles decreased from 25.8 to 17.1 in MDR1-MDCK monolayer,
indicating that the nanoparticles could inhibit P-gp activity [60]. In addition, the application
of MDCK monolayer to explore excipients of inhibiting efflux transporters activity is also
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advisable. BCRP-MDCK cells were used to research whether Tween 20 and Pluronic 85
could effectively inhibit BCRP-mediated mitoxantrone efflux [61].

3.2. Everted Gut Sac Model

In addition to cell models, the everted gut sac model is an important model to study
whether efflux transporters participate in drugs transport due to lots of efflux transporters
distributing in intestinal epithelial cells. To research drugs transport from serosal side to
mucosal side (drug efflux), a small intestine about 10 cm (duodenum/jejunum/ileum) is
everted to make serosal side face inward and one end of intestine is ligated, and then 1 mL
Krebs-Ringer buffer containing drugs is added to the inner serosal side. Finally, everted
gut sac containing drugs solution is incubated at 37 ◦C in a 20 mL Krebs-Ringer buffer. The
everted gut sac method was used to research the efflux of BBR-loaded natural nanoparticles
(Nnps-BBR) and free BBR, and results showed the efflux of BBR significantly decreased
for Nnps-BBR due to Nnps inhibiting P-gp activity [60]. According to the everted gut sac
method, the efflux ratio of Red Globe Grape, Raspbeery and Blackberry was accurately
measured to be 1.55, 0.98 and 1.38, respectively [62]. This model is a cheap and practical
method to accurately determine intestinal drugs efflux ratio.

4. Excipients to Inhibit Efflux Transporters Activity
4.1. TPGS

D-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a functional amphiphilic
derivative of vitamin E and it can inhibit P-gp activity. In addition, TPGS is also an excellent
agent that increases solubility of drugs and improves nano-formulations stability. The
proven specific mechanisms of TPGS inhibiting P-gp include decreasing P-gp expressional
amount, reducing mitochondrial membrane potential, depleting ATP and inhibiting P-gp-
ATPase activity [63–66]. Owing to its P-gp inhibiting effect, amphiphilicity and degrad-
ability, TPGS has been widely used to prepare multiple nano-formulations to improve
drug oral availability. Curcumin-loaded TPGS functionalized mesoporous nanocarriers
outstandingly improved Curcumin oral bioavailability due to their small size and P-gp
inhibition [6]. A nanocomplex composed of N-trimethyl chitosan and TPGS-modified
poly (lactic-co-glycolic acid) was successfully prepared [67]. The oral bioavailability of
the gemcitabine-loaded nanocomplex was 5.1 times higher than that of free gemcitabine
due to P-gp inhibition. Microemulsion with TPGS as a surfactant was applied to deliver
celecoxib, and the absorption of celecoxib greatly increased [68]. TPGS modified Daidzin-
loaded zein nanoparticles were orally administrated to mice, and then the area under the
curve (AUC) of the nanoparticles was wider and taller than that of Daidzin solution due
to P-gp inhibition [69]. Oral PTX-loaded folate-conjugated Pluronic F127/polylactic acid
polymersome modified by TPGS (PTX-loaded FA-F127-PLA/TPGS) were fabricated via
a dialysis method. The AUC0–48h of PTX-loaded FA-F127-PLA/TPGS polymersome was
3737.14 ± 631.58 (ng/mL), while the AUC0–48h of Taxol® was 559.18 ± 113.90 (ng/mL) [70].
The mechanism of PTX-loaded polymersome improving the PTX oral absorption was
intuitively shown in Figure 2. In brief, TPGS is a promising oral nontoxic material and
it could improve drug absorption by inhibiting P-gp activity and increasing solubility of
insoluble drugs.
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4.2. β-Cyclodextrin

