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Introduction
The balance between food intake and 
energy expenditure is regulated by 
the nervous system through complex 
mechanisms.[1] Although several studies 
have been conducted to determine the 
complex arrays of internal and external 
factors that affect feeding, nutritional 
mechanisms are still in a state of 
ambiguity.[2,3] In this regard, stress as an 
inseparable aspect of daily life has been 
known as a common external factor that 
can lead to physiological and behavioral 
impairments such as changes in the eating 
patterns.[4,5] Stress responses are composed 
of a variety of replies originating from 
central and peripheral systems.[6]

Obesity as a global concern results from 
physiological disturbances such as exposure 
to psychological stresses.[7] It seems that 
the effective regulatory mechanisms of 
nutrition and stress are really important 
to be identified.[7,8] An important issue 
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Abstract
Background: Exposure to psychological stresses can be a reason for obesity. Therefore, 
identifying the effective nutritional mechanisms such as feeding markers is of high necessity for 
the psychological stress conditions. Hence, the present study investigates the effects of subchronic 
isolation and social stresses on food intake, body weight differences  (BWD), and levels of leptin, 
ghrelin, and glucose in rats. Materials and Methods: Eighteen male rats were randomly allocated 
into three groups: control  (Co), isolation stress  (IS), and social stress  (SS) groups. Rats were under 
stresses for 7 days. The food intake  (for three continuous hours after 16–18 h of food deprivation), 
BWD, levels of ghrelin, leptin, and glucose were measured. Results: The results showed that the 
food intake significantly  (P  <  0.05) reduced during the 1st  h in the SS group compared to the Co 
group. At the 2nd  h, the food intake significantly  (P  <  0.001 and P  <  0.01, respectively) decreased 
in the IS group compared to the Co and SS groups. The cumulative food intake and body weight 
were significantly (P < 0.05) reduced in the IS group compared to the Co group. The serum ghrelin 
level significantly reduced in the IS group compared to the Co group. Conclusions: The subchronic 
psychological stresses led to a reduction in food intake by the reduction of serum ghrelin levels. It 
seems that ghrelin might have a more fundamental role in the food intake with respect to the leptin 
and glucose levels in subchronic stress condition. Furthermore, the decreased body weight justified 
the reduction of food intake, particularly in subchronic isolation stress.
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in this regard is that stressful events can 
change the neuroendocrine signaling.[3] 
Various hormonal and feeding biomarkers 
interactions regulate the feeding behavior 
in stressful situations.[3] Some studies have 
shown that the feeding biomarkers  (such as 
ghrelin, leptin, and glucose levels) have a 
key role in homeostasis and can regulate 
the food intake as peripheral responses.[2,9,10]

Moreover, it has been demonstrated that 
various types and durations of stress lead 
to different physiological effects.[11,12] As 
previous studies indicated, the type of stress 
plays a key role in determining the amount 
of food consumption.[6,13] Furthermore, 
the duration of stress can change the 
feeding patterns.[13,14] Based on the stress 
duration category, a variety of acute, 
subchronic, and chronic stress exists.[11,15‑18] 
Acute stress suppresses the appetite as an 
instant physiological response.[4] While, 
seeking out and eating happens in the 
chronic stress situations.[4,19] Furthermore, 
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the amount of food intake is regulated by different 
mechanisms under various stress conditions.[4,13,20‑23] In this 
regard, the effect of two common types of psychological 
stresses  (social and isolation stress) in human societies on 
food intake and feeding biomarkers is still unknown. Today, 
the most influence of stress model on human societies is 
subchronic stress conditions. To the best of our knowledge, 
there was no exact evidence of the food intake changes in 
subchronic psychological stresses up to now. Hence, the 
present study was conducted to investigate the effects of 
two subchronic psychological stresses  (social and isolation 
stress) on food intake, body weight, ghrelin, leptin, and 
glucose levels in rats.

Materials and Methods
Experimental procedure

Animals

In this work, 18  male Wistar rats were obtained from 
Pasteur Institute, Tehran, Iran, with an initial body weight 
of 200–250 g. Rats were housed under standard laboratory 
conditions; on a 12  h light/dark cycle at controlled 
temperature  (22°C  ±  2°C) and humidity  (50% ± 5%) 
conditions with available food and water ad libitum. All 
the associated experiments were approved by the Research 
and Ethics Committee of Isfahan University of Medical 
Sciences in compliance with the international guiding 
principles for biomedical research involving animals in 
1996 (NIH Publications No. 80–23, 1996 Rev).

