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Abstract Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors

(RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then

dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM

ensemble of E. coli 70S.RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a

highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA

departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a

long b-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit.

Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and

disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures

visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made

protein and RF2 to dissociate in preparation for ribosome recycling.

DOI: https://doi.org/10.7554/eLife.46850.001

Introduction
Ribosomes terminate translation when release factors (RFs) recognize an mRNA stop codon in the A

(aminoacyl-tRNA) site (Brenner et al., 1967; Brenner et al., 1965). Upon stop-codon recognition,

the release factor hydrolyzes peptidyl-tRNA in the P site of the large subunit, thus releasing nascent

protein from the ribosome (Capecchi, 1967a; Capecchi, 1967b; Scolnick et al., 1968;

Tompkins et al., 1970). In bacteria, RF1 recognizes UAA or UAG, and RF2 recognizes UAA or UGA

codons (Nakamura et al., 1995). Following peptide release, RF1 or RF2 must dissociate from the

ribosome to allow the ribosome and release factor to recycle. While structural studies have provided

snapshots of some peptidyl-tRNA hydrolysis steps (reviewed in Dunkle and Cate, 2010; Koroste-

lev, 2011; Ramakrishnan, 2011; Rodnina, 2018; Youngman et al., 2008), recent biophysical and

biochemical findings suggest a highly dynamic series of termination events (Adio et al., 2018;

Indrisiunaite et al., 2015; Prabhakar et al., 2017; Sternberg et al., 2009), which have not been

structurally visualized.

In the pre-termination (pre-hydrolysis) state, the substrate peptidyl-tRNA resides in a non-rotated

(classical) conformation of 70S ribosome, with its anticodon stem loop bound to the mRNA codon in

the P site of the small 30S subunit and the 30-terminal CCA-peptidyl moiety in the P site of the large

50S subunit (Agrawal et al., 2000; Ermolenko et al., 2007). Cryogenic electron microscopy (cryo-

EM) and X-ray studies reveal RF1 or RF2 bound in the A site next to P tRNA (Klaholz et al., 2003;

Petry et al., 2005; Rawat et al., 2006; Rawat et al., 2003), and provide insight into pre-hydrolysis

(Jin et al., 2010) and post-hydrolysis states (Korostelev et al., 2008; Korostelev et al., 2010;

Laurberg et al., 2008; Weixlbaumer et al., 2008). The release factor’s codon-recognition domain
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(domain 2) binds the stop codon in the 30S decoding center. The catalytic GGQ motif (glycine-gly-

cine-glutamine of domain 3) inserts into the 50S peptidyl-transferase center (PTC) adjacent to the

CCA end of P-tRNA. Ribosomes retain the non-rotated conformation in RF-bound structures, includ-

ing those with mutated or post-translationally modified RFs (Pierson et al., 2016; Santos et al.,

2013; Zeng and Jin, 2018) or when RFs are perturbed by the termination inhibitor blasticidin S

(Svidritskiy and Korostelev, 2018a; Svidritskiy and Korostelev, 2018b) or by a sense codon in the

A site (Svidritskiy et al., 2018). The catalytic GGQ loop adopts the same compact conformation

comprising a short a-helix in pre-hydrolysis-like and post-hydrolysis structures, as discussed below.

Ribosome and RF dynamics are implicated in post-hydrolysis steps. In E. coli, RF1 dissociation is

assisted by the non-essential GTPase RF3 (Freistroffer et al., 1997; Koutmou et al., 2014), whereas

RF2 can spontaneously dissociate from the ribosome (Adio et al., 2018). RF3 induces rotation of the

small subunit relative to the large subunit by ~9 degrees in the absence of RF1 and RF2

(Ermolenko et al., 2007; Zhou et al., 2012) and stabilizes a ‘hybrid’ state of deacylated tRNA (P/E)

(Gao et al., 2007; Jin et al., 2011). In the P/E conformation, the anticodon stem loop remains in the

30SS P site, while the elbow and acceptor arm bind the L1 stalk and E (exit) site of the 50S subunit.

A recent cryo-EM study (Graf et al., 2018) showed that if RF1 is locked on the post-hydrolysis ribo-

some by antibacterial peptide apidaecin 137 (Florin et al., 2017), the ribosome can undergo intersu-

bunit rotation in the presence of both RF1 and RF3. By contrast, biochemical experiments showed

that locking RF1 on the ribosome by inactivating its catalytic motif (GGQ->GAQ) prevented RF1

recycling by RF3 from the pre-hydrolysis ribosome (Koutmou et al., 2014), echoing the deficiency

of mutant RF2 (GGQ->GAQ) in stimulating GTP hydrolysis by RF3 (Zavialov et al., 2002). These and

other (Adio et al., 2018) observations indicate that peptidyl-tRNA hydrolysis is critical for RF dissoci-

ation, likely due to propensity of deacylated tRNA for exiting the P site and sampling the P/E hybrid

state (Moazed and Noller, 1989) via spontaneous intersubunit rotation (Cornish et al., 2008). Nev-

ertheless, RF3 is dispensable for growth of Escherichia coli (Grentzmann et al., 1994; Mikuni et al.,

1994), and its expression is not conserved in bacteria (Leipe et al., 2002). For example, RF3 is not

present in the thermophilic model organisms of the Thermus and Thermatoga genera and in infec-

tious Chlamydiales and Spirochaetae. This means that both RF1 and RF2 are capable of performing

a complete round of termination independently of RF3. Indeed, recent Förster Resonance Energy

Transfer (FRET) studies demonstrate spontaneous RF1 and RF2 dissociation after peptidyl-tRNA

hydrolysis (Prabhakar et al., 2017), coupled with transient RF sampling of the rotated ribosomes

(Adio et al., 2018). The structural basis for RF dissociation, however, remains incompletely under-

stood because RFs have not been structurally visualized on ribosomes with rearranged/rotated subu-

nits in the absence of RF3 and inhibitors.

