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Abstract: Recently, a multifractal-multiscale approach to detrended fluctuation analysis (DFA) was
proposed to evaluate the cardiovascular fractal dynamics providing a surface of self-similarity
coefficients α(q,τ), function of the scale τ, and moment order q. We hypothesize that this versatile
DFA approach may reflect the cardiocirculatory adaptations in complexity and nonlinearity occurring
during the day/night cycle. Our aim is, therefore, to quantify how α(q, τ) surfaces of cardiovascular
series differ between daytime and night-time. We estimated α(q,τ) with −5 ≤ q ≤ 5 and 8 ≤ τ ≤ 2048 s
for heart rate and blood pressure beat-to-beat series over periods of few hours during daytime wake
and night-time sleep in 14 healthy participants. From the α(q,τ) surfaces, we estimated short-term
(<16 s) and long-term (from 16 to 512 s) multifractal coefficients. Generating phase-shuffled surrogate
series, we evaluated short-term and long-term indices of nonlinearity for each q. We found a long-term
night/day modulation of α(q,τ) between 128 and 256 s affecting heart rate and blood pressure similarly,
and multifractal short-term modulations at q < 0 for the heart rate and at q > 0 for the blood pressure.
Consistent nonlinearity appeared at the shorter scales at night excluding q = 2. Long-term circadian
modulations of the heart rate DFA were previously associated with the cardiac vulnerability period
and our results may improve the risk stratification indicating the more relevant α(q,τ) area reflecting
this rhythm. Furthermore, nonlinear components in the nocturnal α(q,τ) at q, 2 suggest that DFA may
effectively integrate the linear spectral information with complexity-domain information, possibly
improving the monitoring of cardiac interventions and protocols of rehabilitation medicine.

Keywords: multifractality; multiscale complexity; detrended fluctuation analysis; heart rate; blood
pressure; self-similarity

1. Introduction

Time-series complexity is common in physiology. In fact, physiological systems often exhibit
fractal geometries and are composed of several elements interacting nonlinearly, which are both
typical features of a complex system [1]. The cardiovascular system, in particular, can be described
as a complex, dynamical system because it is composed of a fractal network of branching tubes, the
vasculature, connecting individual vascular beds that interact with each other to harmonize globally
the local needs of blood supply. The overall cardiovascular regulation modulates the local blood flows
thanks to the integrative control of the autonomic nervous system operating through effectors and
feedbacks (the baro- and chemoreflexes) with nonlinear elements.
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Complex dynamical systems are not characterized by an intrinsic time scale. This means that their
derived time series may appear statistically self-similar when plotted at different scales. For this reason,
the interest in methods that quantify self-similar (or fractal) properties of the cardiovascular dynamics
is increasing. A very popular method is based on the detrended fluctuation analysis (DFA), which
provides a self-similarity scale coefficient, α, directly related to the Hurst’s exponent [2]. When DFA
was originally proposed for the analysis of heart rate variability, it described a bi-scale fractal model
providing a short-term coefficient (α1) for scales shorter than 16 beats and a long-term coefficient (α2)
for longer scales [3]. The original bi-scale method was then extended in two ways. One way was to
provide a multiscale spectrum of self-similarity coefficients, a function of the scale n in beats, α(n) [4–6].
Another way was to provide a multifractal spectrum of self-similarity coefficients, a function of the
moment order q, α(q) [7,8]. The multifractal spectrum includes q = 2—the second-order moment
used in the original DFA method for monofractal series—and allows detecting multifractality when
α(q) differs substantially between positive and negative q orders. The multiscale and the multifractal
methods were finally combined in the multifractal-multiscale DFA, a versatile approach that describes
multifractal structures localized over specific scales and that provides a surface of scale coefficients,
α(q,n) [9]. Recent works demonstrated the capability of the multifractal-multiscale DFA of heart rate
variability to classify different types of cardiac patients [10] and to describe alterations in the heart rate
complexity due to an impaired integrative autonomic control in paraplegic individuals [11].