β-Cyclodextrin (β-CD), a common polysaccharide, is usually used as a pharmaceutical
ingredient and it has a hydrophilic outside and a lipophilic inside hole where hydrophobic
drugs can be implanted [71,72]. In addition to improving drugs solubility, β-CD also
inhibits P-gp by weakening P-gp-ATPase activity [73]. β-CD derivatives including Methyl-
β-CD and Heptakis-β-CD have excellent inhibitory effect on P-gp activity [74]. In addition,
β-CD also affects the activity of the drug metabolic enzyme CYP3A. Therefore, nanocarri-
ers composed of β-CD and its derivatives have obtained more attention owning to them
inhibiting P-gp activity and increasing drugs solubility. The Tacrolimus (KF506)-loaded
hydroxypropyl-β-CD complexes were freeze-dried to form copolymer powders nanoparti-
cles and its intestinal permeability value Papp significantly increased in inverted gut sac
model, which was mainly due to these nanoparticles inhibiting P-gp activity [75]. Caco-2
cells were co-treated with R8-CM-β-CD (a derivatives of β-CD) and rhodamine-123 (a
P-gp substrate), and then the internalized rhodamine-123 increased by 128%, which indi-
cated that R8-CM-β-CD might have the ability of inhibit P-gp activity [76]. Insulin was
loaded into R8-CM-β-CD to prepare a supramolecular complex (insulin/ R8-CM-β-CD)
that showed excellent intestinal absorption, which might be attributed to that insulin/R8-
CM-β-CD inhibited P-gp activity and improved intestinal insulin permeability [76]. The
efflux ratio of nintedanib (a P-gp substrate)-loaded SEB-β-CD (a β-CD derivative) complex
was 6–8 times lower than that of free nintedanib solution, which might be attributed to SEB-
β-CD complex increasing nintedanib solubility and reducing P-gp activity [77]. Owning to
it inhibiting P-gp activity and increasing solubility of drugs, β-CD is an ideal functional
excipient improving drugs oral absorption.

4.3. Pluronic

Pluronic is an amphiphilic excipient that composes of a central hydrophobic chain
with two hydrophilic chains attached by the side, and it usually function as stabilizer
and surfactant. More importantly, it has been found that Pluronic copolymers could
modulate efflux transporters activity [78]. P-gp activity can be inhibited by many types
of Pluronic such as Pluronic 85, Pluronic F127, Pluronic F-68, Pluronic L92 and Pluronic
L61 [4,79–81]. Pluronic F127-grafted-chitosan (Pl-g-CH), a polymeric derivative of Pluronic
F127, obviously increased intracellular fluorescence intensity of rhodamine-123, which
proved that Pluronic F127 inhibited P-gp activity while the specific mechanisms of how
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to inhibit P-gp were not further studied [82]. Compared to digoxin (a P-gp substrate)
alone, the intracellular amounts of digoxin in LLC-PK1-P-gp cells treated with digoxin and
Pluronic 85/tween 80 obviously increased, indicating that Pluronic 85/tween 80 inhibited
P-gp-mediated digoxin efflux [79]. As an efflux transporters inhibitor and amphiphilic
agent, Pluronic has been applied to prepare various nano-formulations to improve drugs
oral absorption. Baicalein-loaded Pluronic P85/F68 micelles (B-MCs) were employed to
reverse MRP2-mediated efflux of baicalein (a MRP2 substrate) [83]. B-CMs decreased
the intracellular mitochondrial membrane charge and ATP level of MDCK-MRP2 cells,
indicating that MRP2 was inhibited by B-CMs and the mechanisms of B-MCs improving
baicalein oral absorption were shown in Figure 3. In conclusion, Pluronic is an excellent
excipient for improving drugs oral absorption.
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4.4. PEGs

The molecular weights of Ployethylene glycols (PEGs) change from 200 to 35,000.
In addition to improving drugs solubility, PEGs (PEG-400/PEG-2000/PEG-20000) were
also found to inhibit P-gp-mediated-rhodamine-123 efflux in a concentration depended
on manner while the concrete mechanisms of how PEGs affected P-gp function were not
researched [84]. In the existence of PEG-400, the permeable ability of ganciclovir (a P-gp sub-
strate) was obviously increased, which indicated that PEG-400 suppressed P-gp activity [81].
After fresh rat intestinal mucosa was treated with PEG-grafted polyethyleneimine (PEI) thi-
olated by γ-thibutyrolatone (PEG-g-PEI) co-polymer and Rhodamin-123, the accumulative
absorption of Rhodamine-123 greatly increased compared to Rhodamine-123 alone, indi-
cating that PEG-g-PEI co-polymer might be a novel material inhibiting P-gp function [85].
In general, PEGs and its derivatives serving as functional materials inhibiting P-gp are
important for improving drugs oral absorption.