In this work, we used ensemble cryo-EM, as described earlier (Abeyrathne et al., 2016;

Loveland et al., 2017), employing 3D maximum likelihood classification/sorting of particle images

(Lyumkis et al., 2013; Scheres, 2010; Scheres et al., 2007) to visualize the structural dynamics of

RF2 on the 70S ribosome (Figure 1, Figure 1—figure supplement 1, Figure 1—figure supplement

2 and Figure 1—figure supplement 3). The structures capture RF2 and tRNA in distinct 70S confor-

mational states (Table 1). They reveal an unexpected rearrangement of the catalytic GGQ loop,

which suggests that RF2 helps direct nascent protein out of the ribosome. Our findings reconcile

biophysical observations and, together with other structural studies, allow a reconstruction of the

termination course by RF2, from initial binding to dissociation.

Results and discussion
We formed a termination complex using E. coli 70S ribosomes and RF2 to catalyze the hydrolysis of

substrate N-formyl-methionyl-tRNAfMet (fMet-tRNAfMet) bound to mRNA carrying an AUG codon in

the P site and a UGA stop codon in the A site. Although the stop codon is placed immediately after

the start codon, unlike in cellular mRNAs, such model termination complexes have been successfully

used in numerous structural, biochemical and biophysical studies (Adio et al., 2018; Casy et al.,

2018; Koutmou et al., 2014; Kuhlenkoetter et al., 2011; Laurberg et al., 2008; Pallesen et al.,

2013; Pierson et al., 2016; Shi and Joseph, 2016; Sternberg et al., 2009). Indeed, under the con-

ditions used for cryo-EM sample preparation in this work, RF2 supports hydrolysis of fMet-tRNAfMet

and release of fMet (Figure 1—figure supplement 4), demonstrating activity of the ribosome and

RF2 in our sample. Maximum-likelihood classification of cryo-EM data in FREALIGN (Lyumkis et al.,

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850 2 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.46850


2013) yielded five structures at average resolutions of 3.3 Å to 4.4 Å (Table 2; Figure 1). The struc-

tures differ by the degrees of intersubunit rotation and 30S head rotation (swivel), and are consistent

with the following termination stages: pre-termination (i.e., no RF2; Structure I); peptidyl-tRNA

Figure 1. Cryo-EM Structures I to V. Panels A-E show for each structure: upper row: a schematic of the

conformations of the 70S ribosome, tRNA and RF2, with ribosomal subunits (50S and 30S) and A, P and E sites

labeled; middle row: structures with RF2 shown in red, tRNAfMet in orange, 30S subunit in yellow, 50S subunit in

cyan and mRNA in purple; lower row: cryo-EM density for mRNA, tRNA and RF2, colored as in the middle row.

Domains of RF2 are labeled in panel B, illustrating the codon-recognition superdomain (domains 2 and 4) and

catalytic domain (3).

DOI: https://doi.org/10.7554/eLife.46850.002

The following figure supplements are available for figure 1:

Figure supplement 1. Maximum-likelihood classification strategies to obtain the final maps and state occupancies

(shown as percentages of particles for each classification).

DOI: https://doi.org/10.7554/eLife.46850.003

Figure supplement 2. Global and local resolution of Structures I-V.

DOI: https://doi.org/10.7554/eLife.46850.004

Figure supplement 3. A representative micrograph of the 70S.RF2 sample showing ribosome particles.

DOI: https://doi.org/10.7554/eLife.46850.005

Figure supplement 4. RF2 mediates formyl-methionine release from 70S ribosomes.

DOI: https://doi.org/10.7554/eLife.46850.006

Table 1. Cryo-EM structures obtained from a single sample of the 70S.RF2 complex.

I II III IV V

tRNA and RF2
occupancy

P-tRNA P-tRNA,
RF2

P-like (L5) tRNA, RF2 P/E-like (L1) tRNA, RF2 P/E tRNA

30S (body)
rotation

1.6˚ 1.6˚ 4.9˚ 7.4˚ 6.8˚

30S head rotation
(swivel)

2.0˚ 1.4˚ 1.7˚ 2.8˚ 6.0˚

Resolution (FSC = 0.143) 3.3 Å 3.3 Å 3.7 Å 4.4 Å 3.4 Å

DOI: https://doi.org/10.7554/eLife.46850.007

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850 3 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.46850.002
https://doi.org/10.7554/eLife.46850.003
https://doi.org/10.7554/eLife.46850.004
https://doi.org/10.7554/eLife.46850.005
https://doi.org/10.7554/eLife.46850.006
https://doi.org/10.7554/eLife.46850.007
https://doi.org/10.7554/eLife.46850


hydrolysis by RF2 (Structure II); tRNA exit from the PTC (Structure III); destabilization of the catalytic

domain of RF2 (Structure IV); and post-termination (i.e., after RF2 dissociates; Structure V).

Pre-termination-like Structure I contains tRNA in the P site with its 30-CCA end positioned in the

peptidyl transferase center (Figure 1A). Although the tRNA is likely partially or completely

Table 2. Data collection and refinement statistics for cryo-EM Structures I-V.