Rats were randomly allocated to the following three 
groups  (n  =  6 in each group): Control  (Co), social 
stress  (SS), and isolation stress  (IS) groups. Then, they 
were subjected to 7 days of subchronic social and isolation 
stresses.

Stress paradigm

To induce social stress, rats were transferred to the new 
cage with new neighbors for every 24  h as psychological 
stress.[24] To induce isolation stress, rats were kept 
in individual cages without any other neighbors.[24,25] 
Similarly, to induce social and isolation stresses, the rats 
were subjected to 7 days of subchronic social and isolation 
stresses.[16,18,26]

Food intake paradigm

The simplest paradigm for investigating the food intake 
is to record the mass of food eaten during the fixed 
period.[27] The stress lasted for 7 continuous days. For 
feeding measurements, the rats fasted for 16–18  h on 
day 7 of the experiment. At the end of experiments, on 
day 8, the rats were transported to the laboratory at least 
1  h before the beginning of the feeding trial. The weight 
of food pellets was measured on an hourly basis and for 
a 3  h.[28,29] Subsequently, the rat was individually placed 
in a transparent Plexiglas cage with a thick white paper 

lining at the bottom and allowed to have access to a 
premeasured amount of regular laboratory chow. Therefore, 
over three continuous hours, the rats were removed from 
the first test cage and placed into their new test cage after 
each hour.[30,31] The amounts of food left in the first test 
cage, including crumbs, were measured and the amounts 
consumed were calculated. Furthermore, the feeding trials 
were done normally between 9:00 am and 12:00 on rats 
deprived of food for 16–18 h.

Measurement of body weight differences

Animal body weights were measured on days 
1 and 7 of the experiment and the body weight 
differences (BWD = BWDay7−BWDay1) were evaluated.

Assessment of feeding biomarkers levels

In the current study, the levels of feeding biomarkers 
containing the serum levels of ghrelin and leptin as well 
as blood glucose level were measured. Hence, at the end 
of the experiments, day 8, rats were euthanized by light 
anesthesia. Tail blood sampling technique was used to 
collect blood (at the amount of 500 µl) from the rats at 8:00 
to 9:00 am. On the fasting day, the blood glucose levels 
were measured using a glucometer  (On Call Plus Co., 
USA). In addition, blood samples for hormonal analysis 
were collected in plastic vials and centrifuged at 6000 rpm 
for 20  min. Serums were separated from blood samples 
and stored at −80°C until hormones (the ghrelin and leptin) 
analysis. The commercial enzyme‑linked immunosorbent 
assay kit  (Zellbio Co., Germany) was used to assess the 
serum ghrelin and leptin levels.

Statistical analysis

The feeding study trials and other variables  (e.g.,  levels 
of ghrelin, leptin, glucose and BWD) of the various 
groups  (i.e.,  between‑group comparisons) were compared 
using independent t‑test. Furthermore, the repeated‑measure 
ANOVA followed by least significant difference  (LSD) 
post hoc test was used for food intake trend between 
experimental groups. The 3‑h consecutive food 
consumption for comparing the food intake in 2  h  (food 
intake of 1  vs. 2  h, 2  vs. 3  h, and 1  vs. 3  h) within the 
groups were analyzed using the paired Student’s t‑tests. 
Results are presented as mean ± standard error of the mean. 
The P  <  0.05 was considered as statistically significant. 
Ultimately, the calculations were performed using SPSS 
21 (SPSS Inc., Chicago, IL, USA).

Results
Effects of subchronic stresses on food intake of three 
continuous hours

Statistical analysis on the food intake of three continuous 
hours revealed that the food intake significantly  (P < 0.05) 
reduced at the 1st  h of measurement in the subchronic 
SS group compared to the Co group. Furthermore, the 



Izadi, et al.: Subchronic psychological stresses and food intake

3Advanced Biomedical Research | 2018

consumption of food intake in the subchronic IS group 
significantly  (P  <  0.001 and P  <  0.01; respectively) 
decreased in the 2nd  h compared to the Co and SS groups. 
In addition, the food intake changes at the 3rd h showed no 
significant reduction in both SS and IS groups [Figure 1].

Effects of subchronic stresses on cumulative food intake

The results show a decline of cumulative food intake in 
both IS and SS groups. Moreover, the cumulative food 
intake significantly  (P  <  0.05) showed a reduction only in 
the IS group compared to the Co group [Figure 2].

Effects of subchronic stresses on food intake trend

Based on the repeated mature ANOVA and post hoc LSD’s 
results, there was a statistically significant  (P  <  0.05) 
difference in the IS group when compared with the Co 
group [Figure 3].