4.5. Others

In addition to the mentioned excipients, Tween 20, Brij 58, Tween 80, sodium car-
boxymethyl cellulose and Cremophor EL, explicitly inhibited P-gp efflux function in
MDCK-MDR1 cells in a concentration-depended manner [8]. It was also found that
Tween 20, Brij 30 and Cremophor EL inhibited P-gp and ABCG2 activity [86]. Docusate
sodium, sodium lauryl sulfate and sucrose monolaurate obviously blocked the ABCG2 ef-
flux activity [87]. Polysorbate 20 had an excellent inhibiting effect on P-gp [88,89]. As efflux
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transporters inhibitors and solubilizer, these materials can be used to prepare liposomes,
micelles, nanoparticles and self-microemulsions to improve oral availability of drugs. It
is necessary to find more amphiphilic excipients with the function of inhibiting intestinal
efflux transporters activity, which would help researchers to better overcome intestinal
drugs efflux. The well proven mechanisms of different excipients improving drug oral
bioavailability are clearly concluded in Table 2.

Table 2. Excipients to enhance oral drug bioavailability.

Materials Mechanism of Improving Oral Drug Bioavailability Refs.

TPGS Inhibiting P-gp and increasing solubility of insoluble drugs. [63–66]
PEGs Inhibiting drugs efflux mediated by P-gp. [81]

β-CD Reducing P-gp activity and improving solubility of
insoluble drugs. [71,72,74]

Pluronic Inhibiting the activity of MRP2 and P-gp. [82,83,90]
Polysorbate 20 Inhibiting P-gp activity. [88,89]

Tween 20 Inhibiting drugs efflux mediated ABCG2 and P-gp. [86]
Tween 80 Inhibiting P-gp activity. [8]

Docusate sodium, sodium lauryl sulfate
and sucrose monolaurate Increasing the absorption of ABCG2 substrates. [87]

Cremophor EL Inhibiting ABCG2 and P-gp activities. [86]
Brij 30/58 Reducing activities of P-gp and ABCG2. [8,86]

5. Strategies to Reverse Inhibit Intestinal Drug Efflux

The intestinal drug efflux is one of the important factors impacting oral drug absorp-
tion. It is emergent for scientists to find more strategies to reverse intestinal drug efflux
mediated by intestinal efflux transporters. In order to solve this problem, some feasible
methods for inhibiting intestinal efflux transporters activity have been reported, including
silencing transporters and utilizing functional excipients and inhibitors, and these methods
are introduced in detail as follows.

5.1. Silencing Transporters

Efflux transporters existing at the apical side of enterocytes inhibit oral drug absorption.
To solve this problem, it is advisable to directly silence intestinal efflux transporters or other
proteins that are involved in regulating the expression of intestinal efflux transporters. At
present, small RNA or RNA-related-enzyme inhibitors are frequently used to reduce these
transporters expression. Short hairpin RNA was combined with lentiviral vector to transfect
Caco-2 cells, and then the ABCG2 mRNA and protein of transfected cells sharply decreased,
indicating that ABCG2 was silenced [91]. Gene knockout by CRISPR/CAS9 system was
also available to silence P-gp transporter [92]. The expression amount of sphingomyelin
synthase (SMS) and membrane efflux transporters (P-gp/MRP2) of Caco-2 cells significantly
decreased after Caco-2 cells was treated with the siRNA of SMS, which indicated that SMS
participated in modulating the expression of P-gp and MRP2 [93]. The results showed that
SMS might be a new target for silencing intestinal efflux transporters. Although silencing
efflux transporters is very promising, it is only practicable at the cellular and animal level
and very difficult to achieve the aim of silencing intestinal efflux transporters in clinical
practice. More efficient methods silencing intestinal efflux transporters are still needed to
be found.