It is less clear, however, whether complexity methods based on DFA can quantify nonlinear
components. In this regard, theoretical analyses affirm that the information on the Hurst’s exponent
provided by the second-order moment DFA can be derived mathematically from the power spectrum,
which is a linear method of analysis [12,13]. Actually, empirical quantifications of the degree of nonlinear
information of the cardiovascular dynamics provided by the more advanced multifractal-multiscale
approaches are missing.

In this work, we hypothesize that the versatile multifractal-multiscale DFA approach may reflect
the cardio-circulatory adaptations in the overall complexity and, particularly, in the nonlinear dynamics
of the cardiovascular time series that may occur during the day/night cycle. Circadian rhythms and
differences in activity levels between daytime and night-time hours are expected to have a major
influence on cardiovascular regulation. Knowing how this happens may help to better identify and
interpret possible alterations associated with pathological conditions. In this regard, a description of the
α(q,n) circadian modulations may be important in the rehabilitation medicine for correctly monitoring
changes associated with treatments or the recovery from clinical interventions. To our knowledge, no
studies addressed the quantification of the changes in the multifractal-multiscale DFA of heart rate
variability associated with the day–night cycle. Furthermore, most of the studies on cardiovascular
complexity are based on the analysis of heart rate variability only. This is due to the difficulty to better
describe the status of the system by measuring other cardiovascular variables beat-by-beat in addition
to the heart rate, as the systolic and the diastolic arterial blood pressure.

Therefore, our work aims to address the above open issues on cardiovascular complexity by
quantifying the fractal dynamics of heart rate and blood pressure, the degree of nonlinearity, and
possible night–day modulations of complexity. This will be done analyzing continuous 24-h blood
pressure recordings and comparing self-similarity coefficients estimated by the multifractal-multiscale
approach over daytime and night-time. In particular, we will define new indices of the degree of
nonlinearity based on the multifractal-multiscale DFA to quantify the additional information provided
by this complexity method compared to traditional spectral methods.

2. Materials and Methods

2.1. Subjects and Data Collection

The study is based on a historic database of 24-h ambulatory intra-arterial blood pressure
recordings obtained at the University Hospital of Milan (Ospedale Maggiore Policlinico, Milan, Italy),
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for the diagnosis of hypertension [14]. Recordings were performed between the 1980s and the 1990s
when intermittent noninvasive arm devices were not still in use in the clinical practice.

As inclusion criteria, we selected only adult (>18 yro) normotensive subjects in which the
suspected hypertensive state was excluded after the clinical evaluation. Exclusion criteria were
smoking; obesity; clinical or laboratory evidence of health abnormalities, like cardiovascular disease or
diabetes; prior drug treatment for hypertension; any alteration in glucose metabolism or renal function;
and administration of cardiovascular drugs in the 4 weeks preceding the recording. We also excluded
blood pressure tracings of inadequate quality for a 24-h analysis. This led to selecting recordings of
N = 14 normotensive subjects (3 females of which one in the childbearing age and 11 males) with age
between 19 and 64 years.

Details of data collection are reported in [14]. Briefly, a catheter inserted into the radial artery of
the non-dominant arm was connected to a transducing-perfusing unit secured to the thorax at the
heart level. The blood pressure signal was stored on a magnetic tape recorder bound to the waist.
During the recordings, the subjects were free to move within the hospital. Mealtimes and bedtimes
were standardized. The blood pressure signal was digitized (170 Hz, 12 bits) and edited manually from
movement artifacts, pulse pressure dampening, and premature beats. Each pulse wave was identified
by a derivative-and-threshold algorithm [15]; systolic blood pressure (SBP) and diastolic blood pressure
(DBP) were calculated for each pulse wave beat-by-beat. As suggested in [16], a parabolic interpolation
refined the SBP fiducial point before calculating the inter-beat interval (IBI) as the interval between the
times of occurrence of consecutive systolic peaks.