STRUCTURE I II III IV V

PDB ID
EMD code

6OFX
20048

6OG7
20052

6OGF
20056

6OGG
20057

6OGI
20058

Data collection

EM equipment FEI Titan Krios

Voltage (kV) 300

Detector K2 summit

Pixel size (Å) 1.33

Electron dose (e-/Å2) 29.4

Defocus range (mm) – 0.5 – 1.8

Reconstruction

Software Frealign v9.11

Number of particles
in final map

102,723 62,029 28,549 5,881 63,383

Final resolution (Å) 3.3 3.3 3.7 4.4 3.4

Average sharpening B factor (Å2) -30 -26 -17 -4 -30

Structure Refinement

Model Fitting Chimera/Pymol

Refinement

Software RSRef/Phenix

Correlation Coefficient,cc_mask * 0.83 0.84 0.84 0.76 0.82

Real-space R-factor † 0.25 0.23 0.22 0.25 0.25

Validation (proteins)

MolProbity Score ‡ 2.22 2.34 2.42 2.26 2.24

Clash score, all atoms ‡ 17.4 17.4 16.5 15.1 16.3

Poor rotamers (%) ‡ 0.4 0.7 0.7 0.6 0.5

Favored/allowed
rotamers (%) ‡

99.6 99.3 99.3 99.4 99.5

Ramachandran-plot statistics

Outlier (%) ‡ 0 0.6 0.8 0.0 0.4

Favored (%) ‡ 92.2 88.1 82.3 89.0 90.7

R.m.s. deviations †,§

Bond length (Å) 0.008 0.006 0.006 0.006 0.009

Bond angle (˚) 1.064 0.892 0.922 0.848 1.113

Validation (RNA)

Good sugar puckers (%) ‡ 99.7 99.8 99.8 99.8 99.8

Good backbone
conformation (%) ‡

82.9 84.6 85.0 85.0 82.0

*from Phenix
†from RSRef
§root-mean-square deviations
# RNA backbone suites that fall into recognized rotamer conformations defined by MolProbity

DOI: https://doi.org/10.7554/eLife.46850.008
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deacylated due to the action of RF2, the tRNA and ribosome conformations closely resemble those

in pre-termination aminoacyl- and peptidyl-tRNA complexes (Adio et al., 2018; Cornish et al.,

2008; Jin et al., 2010; Polikanov et al., 2014). The 30S subunit adopts a conformation similar to

crystal structures of non-rotated ribosomes with or without RFs (Jin et al., 2010; Korostelev et al.,

2008; Korostelev et al., 2006; Korostelev et al., 2010; Laurberg et al., 2008; Selmer et al.,

2006; Weixlbaumer et al., 2008), and exhibits a slight ~1.5˚ rotation relative to the 70S.RF2 crystal

structure formed with the UGA stop codon (Weixlbaumer et al., 2008).

RF2 is bound in Structures II to IV (Figure 1B–D). The 70S intersubunit rotation ranges from ~1.5˚

in Structure II to ~7.5˚ in Structure IV (Table 1). This nearly full range of rotation is typical of translo-

cation complexes with tRNA (Agirrezabala et al., 2008; Agirrezabala et al., 2012; Dunkle et al.,

2011; Fischer et al., 2010; Julián et al., 2008) and elongation factor G (EF-G) (Brilot et al., 2013;

Chen et al., 2013; Frank and Agrawal, 2000; Gao et al., 2009; Pulk and Cate, 2013;

Tourigny et al., 2013; Zhou et al., 2013).

The most well-resolved 3.3 Å resolution Structure II (Figure 1B) accounts for the largest popula-

tion of RF2-bound ribosome particles in the sample (Table 2), consistent with stabilization of the

non-rotated 30S states by RF2 observed in FRET studies (Casy et al., 2018; Prabhakar et al., 2017;

Sternberg et al., 2009). The overall extended conformation of RF2 resembles that seen in published

70S.RF2 structures (Korostelev et al., 2008; Weixlbaumer et al., 2008) with its codon-recognition

superdomain (domains 2 and 4; Figure 1B) bound to the UGA stop codon in the decoding center of

the 30S subunit and its catalytic domain 3 inserted into the peptidyl-transferase center.

Structure II features RF2 with a dramatically rearranged catalytic loop, coinciding with the lack of

density for the CCA end of the P tRNA. In previous pre- and post-hydrolysis-like structures, the

P-tRNA CCA end binds the PTC, and RF2 forms a compact catalytic loop (residues 245–258). In

Figure 2. Rearrangement of the catalytic domain of RF2 upon tRNA displacement from the PTC. (A)

Rearrangements of RF2 in Structure II (RF2 in red, P-tRNA in orange and 23S in cyan) in comparison with the

canonical 70S.RF2 conformation (X-ray structure: Korostelev et al., 2008; RF2 in pink, P-tRNA in light orange, 23S

in gray). Arrows show rearrangements for RF2 (red), tRNA acceptor arm and 23S nucleotide A2602 (black). The

superposition was achieved by structural alignment of 23S rRNA. (B) The GGQ region of RF2 forms a long b-

hairpin that reaches into the constriction of the peptide tunnel (at A2062) and thus plugs the tunnel. Nucleotides

of 23S rRNA and the GGQ motif are labeled. (C) Cryo-EM density for the b-hairpin formed by the GGQ region.

Residues of RF2 and 23S rRNA (also shown in panel B for reference) are labeled.

DOI: https://doi.org/10.7554/eLife.46850.009

The following figure supplements are available for figure 2:

Figure supplement 1. Rearrangements of PTC nucleotides (cyan) upon formation of the b-hairpin structure by the

catalytic region of RF2 (red; Structure II is shown).

DOI: https://doi.org/10.7554/eLife.46850.010

Figure supplement 2. Cryo-EM density (mesh) shows that the tip of the GGQ loop of RF2 is poorly ordered (gray

model) when the catalytic domain adopts the b-hairpin conformation (red; Structure II is shown).