5.2. Inhibit Efflux Transporters by Excipients

A lot of amphipathic materials have been proved to inhibit P-gp activity including
TPGS, β-CD, Pluronic, Tween 80, PEGs and Polysorbate 20. As P-gp inhibitors and sta-
bilizers, these excipients have been widely used to prepare various nano-formulations
to overcome intestinal drug efflux to improve oral drug absorption. Chitosan-vitamin E
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succinate copolymer (CS-VES) and β-mercaptoethylamine hydrochloride-modified suc-
cinylated TPGS (TPGS-SH) were synthesized to fabricate PTX-loaded CS-VES/TPGS-SH
nanomicelles via a blank micellar drug delivery method [94]. In this research, the AUC0–t
of PTX-loaded CS-VES/TPGS-SH nanomicelles was 3.58 times higher than that of PTX-
solution due to TPGS-SH inhibiting P-gp activity and chitosan increasing mucus adhesive
ability, and these mechanisms of nanomicelles enhancing PTX oral absorption were shown
in Figure 4. The nintedanib-loaded SEB-β-CD complex obviously decreased the efflux
of nintedanib by inhibiting P-gp activity [77]. Compared to Taxol™, PTX nanocrystals
stabilized by Pl-g-CH copolymer greatly improved PTX oral absorption due to Pl-g-CH
inhibiting P-gp activity [82]. In conclusion, these amphiphilic materials can be used to
fabricate micelles, nanoparticles and nanocrystals to overcome intestinal drug efflux.
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Reprinted with permission from [94]. Copyright© 2017 Elsevier B.V.

5.3. Co-Delivery

In addition to silencing transporters and making use of excipients to inhibit the activity
of intestinal efflux transporters, co-delivering inhibitors and drugs is also a practical method
to inhibit the activity of intestinal efflux transporters and enhance oral drug absorption.
Inhibitors of three main intestinal efflux membrane transporters are well summarized in
Table 1 in detail. At present, three generation P-gp inhibitors have been found including
Elacridar, Valspodar and Zosuquidar, while most of inhibitors could not inhibit P-gp
activity during clinical trials [95]. More clinically efficient inhibitors are still needed to be
found. Reasonable inhibitors of efflux transporters should meet the following requirements:

• effectively inhibiting the activity of several efflux transporters in cell and animal models;
• Being harmless for healthy cells;
• Having not influence metabolic enzymes activity;
• Efficiently inhibiting efflux transporters activities in clinical trials.

The absolute oral bioavailability of docetaxel (DTX) was 45.2% for a self-emulsifying
drug delivery system that co-encapsulated DTX and Cyclosporine A (a P-gp inhibitor),
4.9% for DTX solution because this self-emulsifying drug delivery system reduced in-
testinal DTX efflux [96]. Chitosan (CS) and carboxymethyl chitosan (CMCS) was used
to prepare doxorubicin (DOX)-loaded nanogels (DOX:CS/CMCS-NGs) which was fur-
ther combined with quercetin (Qu) and sodium alginate (ALG) to fabricate multilayer
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DOX: NGs/Qu-M-ALG-Beads [97]. Results of in vitro drug release showed that DOX:
NGs/Qu-M-ALG-Beads was stable in artificial gastric juice and it gradually released Qu
in intestinal juice. In addition, the oral bioavailability of DOX: NGs/Qu-M-ALG-Beads
was 18.56 times higher than that of free DOX due to nanogels being absorbed through the
endocytic pathway and paracellular way and Qu inhibiting intestinal DOX efflux mediated
by P-gp. The intestinal absorption mechanisms of DOX: NGs/Qu-M-ALG-Beads were
shown in Figure 5.
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6. Mechanism of Reversing Intestinal Drug Efflux

To reverse the intestinal drug efflux can be considered from improving dosage forms,
increasing targeting ability and co-administrating drugs with inhibitors. Among these
methods, improving dosage forms is a commonly used method to enhance drug oral
bioavailability. Nanoparticles, micelles, liposomes and other nano-drug delivery forms are
popular oral delivery systems for the following advantages: increasing drugs solubility,
permeability and stability, and realizing the controlled release of drugs.

6.1. Liposomes

Liposomes are bilayer vesicles composed of phospholipid, cholesterol, antioxidant,
surfactant and other basic materials, and its structure is similar to biofilm.