Two sub-periods were selected for the analysis after visual inspection of the tracings: the “Day”
subperiod during daytime in the afternoon, when the subjects were not lying in bed and were free to
perform normal daytime activities; the “Night” subperiod after 11 PM when the participants were
asleep according to the schedule of the hospital. The selected segments had to be composed of at least
14,000 heartbeats, with a duration of at least 4 h during daytime and of at least 5 h during night-time,
without evident nonstationarities.

The study was carried out after having obtained informed consent from the participants in
accordance with the 1975 Declaration of Helsinki and following the recommendations of the ethical
committee of the Ospedale Maggiore Policlinico (Milan, Italy).

2.2. Multifractal-Multiscale Detrended Fluctuation Analysis

We estimated the multifractal multiscale structure of the IBI, SBP, and DBP time series by the fast
DFA algorithm available in [17]. Given the beat-by-beat series xi of length L beats, we calculated its
cumulative sum, yi. We split yi into M maximally overlapped blocks of n beats (two consecutive blocks
have n-1 beats in common). We detrended each block with least-square polynomial regression and
calculated the variance of the residuals in each k-th block, σ2

n(k). The variability function Fq(n) is the
q-th moment of σ2

n [7]: 
Fq(n) =

 1
M

M∑
k = 1

(
σ2

n(k)
)q/21/q

for q , 0

Fq(n) = e
1

2M

M∑
k = 1

ln (σ2
n(k))

for q = 0

(1)

We evaluated Equation (1) for q between −5 and +5 and block sizes n between 6 and L/4 beats. We
evaluated the multifractal multiscale coefficients as a function of the beat-scale n, αB(q,n), calculating
the derivative of log Fq(n) vs. log n [17]. This was done for detrending polynomials of order 1 and 2
(see examples of the corresponding Fq(n) estimates in Figure 1. Previous empirical analyses suggested
that the second-order polynomial overfits block sizes shorter than 12 beats, but at the same time, it
appears to more efficiently remove long-term trends [17–19]. Therefore, we estimated a single αB(q,n)
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function combining the estimates after detrending of order 1 and 2 with a weighted average which
weights more the order one at the shorter scales as proposed in [17].
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Figure 1. Multifractal variability functions Fq(n) for inter-beat interval (IBI) with different orders of
detrending polynomials: average over the group of participants. The Fq(n) functions are plotted in
blue for q > 0, in black for q = 0, and in red for q < 0; the dashed line is q = 2, second-order moment
of the traditional monofractal detrended fluctuation analysis (DFA). Upper panels: Fq(n) estimated
with 1st order (linear) detrending during (a) Day and (b) Night. Lower panels: Fq(n) with 2nd-order
(quadratic) detrending during (c) Day and (d) Night.

It should be noted that the parameter q in Equation (1) defines the moment order calculated for
the variances of the residuals. In the traditional monofractal DFA, the variability function is defined
as the root-mean-square of σ2

n, which corresponds to the second-order moment, or q = 2. If the
series is monofractal, all the moment orders q provide the same slope α. By contrast, for multifractal
series positive moment order q weight more the contribution of the fractal components with greater
amplitude, negative moment order q weight more the contribution of the fractal components with
lower amplitude.

To compare Day and Night periods over the same temporal scales, in seconds, we mapped the
scale units from number of beats, n, to time τ, in seconds, with the transformation

τ = n × µIBI (2)
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with
µIBI =

1
L

∑
L
i = 1IBIi (3)

the mean of the IBI values for all the L beats composing the whole time series, in seconds. The
obtained coefficients expressed as a function of the time scale, α(q,τ), were spline-interpolated over
τ and resampled (2500 points evenly spaced over the logarithmic τ axis from 6 s to 3600 s) to have
estimates at the same temporal scales for each recording. Realigning the DFA coefficients in this way
allows properly comparing the same time scales between conditions in which the cardiovascular
signals are sampled at different heart rates. We considered scales between 8 and 2048 s. The largest
scale (τ = 2048 s) is estimated on more than seven independent blocks of data even in the case of
the recording with the shortest duration: this assures sufficient stability of the estimate as shown
empirically in previous validations [5,20]. Scales shorter than τ = 8 s were not considered because at
negative q orders high levels of estimation bias may be present [17].