DOI: https://doi.org/10.7554/eLife.46850.011
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these previous structures, the catalytic 250GGQ252 motif resides at the tip of a short a-helix, adjacent

to the terminal tRNA nucleotide A76 (Figure 2A, light shades; (Jin et al., 2010; Korostelev et al.,

2008; Laurberg et al., 2008; Weixlbaumer et al., 2008). The a-helical region is held in place by

A2602 of 23S ribosomal RNA (rRNA), which is critical for termination efficiency (Amort et al., 2007;

Polacek et al., 2003). In Structure II, however, the catalytic loop adopts an extended b-hairpin con-

formation that reaches ~10 Å deeper into the peptide tunnel (Figure 2A–B). To accommodate the

extended b-hairpin, nucleotides G2505 and U2506 of 23S rRNA are shifted to widen the PTC (Fig-

ure 2—figure supplement 1A). The center of the b-hairpin occupies the position normally held by

A76 of P tRNA (Figure 2A). The lack of density for the CCA moiety thus suggests that the 30 end of

P tRNA is at least partially released from the PTC. Indeed, formation of the b-hairpin and release of

the CCA moiety is accompanied by a slight shift in the P-tRNA acceptor arm away from the PTC and

by ~160˚ rotation of nucleotide A2602 to form a Hoogsteen base pair with C1965 at helix 71 of 23S

rRNA (Figure 2A and Figure 2Figure 2—figure supplement 1B). The cryo-EM map shows strong

density for the extended b strands (Figure 2C), but weaker density for the GGQ residues at the tip

of the hairpin, consistent with conformational heterogeneity of the flexible glycine backbone (Fig-

ure 2—figure supplement 2). Nevertheless, the tip of the b-hairpin plugs the narrowest region of

the peptide tunnel at A2062 of 23S rRNA (Figure 2B). Thus, Structure II appears to represent a pre-

viously unseen post-peptide-release state with deacyl-tRNA dissociating from the PTC.

In Structure III (Figure 1C), a 5˚ rotation of the 30S subunit shifts the tRNA elbow by ~10 Å along

protein L5 toward the E site. As a result, the P-tRNA acceptor arm pulls further out of the 50S P site,

and the end of the acceptor arm helix points at helix a7 of RF2 near positively charged Lys 282 and

Lys 289. The CCA moiety remains unresolved. The 5˚ intersubunit rotation also causes a slight 2˚

rotation of RF2 domain 3 relative to domain 2, but the overall conformation of RF2 remains similar

to that in Structure II, with the tip of the extended b-hairpin plugging the peptide exit tunnel.

Figure 3. Differences in conformations of RF2 and helix 69 of 23S rRNA in Structures II, IV and V. (A) RF2 in

Structures II (red) and IV (blue) in comparison with the crystal structure of isolated (free) RF2 (green, PDB 1GQE

[Vestergaard et al., 2001]). The arrow shows the direction of domain three repositioning from Structure II to IV to

free RF2. Structures were aligned by superposition of domain 2. (B) Interactions of H69 (teal) with the switch loop

(pink surface) of RF2 in Structure II (RF2 in red, P-tRNA in orange, 50S in cyan and 30S in yellow). Domains 2 and 3

of RF2, head and body domains of the 30S subunit and nucleotides A1913 (at H69) and C1054 (head) are labeled.

(C) In Structure V, dissociation of H69 from the decoding center and packing on H71 next to A2602 disassembles

intersubunit bridge B2a. The structure is colored as in panel B. View in panels B and C is rotated by ~180˚ relative

to panel A.

DOI: https://doi.org/10.7554/eLife.46850.012

The following figure supplement is available for figure 3:

Figure supplement 1. Structure alignments show that the disengaged H69 in Structure V (teal) is incompatible

with the extended (red, Structure II) and compact (pink, PDB 1GQE [Vestergaard et al., 2001]) conformations of

RF2 due to steric hindrance.

DOI: https://doi.org/10.7554/eLife.46850.013

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850 6 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.46850.012
https://doi.org/10.7554/eLife.46850.013
https://doi.org/10.7554/eLife.46850


In Structure IV, the 30S subunit is rotated 7.5˚ and the P-tRNA elbow is bound to the L1 stalk, an

interaction normally observed with the P/E or E tRNA (Dunkle et al., 2011; Korostelev et al., 2006;

Selmer et al., 2006). Unlike P/E tRNA, however, the acceptor arm is oriented between the 50S P

and E sites (Figure 1D), suggesting that the tRNA adopts a transient state on its way toward the

hybrid P/E conformation. This transition coincides with an ~3˚ rotation (swivel) of the 30S head, char-

acteristic of intermediate stages of tRNA and mRNA translocation (Abeyrathne et al., 2016;

Ratje et al., 2010). The codon-recognition superdomain of RF2 in its canonical conformation moves

with the 30S subunit, causing the catalytic domain to shift by ~5 Å from its position in Structure II

(Figure 3A). Indeed, reduced density for the catalytic domain and domain 1, which bridges the 30S

and 50S subunits at the A site periphery (Figure 1B), suggests that intersubunit rotation has destabi-

lized RF2. In Structure IV, therefore, RF2 appears to be poised for dissociation and collapsing toward

the compact conformation adopted by free RFs (Figure 3A) (JCSG, 2005; Shin et al., 2004;

Vestergaard et al., 2001; Zoldák et al., 2007).

Structure V is incompatible with RF2 binding and provides further insights into RF2 dissociation.

The rotated 70S.tRNA structure resembles hybrid P/E states, with the acceptor arm of tRNA

directed toward the E site of 50S (Figure 1E). However, the central intersubunit bridge B2a—formed

by helix 69 (H69, nt. 1906–1924) of 23S rRNA—is disassembled (Figure 3B–C). In RF-bound struc-

tures (including Structures I to IV, above), the tip of H69 (at nt 1913) locks into the decoding center

in a termination-specific arrangement (Korostelev et al., 2008; Korostelev et al., 2010;

Laurberg et al., 2008; Weixlbaumer et al., 2008). H69 interacts with the switch loop of RFs, where

the codon-recognition superdomain connects to catalytic domain 3 (e.g., Structure II, Figure 3B).

This interaction directs the catalytic domain toward the PTC (Korostelev et al., 2010;

Laurberg et al., 2008) and thus defines the efficiency and accuracy of release factors

(Svidritskiy and Korostelev, 2018a). In Structure V, however, H69 is disengaged from the decoding

center and moved ~15 Å toward the large subunit to pack against H71 near A2602 (nt 1945–1961;

Figure 3C). The new position of H69 would clash with extended or compact conformations of RF2

(Figure 3—figure supplement 1), if the release factor had remained bound to the decoding center.