Drug-loaded liposomes are usually administrated by injection rather than by oral
delivery method due to it being unstable in the gastrointestinal environment. Researching
oral liposomes is necessary for its merits such as small particle size, improving insoluble
drugs solubility and being easy to make. In order to achieve better oral absorption of
drugs, many researchers have applicated functional excipients to prepare liposomes. These
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excipients endow liposomes with the ability of restraining P-gp activity, which makes
liposomes become ideal drug oral carrier. Lovastatin (LOV)-loaded TPGS micelles were
prepared via a solvent evaporation method and then these micelles were mixed with
liposomes to fabricate LOV-loaded liposome-micelle-hybrid (LOV-LMH) [98]. LOV-LMH
greatly improved the LOV permeability in Caco-2 monolayer by TPGS inhibiting P-gp-
mediated LOV efflux, which was shown in Figure 6. LMH had great potential in oral
delivering P-gp substrates. PTX-loaded-liposomes (composed of lipid, cholesterol and
Pluronic F127) with its surface packaged by CS obviously improved PTX oral absorption
by prolonging retention time and decreasing intestinal P-gp-mediated PTX efflux [99].
Positively charged glycol CS was used to package negatively charged Sorafenib (SF)-loaded
liposomes to form GC-SF-Lip and then negatively charged Eudragit S100 was mixed with
GC-SF-Lip to fabricate SGC-SF-lip [100]. SGC-SF-lip enhanced the permeability of drugs by
the electrostatic interaction between positively charged GC-SF-lip and negatively charged
gastrointestinal mucosa, and the in vivo pharmacokinetic experiments results showed
that the AUC0–t of SGC-SF-lip was 5.1 times higher than free SF group. Sohail, M.F et al.
successfully fabricated DTX-loaded folate grafted thiolated CS nanoliposomes, the oral
availability of these nanoliposomes was 13.6 folds compared to that of free DTX solution,
which was attributed to thiomers inhibiting P-gp activity and thiolated CS prolonging
intestinal retention time [101].
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6.2. Solid Lipid Nanoparticles

Lipids are used as carriers to wrap drugs in lipid membranes to prepare Solid Lipid
nanoparticles (SLNs) which accomplish the aim of controlling drug release, enhancing
drugs solubility, increasing drug stability, improving drug loading efficiency and targeting
at specific tissues and organs. In addition, SLNs were absorbed into intestinal lymphatic
vessels by M cell phagocytosis, which avoided the liver first-pass effect [102].

To obtain ideal oral carriers, researchers have widely applied functional excipients to pre-
pare novel SLNs, which endows these SLNs with P-gp inhibition. TPGS and Brij78 were used
to fabricate curcumin (Cur)-loaded SLNs and results showed that the AUC0–t of Cur-loaded
SLNs was 12.27 times higher than that of free Cur [7]. Lumefantrine-loaded SLNs (LF-SLNs)
with TPGS as stabilizer and P-gp inhibitor were prepared via a hot high shear homogeniza-
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tion ultrasonication method. The AUC0–t of LF-SLNs was 42,945.14 ± 2475.14 (h.ng/mL),
while the AUC0–t of LF solution was 19,331.23 ± 1301.72 (h.ng/mL), which suggested that
this SLNs could significantly improve LF bioavailability by inhibiting P-gp activity and
the mechanism was shown in Figure 7 [103]. In addition to application of functional
excipients, SLNs could improve drug oral absorption by increasing drug solubility and
stability. Compared to the free camptothecin (CPT) group, the accumulative absorption of
CPT-SS-PA-loaded SLNs in Caco-2 cells was significantly enhanced, which was attributed
to the small size of SLNs and higher lipid solubility of CPT-SS-PA (a lipid derivative of
CPT) [104]. Nunes’s research showed that SLNs obviously increased the stability of phe-
nolic drugs, thus improving their oral bioavailability [105]. Although SLNs show great
potential in oral drug delivery, they are unstable in gastrointestinal environment due to
lipases degrading them. A lipase inhibitor orlistat (OLST) was incorporated into SLNs to
load fluorescence (P2- or P4-OLST-SLNs), and the fluorescence intensity of P2-OLST-SLNs
in blood was higher than SLNs without incorporation of OLST [106]. Lymphatic trans-
port of P4 was 7.56% for OLST-SLNs and 1.27% for SLNs, which was attributed to OLST
protecting OLST-SLNs from lipolysis thus resulting in more particles survival.
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6.3. Nanoemulsion and Self-Emulsified Drug Delivery Systems

Nanoemulsion (NE) and self-emulsified drug delivery systems (SMEDDS) composed
of two incompatible phases, surfactant and co-surfactant, are stable oil-water mixed sys-
tems with a particle size of 10–100 nm, both of which are ideal oral carriers improving
drugs solubility and stability. To reverse intestinal drug efflux, besides their own merits,
the application of functional excipients or inhibitors to prepare NE and SMEDDS is a
feasible method.