Food intake of all three trials  (i.e.,  1  vs. 2  h, 2  vs. 3  h, 
and 1  vs. 3  h) was analyzed by the paired Student’s 
t‑tests  [Figure  3]. The analyses revealed statistically 
significant differences in food intake 1  vs. 2  h, 2  vs. 3  h, 
and 1 vs. 3 h in the experimental groups [Figure 3].

The food intake of paired trials 1  vs. 2  h in the Co, SS, 
and IS groups showed significant  (P  <  0.01, P  <  0.05, 
and P < 0.001, respectively) decreases  [Figure 3]. In these 
groups, comparison of food intake of 2  h vs. 3  h showed 
statistically significant  (P  <  0.05) decreases only in the IS 
group [Figure 3]. Furthermore, in the Co, SS, and IS groups, 
the food intake of 1 h vs. 3 h showed significant (P < 0.01, 
P < 0.01, and P < 0.001, respectively) decreases [Figure 3].

Measurement of body weight differences

A declined food intake trend and body weight drop 
appeared in both SS and IS groups  [Figure  4]. Although a 

slight body weight was gained in the Co group, the body 
weights were decreased in both subchronic IS and SS 
groups.

The results indicated no statistically significant difference 
between the SS and Co groups with regard to the 
BWD [Figure 4].

As shown in Figure 4, the BWD was significantly (P < 0.05) 
lower in the IS group compared to the Co group.

Assessment of feeding biomarkers levels

The serum ghrelin level significantly  (P  <  0.05) decreased 
in the IS group compared to the Co group. Furthermore, a 
slight or no significant reduction was observed in the SS 
group [Figure 5a].

The serum leptin level did not show a statistically 
significant increase  (P  >  0.05) in the IS group while in 
the SS group, the serum leptin level was similar to the Co 
group [Figure 5b].

As can be noted, the blood glucose had no significant 
increases in both the SS and IS groups compared to the Co 
group, suggesting partial hyperglycemia in both SS and IS 
groups [Figure 5c].

Discussion
The effect of subchronic psychological stress was not clear 
on the food intake and feeding biomarkers such as levels 
of leptin, ghrelin, and glucose. Hence, the present study 
evaluated whether two types of subchronic  (social and 
isolation) stresses could be mediated through the changes 
of serum levels ghrelin and leptin as well as blood glucose 
level on the energy homeostasis  (food intake) and body 
weight.

Figure 1: Comparison of the food intake (g) in the experimental groups after 1, 2, and 3 h. Results are expressed as mean ± standard error of mean (independent 
samples t‑test). *P < 0.05 and ***P < 0.001 compared to control group, €€P < 0.01 compared to social stress group
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According to the results of the current study, the amount of 
food intake decreased in subchronic social and particularly 
isolation stress groups [Figures 1 and 2], as a declining food 
intake trend was observed in both these groups  [Figure 3]. 
Furthermore, BWD followed the feeding behavior in the 
subchronic stress conditions  [Figure  4]. It is possible that 
the body weight loss resulted in the reduction in food 
intake and enhancement probably of body metabolism in 
subchronic stress conditions. Some animals and humans 
studies demonstrated that the food intake either increases 
or decreases in response to the different kinds of stress.[32‑35] 
Previous studies have identified various aspects of feeding 
behaviors including the increase in food intake in repeated 
restraint stress, the body weight loss in an inescapable 
shock condition, and anorexia in immobilization stress.[36‑38] 
According to Ranjbar et al., stress is divided into different 
subsets based on the duration of acute stress, subchronic 
stress  (mid stress), and chronic stress. They demonstrated 
that subchronic stress  (7  days) has the most deleterious 
emotional stress.[12,16,17] In this regard, previous studies 
also have shown that acute stress is associated with the 
reduction of food intake,[4,39] while chronic stress increases 
the food consumption.[40] Moreover, it seems that changes 
of food intake are related to the stressor’s characteristics 
such as type stress, duration of stress, the intensity of 
stress, and the individual’s stress characteristics, metabolic 
state, and dietary in stress condition.[4,6,14] Furthermore, 
Ranjbar et  al. reported the effect of three durations  (1, 7, 
and 21 days) of restraint stress including acute, subchronic, 
and chronic stresses on the alternations of BWD. Moreover, 
they proposed that there were more changes in subchronic 
restraint stress on BWD.[17] Collectively, the findings of 
the current and previous studies suggested that stress 
duration  (even with different kinds of stress) is the main 
factor that affects the BWD. In addition, it is proposed that 
the subchronic stress corresponds to the alternation of food 
intake responses similar to acute stress and reduces food 
intake and body weight.