Release of RF2 also appears to be coupled to rotation (swivel) of the 30S head domain. In RF2-

bound structures, the conserved codon-recognition 205SPF207 motif (serine-proline-phenylalanine of

domain 2) of RF2 interacts with the stop codon and the 30S head near bulged nucleotide C1054 of

16S rRNA. In Structure V, a 6˚ rotation of the 30S head shifts the position of C1054 by 5 Å from its

position in RF2-bound Structure IV, consistent with disassembly of RF2 contacts. The disruption of

Figure 4. Scheme of the termination mechanism.

DOI: https://doi.org/10.7554/eLife.46850.014
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decoding-center interactions due to repositioning

of H69 and head swivel therefore explain the

absence of RF2 in Structure V.

Mechanism of translation
termination by RF2
Our termination structures allow us to reconstruct

a dynamic pathway for termination (Figure 4 and

Animation 1) and reconcile biophysical and bio-

chemical findings (Adio et al., 2018; Casy et al.,

2018; Prabhakar et al., 2017; Sternberg et al.,

2009). Recent structural studies revealed com-

pact RF conformations on non-rotated 70S ribo-

somes (Fu et al., 2018; Svidritskiy and

Korostelev, 2018a) that suggest how RFs open

at early stages of codon recognition (He and

Green, 2010; Hetrick et al., 2009; Trappl and

Joseph, 2016). The short-lived transition from

compact to open conformation(s) lasts tens of

milliseconds (Fu et al., 2018), and compact RF2

conformations were not captured in our sample.

Compact RF2 was also visualized by cryo-EM on

the 70S ribosome in the presence of truncated

mRNA and alternative rescue factor A (ArfA)

(Demo et al., 2017; James et al., 2016), suggesting a conserved pathway for initial binding of RFs

to non-rotated ribosomes. Together with these recent studies, our work provides an expanded struc-

tural view of the termination reaction – from initial codon recognition to peptide release to RF2 dis-

sociation (Figure 4).

Termination begins when release factor recognizes a stop codon in the A site of a non-rotated (or

slightly rotated) 70S ribosome carrying peptidyl-tRNA (Figure 4A). A compact release factor recog-

nizes the stop codon, while its catalytic domain is kept 60 to 70 Å away from the PTC (Fu et al.,

2018). Separation of the codon-recognition and catalytic functions during initial binding of RF under-

lies high accuracy of termination (He and Green, 2010; Laurberg et al., 2008; Svidritskiy and Kor-

ostelev, 2018a; Trappl and Joseph, 2016). Upon binding the decoding center, steric hindrance

with P-tRNA forces the RF catalytic domain to undock from domain two and sample the intersubnit

space (Figure 4B) (discussed in Svidritskiy and Korostelev, 2018a). The ribosome remains non-

rotated because peptidyl-tRNA bridges the P sites of 30S and 50S subunits. Interactions between

the switch loop of RF and the decoding center and H69 direct the catalytic domain into the PTC.

The GGQ catalytic loop is placed next to the scissile ester bond of peptidyl-tRNA and stabilized by

A2602 (Jin et al., 2010; Laurberg et al., 2008), so that the Gln backbone amide of the GGQ motif

can catalyze peptidyl-tRNA hydrolysis (Figure 4C) (Korostelev et al., 2008; Santos et al., 2013).

These ribosome and RF2 rearrangements complete the first stage of termination leading to pep-

tidyl-tRNA hydrolysis—an irreversible step that separates the newly made protein from P-site tRNA

and prevents further elongation.

To be recycled, the ribosome must release the nascent protein and RF. The deacylated CCA end

of the tRNA exits the 50S P site, which allows movement of A2602. No longer stabilized by the

tRNA and A2602, the GGQ loop reorganizes into an extended b-hairpin that blocks the peptide tun-

nel (Structure II), thus biasing the diffusion of nascent peptide toward the exit of the peptide tunnel

at the surface of the 50S subunit (Figure 4D). Furthermore, the exit of the CCA end from the P site

supports formation of the P/E-tRNA hybrid conformation via spontaneous intersubunit rotation

(Structures III and IV), which is also essential for translocation of tRNA-mRNA (reviewed in Ling and

Ermolenko, 2016; Noller et al., 2017). The large counter-clockwise rotation of the small subunit

destabilizes the catalytic domain of RF2 (Structure IV), so that it begins to collapse toward domain 2

bound to the 30S subunit (Figure 4E). Rotation of the 30S head and detachment of H69 from the

decoding center force dissociation of RF2 from the A site of the 30S subunit (Structure V,

Figure 4F).

Animation 1. An animation showing transitions

between the structures of the 70S ribosome upon

interaction with RF2.

DOI: https://doi.org/10.7554/eLife.46850.015
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Remarkably similar extents of intersubunit rotation and head rotation were observed in recent

RF1-bound 70S structures formed with RF3.GDPNP in the presence of apidaecin (which stalls RF1 on

the ribosome). In the presence of stalled RF1, however, the intersubunit bridge remains attached to

the decoding center (Graf et al., 2018). Thus, the ribosome samples globally similar rotation states

with RF1 and RF2, with or without RF3. RF3 stabilizes the rotated state (Ermolenko et al., 2007;

Gao et al., 2007; Jin et al., 2011; Zhou et al., 2012) to promote RF release. However, the role of

RF3 in termination is dispensable because intersubunit rotation is an inherent— that is spontaneous

and thermally driven—property of the ribosome (Cornish et al., 2008). Cold sensitivity of RF3-dele-

tion strains (Nichols et al., 2011; O’Connor, 2015) perhaps manifests the dependence on RF3 due

to perturbation of the intersubunit dynamics at lower temperatures. In the fully rotated state, the

post-termination ribosome becomes a substrate for subunit dissociation by EF-G and recycling factor