Honokiol (a P-gp inhibitor) was encapsulated into SMEDDS with sirolimus, and the
efflux ratio of sirolimus was about 35-folds lower than sirolimus-loaded SMEDDS without
incorporation of honokiol [107]. NE could improve drugs oral absorption by improving
solubility and permeability of drugs and intestinal lymphatic transport. Compared to
BBH suspension, the oral relative bioavailability of BBH-loaded NE was 440.40%, which
was attributed to NE improving the intestinal permeability and solubility of BBH [108].
The oral Cmax of methotrexate was 81.72 ± 23.01 (ng/mL) for methotrexate-loaded NE,
12.13 ± 3.38 (ng/mL) for free methotrexate, which was due to methotrexate-loaded NE
being absorbed into lymphatic vessel [109]. NE-loaded CS sponges with two merits in-
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cluding improving intestinal mucoadhesive properties and drugs permeability might have
potential for orally delivering drugs [110]. In addition to making use of its own merits,
application of inhibitors to prepare NE is an advisable method for improving drugs absorp-
tion. In addition to possessing anticancer effect, Ginsenoside Rh2 (G-Rh2) and coix seed oil
were also separately used as mimic surfactant and oil phase to fabricate etoposide-loaded
microemulsions (ECG-MEs) [13]. ECG-MEs obviously improved etoposide oral absorption
and the in vivo anticancer results showed the tumor growth inhibition rate was 70.7% for
ECG-MEs, 36.1% for EC-MEs without G-Rh2. To research the possible mechanisms of
ECG-MEs improving drug oral absorption, the P-gp expression and its ATPase activity
were studied. The ∆RLU (relative light unit) value obviously increased after MCF-7/MDR
cells treated with G-Rh2 or ECG-MEs, which indicated that G-Rh2 inhibited P-gp activity
by activating its ATPase activity. In addition, the in vivo imaging results showed that ECG-
MEs could efficiently accumulate at the tumor site by the EPR effect. These mechanisms
about ECG-MEs facilitating etoposide oral absorption were shown in Figure 8.
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Figure 8. Schematic design of multicomponent microemulsions, ECG-MEs, for oral delivery of
anticancer drug to overcome the MDR tumor. Reprinted with permission from [13]. Copyright©
American Chemical Society.

6.4. Polymer Micelles

Synthetic amphiphilic copolymers spontaneously self-assemble in water to form poly-
mer micelle with a size of 1–100 nm to encapsulate drugs, which would greatly improve
drugs solubility, stability and oral bioavailability [111–113].

To increase oral absorption by reversing intestinal drug efflux, taking functional excip-
ients or inhibitors to prepare drug-loaded micelles is a feasible method. Berberine-loaded
micelles composed of Pluronic 85 and Tween 80 [79]. The AUC0–t of Thalifendine-Glu, a
metabolite of berberine in plasma, was 20,371 ± 12,753 (ng.min/mL) for berberine-loaded
micelles, 4269 ± 1680 (ng.min/mL) for free berberine, which suggested that the micelles
obviously improved the oral availability of berberine due to Pluronic 85 and Tween 80
inhibiting P-gp activity [79]. A new CS derivative (OPPC) was used to fabricate micelles to
encapsulate PTX (PTX/OPPC) and the AUC0–24h of PTX/OPPC was 6.75 ± 1.66 (ug.h/mL),
while that of Taxol® was 1.22 ± 0.48 (ug.h/mL), which was attributed to OPPC decreasing
P-gp activity [14]. The concrete mechanisms of PTX/OPPC micelles improving drug oral
absorption included transcytosis and P-gp inhibition, which were shown in Figure 9. To
improve drugs absorption, it is also advisable to endow micelles with the ability of targeting
and binding intestinal absorptive transporters. The oral absorption of Valine/phenylalanine
grafted-Cur-loaded TPGS derivatives polymeric micelles was 10.50-fold greater than that
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of Cur solution, which was mainly attributed to that these micelles actively combined with
Peptide transporter 1 (PepT1, an absorptive transporter protein of intestinal epithelium)
and inhibited P-gp-activity to improve drug absorption [114]. Qu-loaded CS micelles
might be ideal oral carriers for it improving drugs oral absorption by inhibiting P-gp and
opening the tight junction [10]. Thioglycolic acid-modified CS (SH-OCG) was synthesized
to prepare PTX-loaded SH-OGC micelles that had a great potential in oral drug delivery
due to it inhibiting P-gp efflux, unfolding intestinal tight junctions and increasing intestinal
mucosa adhesive capacity [115].
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6.5. Nanoparticles