We introduced multifractal short-term and long-term coefficients to concisely describe the
multifractal multiscale structure. This was done by averaging α(q,τ) over short scales, with 8 ≤ τ ≤

16 s, and over long scales, with 16 < τ ≤ 512 s, obtaining the multifractal short-term coefficient αS(q)
and long-term coefficient αL(q).

2.3. Nonlinearity Index

For each series j we generated 100 Fourier phase-randomized series by shuffling the spectrum of
the phases with the code available in [21]. This procedure removes possible nonlinear components
in the dynamics of the original series, preserving its power spectrum and therefore the original first-
and second-order moments [22]. Then, we calculated the multifractal multiscale coefficients of each
of the 100 surrogates, αi,j(q,τ) with 1 ≤ I ≤ 100, to be compared with the coefficients of the original
series j, αO,j(q,τ). For the comparison, we calculated πj(q,τ), defined at each q and τ as the percentile
of the distribution of 100 surrogate αi,j(q,τ) coefficients in which was the original αO,j(q,τ) coefficient
(to apply a 2-tail statistics, percentiles greater than 50% were transformed into their complement to
1 as in [23]). πj(q,τ) may range between 50% and 0%: the lower its value, the more significant the
deviation of the original scale coefficient αO,j from the distribution of the 100 surrogate coefficients
αi,j. Large deviations from the surrogates distribution are suggestive of nonlinear components in the
original series. Therefore, we defined a short-term nonlinearity index at each moment order q, NLS(q),
by calculating the percentage of scales in the range 8 ≤ τ ≤ 16 s, where πj(q,τ) was ≤1%. Similarly,
we calculated the percentage of scales with πj(q,τ) ≤ 1% for 16 < τ ≤ 512 s to define the long-term
nonlinearity index NLL(q). Both NLS(q) and NLL(q) may range between 0% and 100%. Their higher
values indicate moment orders q that better detect the presence of nonlinear components.

2.4. Spectral Analysis

The IBI, SBP, and DBP beat-by-beat series were interpolated evenly at 5 Hz before spectral analysis.
Power spectra were estimated by the Welch periodogram with 80% overlapped Hann data windows
of 240 s length. The spectra were integrated over the very-low frequency (VLF, between 0.003 and
0.04 Hz), the low frequency (LF, between 0.04 and 0.15 Hz), and the high-frequency (HF, between 0.15
and 0.4 Hz) bands as indicated in the guidelines [16].

2.5. Statistical Analysis

The α(q,τ) coefficients of the N = 14 participants were compared between Day and Night at each τ

and q by the Wilcoxon signed-rank test. The multifractal short- and long-term coefficients, αS(q) and
αL(q), and nonlinearity indices, NLS(q) and NLL(q), were also compared between Day and Night at
each q by the Wilcoxon signed-rank test. IBI, SBP, and DBP levels and power spectra were compared
between Day and Night by the paired t-test, after log-transformation of the spectral indices to remove
the skewness of their distribution [24]. The threshold for statistical significance was set at 5% with a
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two-sided alternative hypothesis. All the tests were performed with “R: A Language and Environment
for Statistical Computing” software package (R Core Team, R Foundation for Statistical Computing,
Vienna, Austria, 2019).