RRF (Agrawal et al., 2004; Dunkle et al., 2011; Fu et al., 2016; Prabhakar et al., 2017). Structure

V is consistent with structural studies showing ribosome recycling factor (RRF) bound to ribosomes

with a dislodged intersubunit bridge B2a (Borovinskaya et al., 2007; Pai et al., 2008), which helps

split the ribosome into subunits. Translation termination and recycling of the release factors and the

ribosome therefore rely on the spontaneous ribosome dynamics (Adio et al., 2018; Cornish et al.,

2008; Ermolenko et al., 2007; Prabhakar et al., 2017; Sternberg et al., 2009), coupled with local

rearrangements of the universally conserved elements of the peptidyl-transferase and decoding

centers.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli)

Escherichia
coli MRE600

(Cammack and Wade, 1965) ATCC 29417

Strain, strain
background
(Escherichia coli)

Escherichia
coli BLR (DE3)

Novagen

Recombinant
protein

C-terminally His
-tagged K-12 E. coli RF2

(Demo et al., 2017)

Recombinant
DNA reagent

E. coli RF2 plasmid
(vector pET24b)

(Demo et al., 2017)

Chemical
compound, drug

E. coli tRNAfMet Chemical Block

Chemical
compound, drug

[35S]-methionine Perkin Elmer NEG709A500UC

Chemical
compound, drug

Biodegradable
Scintillation Cocktail

Econo-Safe

Sequence
-based reagent

RNA GGCAAGGAGG
UAAAAAUGUGAAAAAAA

IDT

Software,
algorithm

PHENIX (Adams et al., 2002) https://www.phenix-
online.org/

Software,
algorithm

CNS (Brunger, 2007) http://cns-online.org/v1.2/

Software,
algorithm

PyMOL (DeLano, 2002) https://pymol.org/2/

Software,
algorithm

Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.
edu/chimera/

Software,
algorithm

Bsoft (Heymann and Belnap, 2007) https://lsbr.niams.
nih.gov/bsoft/

Software,
algorithm

Frealign (Lyumkis et al., 2013) http://grigoriefflab.
janelia.org/frealign

Continued on next page

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850 9 of 18

Research article Cell Biology Structural Biology and Molecular Biophysics

https://www.phenix-online.org/
https://www.phenix-online.org/
http://cns-online.org/v1.2/
https://pymol.org/2/
https://www.cgl.ucsf.edu/chimera/
https://www.cgl.ucsf.edu/chimera/
https://lsbr.niams.nih.gov/bsoft/
https://lsbr.niams.nih.gov/bsoft/
http://grigoriefflab.janelia.org/frealign
http://grigoriefflab.janelia.org/frealign
https://doi.org/10.7554/eLife.46850


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

cisTEM (Grant et al., 2018) https://cistem.org/

Software,
algorithm

MolProbity (Chen et al., 2010) http://molprobity.
biochem.duke.edu/

Software,
algorithm

RSRef (Chapman, 1995;
Korostelev et al., 2002)

http://www.sb.fsu.
edu/~rsref/

Software,
algorithm

SerialEM (Mastronarde, 2005) http://bio3d.colorado.
edu/SerialEM/

Other Holey-carbon grids
QUANTIFOIL R 2/1, Cu 200

Quantifoil Micro Tools

Other Vitrobot MK4 FEI

Other Titan Krios microscope FEI

Other K2 Summit camera Gatan

Preparation of the 70S termination complex with RF2
N-terminally His6-tagged release factor 2 (RF2) from E. coli K12 strain was overexpressed in E. Coli

BLR (DE3) (Novagen) and purified as described for RF1 (Svidritskiy and Korostelev, 2018a). Due to

overexpression, RF2 is likely incompletely methylated (or unmethylated) at Q252 of the catalytic

GGQ motif (Dinçbas-Renqvist et al., 2000), which together with the K12-specific T246 residue, ren-

ders RF2 catalytically slower (Dinçbas-Renqvist et al., 2000), yet functionally and structurally similar

to the post-translationally modified release factors (Korostelev et al., 2008; Pierson et al., 2016;

Weixlbaumer et al., 2008; Zeng and Jin, 2018). E. coli tRNAfMet (Chemical Block) was aminoacy-

lated as described (Lancaster and Noller, 2005). 70S ribosomes were prepared from E. coli

(MRE600) as described (Svidritskiy and Korostelev, 2018a). Ribosomes were stored in the ribo-

some-storage buffer (20 mM Tris-HCl, pH 7.0; 100 mM NH4Cl; 12.5 mM MgCl2; 0.5 mM EDTA; 6

mM b-mercaptoethanol) at –80˚C. A model mRNA fragment, containing the Shine-Dalgarno

sequence and a spacer to position the AUG codon in the P site and the UGA stop codon in the A

site (GGC AAG GAG GUA AAA AUG UGA AAAAAA), was synthesized by IDT.

The 70S.mRNA.fMet-tRNAfMet complex with RF2 was assembled in vitro by mixing 400 nM 70S

ribosome (all concentrations are specified for the final pre-termination solution) with 12 mM mRNA in

buffer containing 20 mM Tris-acetate (pH 7.0), 100 mM NH4OAc, 15 mM Mg(OAc)2. After incubation

for two minutes at 37˚C, 600 nM fMet-tRNAfMet was added and incubated for five minutes at 37˚C.

The Mg(OAc)2 concentration was adjusted to 10 mM by adding an equal volume of buffer (20 mM

Tris-acetate (pH 7.0), 100 mM NH4OAc, 5 mM Mg(OAc)2) at room temperature. The release reaction

was started by adding an equal volume of 4 mM RF2 (in 20 mM Tris, 100 mM NH4OAc, 10 mM Mg

(OAc)2) to the pre-termination solution, yielding the following final concentrations: 0.2 mM 70S, 6 mM

mRNA, 0.3 mM fMet-tRNAfMet, and 2 mM RF2. The solution was incubated for 30 min at room tem-

perature prior to grid preparation and plunging.