Nanoparticles (NPs) have so many advantages such as improving drugs solubility,
increasing drugs stability and small size that NPs become a research hot area for orally de-
livering drugs. Utilizing functional excipients to endow NPs with the properties of mucous-
adhesive ability or P-gp inhibition is an advisable method to improve drugs oral absorption.
Wang, Q. et al. added poly (vinyl methyl ether/maleic anhydride) (PVMMA) to prepare
PTX-loaded NPs (PTX-m-NPs) via the emulsification solvent evaporation method [116].
The AUC0–t of PTX was 62.2 ± 10.4 (ng.h/mL) for PTX-m-NPs, 30.8 ± 5.5 (ng.h/mL) for
PTX-loaded NPs without PVMMA, 29.3 ± 7.8 (ng.h/mL) for Taxol®, which indicated that
NPs composed of bioadhesive PVMMA excipient had great ability to improve oral bioavail-
ability of drugs by prolonging intestinal retention time. It was found that Brij-grafted-CS
(BC12) significantly decreased the intracellular ATP level of MDCK-MDR1 cells [117]. The
TEER of MDCK-MDR1 monolayer treated with Berberine-loaded-BC12 NPs significantly
decreased, which indicated that BC12 NPs opened the tight junctions. In conclusion, BC12
NPs might become ideal oral carriers that improve insoluble P-gp substrates absorption
by inhibiting P-gp and opening tight junctions. The bioavailability of topotecan-loaded



Pharmaceutics 2022, 14, 1131 15 of 20

core-shell lipid NPs was 1.62-folds compared to free topotecan due to intestinal lymphatic
transport of lipid NPs [118].

6.6. Nanocrystals

Nanocrystals (NCs) are stable dispersion system formed by drug particles and a small
amount of surfactant or polymer materials. NCs gradually become ideal oral carriers due to its
high drug encapsulation rate and loading ratio, P-gp inhibition and prolonged retention time.

Pluronic-CS co-polymer was synthesized to prepare PTX-loaded NCs [82]. In com-
parison to Taxol™, PTX-loaded NCs showed better oral absorption and anti-tumor effect
because NCs improved the solubility of PTX, prolonged retention time through the electro-
static interaction between CS and intestinal mucosa, opened tight junctions and inhibited
P-gp efflux [82]. NCs are degraded in gastrointestinal environment. Thus, protecting NCs
from being degraded is an advisable method to improve drug-loaded NCs absorption. A
phospholipid bilayer (containing TPGS) was used to encapsulate saquinavir (SQV, a P-gp
substrate) pure drug NPs to form Lipo@nanodrug [119]. It was found that Lipo@nanodrug
mainly located at the endoplasmic reticulum and Golgi apparatus of Caco-2 cells in intact
nanostructure. Results of in vivo imaging showed that the absorption of Lipo@nanodrug
was faster than pure drug NPs after 3 h of SD rats received these nanoparticles. In addition,
the oral bioavailability of Lipo@nanodrug was 1.77-fold higher than pure drug NPs, which
was due to that Lipo@nanodrug inhibited intestinal P-gp activity, prevented the drug
releasing form pure drug NPs and improved lipid raft mediated transcytosis, and these
mechanisms and results were clearly shown in Figure 10. More efficient oral NCs are still
needed to be fabricated for improving drugs oral availability.
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7. Conclusions

Oral administration is an ideal option for patients to accept treatment, by which pa-
tients would bear less financial burden and have better compliance. However, the oral
bioavailability of some drugs is limited due to intestinal efflux transporters-mediated drug
efflux. To overcome the poor oral absorption of drugs caused by intestinal efflux trans-
porters, we comprehensively summarize typical intestinal efflux transporters including
P-gp, MRP2 and ABCG2. In addition, lots of amphiphilic materials such as Pluronic 85,
Tween 20 and TPGS that inhibit efflux transporters activity have been introduced in detail.
Furthermore, plenty of intestinal efflux transporters inhibitors have been introduced in-
cluding cyclosporine A, HM30181A and pyrimidine. Finally, we systematically summarize
various nano-formulations that successfully improve drugs oral absorption by decreasing
the activity of intestinal efflux transporters. Our work would help researchers to better un-
derstand the effect of intestinal efflux transporters on drugs oral absorption. In conclusion,
this review has a significant reference for reversing intestinal drug efflux to improve oral
drug absorption.
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