Another finding of this study is that the serum ghrelin 
level significantly decreased in isolation stress groups, 
although this reduction was not statistically significant in 
the subchronic social stress  [Figure  5a]. Consistent with 
these data, Currie et al. reported some interactions between 
ghrelin and corticotropin‑releasing  (CRH) hormone for 
controlling of the neural circuits of stress and feeding 
behaviors.[41] Since the ghrelin plays an important role 
in adjusting hypothalamic–pituitary–adrenal  (HPA) axis, 
the potential role was considered for ghrelin as a stress 
feedback signal.[42] In this connection, Saegusa et  al. 
reported that the serum ghrelin level decreased after 7 days 
of novelty stress.[43] They suggested the increases in CRH 
resulted in a declined ghrelin level, leading to the sustained 
food intake reduction.[43] However, other researches 
indicated an opposite finding between the ghrelin level and 
food intake.[44‑46] Some previous studies demonstrated that 

Figure  2: Comparison of the cumulative food intake  (g) in the 
experimental groups. Results are expressed as mean ± standard error of 
mean (independent samples t‑test). *P < 0.05 compared to control group

Figure 3: Comparison of the 3‑h food intake trend (three continuous hours) 
in the experimental groups; results are expressed as a mean ± standard 
error of the mean (repeated measure one‑way ANOVA followed by least 
significant difference’s post hoc test and paired Student’s t‑test for 
comparing of the food intake in comparison of 2 h in each group). ℓP < 0.05, 
ℓℓP < 0.01, and ℓℓℓP < 0.001 food intake value in 1 versus 2 h; ҽP < 0.05 food 
intake value in 2 versus 3 h; ++P < 0.01 and +++P < 0.001 food intake value 
in 1 versus 3 h

Figure  4: Comparison of the body weight differences  (g) in the 
experimental groups. Results are expressed as mean ± standard error of 
mean (independent samples t‑test). *P < 0.05 compared to control group
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the elevated serum ghrelin level helps to an individual for 
adaptation to chronic stress but at the expense of increased 
eating food.[45] Therefore, it is possible that subchronic 
isolation stress suppresses appetite and food consumption 
by the reduction of serum ghrelin level in the current study.

According to other data presented in this work, the 
serum leptin level showed no significant increase in 
subchronic social and isolation stress groups [Figure 5b]. 
In contrast, Ortolani et  al. showed that the anorexigenic 
effect of footshock stress is irrelevant to leptin serum 
elevation.[35] Meanwhile, Bernier et  al. reported that 
leptin regulates the food intake in hypoxic stress.[47] 
Furthermore, another study reported that leptin decreased 
the food consumption by inhibition of orexigenic 
signals like NPY and agouti‑related peptide as well 
as the expression of the anorexigenic signals such as 
proopiomelanocortin.[48,49] Nevertheless, according to 
a previous study, the changes in the leptin level  (as a 
regulatory link between energy homeostasis and the HPA 
function) depend on various factors such as different 
psychological stressors.[50,51]

We found a nonsignificant hyperglycemia in both 
subchronic stress groups  [Figure  5c]. In contrast, some 
studies demonstrated sympathetic and/or glucocorticoids 
activation can increase the blood glucose under acute 
stress conditions.[39,52] Furthermore, Shiiya et  al. reported 
that the elevated blood glucose level can decrease the 
serum ghrelin level.[53] Moreover, in the present study, the 
changes in leptin and glucose levels were in line with other 
studies, but statistically nonsignificant. Therefore, based 
on the results of the present study, it is logical to expect 
that the slightly and nonsignificantly elevated serum leptin 
and blood glucose levels may have a contributory role on 
the decrease in ghrelin level for anorectic effects in the 
subchronic stress conditions. These differences depend on 
the ability to adapt to stress; an ability that is related to sex, 
age, genetic makeup, stress duration, and environmental 
influences.[54]

Conclusions
Subchronic isolation stress seems to be more destructive 
with respect to subchronic social stress on food intake 
reduction. In addition, it is possible that the reduced food 
intake and body weight loss result in the decreased serum 
ghrelin level, but not the elevated serum leptin and blood 
glucose levels in subchronic stress conditions. Nevertheless, 
these factors may help decrease the ghrelin level for 
anorectic effects in the subchronic stress conditions. 
Accordingly, further studies need to be carried out to clarify 
the neuronal pathways by which psychological stresses 
exert either inhibitory or stimulatory effects on food intake 
as a function of time.
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