The activity of E. coli RF2 was tested in an in vitro assay that measures the release of formyl-

methionine from the 70S ribosome bound with [35S]-fMet-tRNAfMet in the P site, as described

(Svidritskiy and Korostelev, 2018a). Pre-termination complex was prepared using 0.2 mM E. coli

70S ribosomes (all concentrations are for the final reaction mixture upon initiation of the release

reaction), 6 mM mRNA and 0.3 mM [35S]-fMet-tRNAfMet ([35S]-methionine from Perkin Elmer). An ali-

quot (4.5 ml) of the pre-termination complex was quenched in 30 ml of 0.1 M HCl to represent the

zero-time point. Pre-termination complex was split into two tubes. 5 ml of 20 mM RF2 was added to

45 ml of the pre-termination complex in one tube, yielding 2 mM RF2 in the reaction. Buffer without

RF2 was added to the second tube to test spontaneous (RF2-independent) hydrolysis of [35S]-fMet-

tRNAfMet. After 6, 15, 90 s, and 6, 15, 30, 60 and 150 min, 5 ml aliquots were quenched in 30 ml of

0.1 M HCl. Samples were extracted with ethylacetate, and the amount of released [35S]-labeled

N-formyl-methionine was measured using a scintillation counter (Beckman Coulter, Inc) in 3.5 ml of

Econo-Safe scintillation cocktail (RPI). All measurements were performed twice (Figure 1—figure

supplement 4) and time progress data were analyzed and visualized using GraphPad Prizm 7.01.
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Cryo-EM and image processing
Holey-carbon grids (QUANTIFOIL R 2/1, Cu 200, Quantifoil Micro Tools) were coated with carbon

and glow discharged with 20 mA with negative polarity for 60 s in a PELCO easiGlow glow discharge

unit. 2.8 ml of the 70S.mRNA.fMet-tRNAfMet
.RF2 complex was applied to the grids. Grids were blot-

ted at blotting force 10 for 4 s at room temperature, 100% humidity, and plunged into liquid ethane

using a Vitrobot MK4 (FEI). Grids were stored in liquid nitrogen.

A dataset of 1,069,908 particles was collected on a Titan Krios (FEI) microscope (operating at 300

kV) equipped with a K2 Summit camera system (Gatan), with –0.5 to –1.8 mm defocus. Multi-shot

data collection was performed by recording six exposures per hole, using SerialEM (Mastro-

narde, 2005) with beam-image shift. Coma-free alignment was performed using a built-in function.

‘Coma vs. Image Shift’ from the Calibration menu was used for dynamic beam-tilt compensation,

based on image shifts for each exposure. Multi-hole/multi-shot configuration was selected from

‘Multiple Record Setup Dialog’ to dynamically adjust the beam tilt. Backlash-corrected compensation

was applied to each stage movement at the target stage position to reduce mechanical stage drift.

7287 movies were collected. Each exposure (32 frames per movie) was acquired with continuous

frame streaming, yielding a total dose of 29.4 e-/Å2. The nominal magnification was 105,000 and the

calibrated super-resolution pixel size at the specimen level was 0.667 Å. 6972 movies were selected

after discarding those with defects due to ice or image recording. Movies were processed using

IMOD (Kremer et al., 1996) and binned to pixel size 1.334 Å (termed unbinned or 1 � binned).

Movies were motion-corrected, and frame averages were calculated using all 32 frames within each

movie (Figure 1—figure supplement 3), after multiplying by the corresponding gain reference. cis-

TEM (Grant et al., 2018) was used to determine defocus values for each resulting frame average

and for particle picking. The stack and particle parameter files were assembled in cisTEM with the

binnings of 1�, 2�, 4�, and 6� (box size of 624 for a non-binned stack).

Data were processed essentially as described in our recent work (Loveland et al., 2017) and

shown in Figure 1—figure supplement 1. FrealignX was used for particle alignment, refinement,

and final reconstruction steps, and Frealign v9.11 was used for 3D classification steps

(Lyumkis et al., 2013). The 6�-binned image stack (1,069,908 particles) was initially aligned to a

ribosome reference without release factor and tRNA (PDB 5J4D) (Svidritskiy et al., 2016) using 3

cycles of mode 3 (global search) alignment, including data from 20 Å to 300 Å resolution. Subse-

quently, the 6�-binned stack was refined using mode 1 (3 cycles) to align particles in the 15- to 300

Å resolution range. Using the 4�-binned image stack, the particles were successively refined using

mode one by gradually increasing the high-resolution limit to 12- and 10 Å (three cycles for each res-

olution limit). 3D density reconstruction was obtained using 60% of particles with highest scores. The

map contained density for the P-tRNA, mRNA, and RF2.

Data classification was performed using a spherical focused mask with a 45 Å radius, centered

roughly between the A-site finger (nucleotides 870–910 of 23S rRNA), protein L11, and peptidyl

transferase center. The mask covered most of the ribosomal A site and part of the P site. The parti-

cle stack was classified into 16 classes, using the high-resolution limit of 10 Å. The classification

resulted in five RF2-containing classes, six classes with tRNA alone (two classes represented Struc-

tures I and V), three classes of the 70S ribosome without tRNA, and two classes of the 50S subunit

alone. All classes were subsequently reconstructed using the unbinned stack. Three strongest classes

with RF2 were merged and extracted from the unbinned stack, and subclassified into 10 classes

without masking, using a high-resolution limit of 8 Å. This classification yielded Structure II, four

maps that were merged to obtain Structure III, a map with a rotated 70S.RF2 conformation (used for

further classification to obtain Structure IV), a lower-resolution map similar to Structure II, and three

junk (poorly resolved) classes. The class corresponding to the rotated 70S.RF2 conformation was

extracted from the unbinned substack and further classified into three classes using a 25 Å radius

spherical-focused mask roughly centered at the elbow of tRNA (high-resolution limit at 12 Å), yield-

ing Structure IV. All final classes were reconstructed in FrealignX (1�-binning) using 95% of particles

with highest scores.