3. Results

3.1. Day vs. Night

The data segments selected for the analysis of the Day and Night periods were composed by a
similar number of heartbeats: 20,779 (2744) beats during the Day and 20,329 (4059) beats during the
Night, as average (SD) over the group. Means and spectral powers of the cardiovascular series are
reported in Table 1. Because of the higher heart rate during the daytime, the segment duration was
shorter in the Day, i.e., 4 h 30′ (30′), than in the Night period, i.e., 5 h 42′ (36′). For the same reason, the
scale τ = 16 s that divides the αS(q) and αL(q) indices corresponds on average to 20.7 beats in the Day
and 15.5 beats in the Night period, and the αL(q) upper scale at τ = 512 s corresponds to 661.2 beats and
495.3 beats in the Day and Night periods, respectively.

Table 1. Mean levels and spectral powers of cardiovascular series.

Day Night p Value

IBI

mean (ms) 774.4 (97.3) 1033.7 (174.1) <0.01
total power (ms2) 11,217 (10,569) 11,751 (7313) 0.57
VLF power (ms2) 5885 (5763) 5905 (3599) 0.62
LF power (ms2) 1453 (1219) 2083 (1946) 0.25
HF power (ms2) 538 (576) 1219 (1036) <0.01

LF/HF powers ratio 3.56 (1.4) 2.21 (1.5) <0.01

SBP

mean (mmHg) 123.7 (12.8) 108.6 (17.5) <0.01
total power (mmHg2) 134.7 (98) 58.4 (35.4) <0.01
VLF power (mmHg2) 65.0 (49.9) 29.3 (19.4) <0.01
LF power (mmHg2) 22.8 (13.4) 9.7 (6.2) <0.01
HF power (mmHg2) 7.3 (4) 4.0 (2.3) <0.01

DBP

mean (mmHg) 70.2 (8.9) 60.2 (10.1) <0.01
total power (mmHg2) 53.5 (22.6) 30.4 (17.9) <0.01
VLF power (mmHg2) 25.8 (12.7) 15.3 (9.5) <0.01
LF power (mmHg2) 10.3 (4) 5.6 (3.5) <0.01
HF power (mmHg2) 2.8 (1.1) 1.8 (1.1) <0.01

Values as mean (SD); p value after T test on log-transformed powers.

Figure 2 shows the α(q,τ) surfaces for IBI, SBP, and DBP, separately, during Day and Night periods
(average over the group of patients). The figure suggests the presence of structural differences between
heart rate and blood pressure in their complex dynamics: during the daytime, these differences appear
particularly clear between 16 and 256 s, where IBI appears characterized by a relatively flat surface at
all q orders while SBP and DBP show a dip around τ = 32 s for positive q orders.
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Figure 2. Surfaces of multifractal multiscale DFA coefficients, α(q,τ), during Day and Night periods.
Average over 14 participants, for scales τ between 8 and 2048 s and moment orders q between −5 and
+5; IBI = inter-beat-interval; SBP = systolic blood pressure; DBP = diastolic blood pressure.

Even more obvious is the difference between daytime and night-time in each cardiovascular series.
The difference is particularly evident for the IBI surface of scale coefficients, which shows a marked
decrease of the α coefficients at scales between 128 and 256 s during the night, more pronounced at
negative q orders. Similar deflections appear to also characterize the surfaces of DFA scale coefficients
of SBP and DBP.

Figure 3 compares Day and Night cross sections of the α(q,τ) surfaces at each moment order q. As
to IBI, differences at scales shorter than 16 s regard two distinct q-τ areas. In the main area, centered at
q = −2, α is lower at night, while in the secondary narrower area, centered at q = 4, α is greater at night.
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Remarkable Day–Night differences with lower α at night also regard scales between 128 and 256 s. They
are evident at all the moment orders but extend over a larger range of scales τ for negative q values.
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Figure 3. Day–Night comparison of cross sections of multifractal multiscale DFA coefficients. (a) Cross
sections of α(q,τ) of IBI for scales τ between 8 and 2048 s and moment orders q between −5 and +5:
average over the group of 14 participants in the Day subperiod; q < 0 in red, q > 0 in blue, q = 0 in black;
the dotted line is α for q = 2 (second order moment of the monofractal DFA); (b) α(q,τ) of IBI as in
panel (a) for the Night subperiod; (c) color map representing the statistical significance (p value) of the
Day vs. Night comparison of IBI scale coefficients calculated at each τ and q after the Wilcoxon signed
rank test; (d) α(q, τ) of SBP in the Day subperiod represented as in panel (a); (e) α(q, τ) of SBP in the
Night subperiod represented as in panel (a); (f) color map of the Day vs. Night statistical significance
for SBP scale coefficients; (g) α(q, τ) of DBP during Day represented as in panel (a); (h) α(q, τ) of DBP
during Night represented as in panel (a); (i) color map of the Day vs. Night statistical significance for
DBP coefficients.