The resulting reconstructions varied from 3.3 Å (Structure II) to 4.4 (Structure IV) Å average reso-

lution (Fourier Shell Correlation (FSC) = 0.143). Cryo-EM reconstructions were B-factor sharpened in

bfactor.exe (part of Frealign distribution) using different B-factor values (suggested by bfactor.exe)

and then used for model building and structure refinements. B-factor from �50 to �100 Å2 was also
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used for initial refinements and to visualize higher-resolution details. FSC curves were calculated by

FrealignX for even and odd particle half-sets (Figure 1—figure supplement 2). FSC between the

final models and maps, self and cross-validation FSC (Figure 1—figure supplement 2) calculated

using Phenix (Adams et al., 2010) demonstrate good overall agreement between the structural

models and maps, similarly to those in previous work (Brown et al., 2017). Blocres (part of Bsoft

package v1.9.1; Heymann and Belnap, 2007) was used to calculate local-resolution maps (Fig-

ure 1—figure supplement 2).

Model building and refinement
Cryo-EM structures of E. coli 70S.ArfA.RF2 complex (Demo et al., 2017) excluding ArfA, and the

70S.fMet-tRNAfmet complex with EF-Tu ternary complex (Loveland et al., 2017) and improved struc-

ture of S2 (Loveland and Korostelev, 2018), excluding the ternary complex, were used to create ini-

tial models for structure refinement. Chimera (Pettersen et al., 2004) was used for fitting the 50S

subunit, 30S head, 30S body, mRNA, tRNA, and RF2 domains. Local model fitting was performed in

PyMOL (DeLano, 2002).

Each structural model was refined by real-space simulated-annealing refinement using atomic

electron scattering factors in RSRef, as described (Svidritskiy et al., 2014) (Chapman, 1995;

Korostelev et al., 2002). Secondary-structure restraints, comprising hydrogen-bonding restraints for

ribosomal proteins and base-pairing restraints for RNA molecules, were employed as described

(Korostelev et al., 2008). Refinement parameters, such as the relative weighting of stereochemical

restraints and experimental energy term, were optimized to produce the stereochemically optimal

models that closely agree with the corresponding maps. In the final stage, the structures were

refined using Phenix (phenix.real_space_refine) (Adams et al., 2010), followed by a round of refine-

ment in RSRef, applying harmonic restraints to preserve protein backbone geometry. B-factors were

refined in Phenix. The refined structural models closely agree with the corresponding maps and have

good stereochemical parameters, characterized by low deviation from ideal bond lengths and

angles, low numbers of protein-backbone outliers and other robust structure-quality statistics, as

shown in Table 2. Structure quality was validated using MolProbity (Chen et al., 2010).

Structure superpositions were performed in PyMOL. For structural comparisons, the distances

and angles were calculated in PyMOL and Chimera, respectively. To calculate an angle of the 30S

subunit rotation between two 70S structures, the 23S rRNAs were aligned using PyMOL, and the

angle between 16S rRNAs body domains (all nucleotide residues excluding 925–1390) was measured

in Chimera. To calculate an angle of the 30S-head rotation (swivel) between two 70S structures, the

16S rRNAs of the 30S body were aligned using PyMOL, and the angle between the 16S rRNA resi-

dues 925–1390 was measured in Chimera. Ribosome conformations (30S body/subunit rotation and

30S head rotation) for Structures I through V were compared with the crystal structure of the

70S.RF2 complex formed with the UGA stop codon (Weixlbaumer et al., 2008).

Unsharpened cryo-EM maps (direct output from Frealign) were deposited in EMDB (Structure I –

EMD-20048, Structure II – EMD-20052, Structure III – EMD-20056, Structure IV – EMD-20057, Struc-

ture V – EMD-20058). The corresponding PDB models were deposited in RCSB (PDB codes: 6OFX,

6OG7, 6OGF, 6OGG, 6OGI respectively). Figures were prepared in PyMOL.
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structure/6OFX
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6OFX

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 Non-rotated ribosome (Structure I) https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
20048

Electron Microscopy
Data Bank, EMD-200
48

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Non-
rotated ribosome with RF2 bound
(Structure II)

http://www.rcsb.org/
structure/6OG7

Protein Data Bank,
6OG7

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Partially
rotated ribosome with RF2 bound
(Structure III)

http://www.rcsb.org/
structure/6OGF

Protein Data Bank,
6OGF

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with the

UGA stop codon. Rotated

ribosome conformation (Structure

http://www.rcsb.org/
structure/6OGI

Protein Data Bank,
6OGI
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V)

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Rotated
ribosome with RF2 bound
(Structure IV)

http://www.rcsb.org/
structure/6OGG

Protein Data Bank,
6OGG

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Non-
rotated ribosome with RF2 bound
(Structure II)

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
20052

Electron Microscopy
Data Bank, EMD-200
52

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Partially
rotated ribosome with RF2 bound
(Structure III)

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
20056

Electron Microscopy
Data Bank, EMD-200
56

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with RF2
bound to the UGA codon. Rotated
ribosome with RF2 bound
(Structure IV)

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
20057

Electron Microscopy
Data Bank, EMD-200
57

Svidritskiy E, Demo
G, Loveland AB, Xu
C, Korostelev AA

2019 70S termination complex with the
UGA stop codon. Rotated
ribosome conformation (Structure
V)

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
20058

Electron Microscopy
Data Bank, EMD-200
58
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