Similarly to IBI, also the α(q,τ) coefficients of SBP and DBP show a significant decrease at Night
for scales between 128 and 256 s for all the q orders. Significant Day–Night differences with greater α at
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night also appear in blood pressure at scales shorter than 32 s, but, differently from IBI, the changes are
significant for positive q only.

The detailed representation of Figure 3 is summarized by the multifractal short- and long-term
coefficients in Figure 4. The IBI multifractal short-term coefficient is significantly lower at night for
−3 ≤ q ≤ 0, while the long-term coefficient is significantly lower at night for q ≤ 1. Moreover, the
multifractal short-term coefficients of blood pressure are higher at night when q ≥ 2 (Figure 4c,e), while
the long-term coefficients, as for IBI, are lower at night mainly for negative q (Figure 4d,f).
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Figure 4. Day–Night comparison of multifractal short- and long-term coefficients. (a) Short-term
coefficients, αS(q), for IBI in Day (open circles) and Night (solid circles) periods and for −5 ≤ q ≤ +5:
median ±standard error of the median over N = 14 participants; the * indicates Day vs. Night differences
significant at p < 0.05; (b) long-term coefficients, αL(q), of IBI represented as in panel (a); (c) short-term
coefficients of SBP and (d) long-term coefficients of SBP, represented as in panel (a); (e) short-term
coefficients and (f) long-term coefficients of DBP, represented as in panel (a).

3.2. Nonlinearity

Figure 5 illustrates the degree of nonlinearity detected comparing α(q,τ) of the original and
surrogate series during the daytime. A common feature to heart rate and blood pressure is the evidence
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of nonlinear components at scales shorter than 64 s at all q but q = 2 (the moment order of the traditional
monofractal DFA).
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Figure 5. Assessment of nonlinearity during daytime. Upper panels refer to IBI: (a) α(q,τ) coefficients
for the original series (average over N = 14 participants, see panel (a) for line colors); (b) α(q,τ) for the
corresponding phase-randomized surrogate series; (c) color map of the percentile of the distribution of
surrogate estimates in which is the original estimate (average over N = 14 participants). Mid panels
refer to SBP: (d) α(q,τ) for the original series; (e) α(q,τ) for the corresponding surrogate series; (f) color
map of percentiles. Lower panels refer to DBP: (g) α(q,τ) for the original series; (h) α(q,τ) for the
corresponding surrogate series; (i) color map of percentiles.

At Night nonlinear components are more evident (Figure 6) and affect longer scales, particularly
for IBI. Estimates at q = 2 appear to be linear also at night-time.
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close to 100% for all the cardiovascular series between q = −2 and q = +4, with the notable exception of 
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Figure 6. Assessment of nonlinearity during night-time. Upper panels refer to IBI: (a) α(q,τ) for
the original series (average over N = 14 participants, see panel (a) for of line colors), (b) α(q,τ) for
the corresponding phase-randomized surrogate series, and (c) color map of the percentile of the
distribution of surrogate estimates in which is the original estimate (average over N = 14 participants).
Mid panels refer to SBP: (d) α(q,τ) for the original series; (e) α(q,τ) for the surrogate series; (f) color map
of percentiles. Lower panels refer to DBP: (g) α(q,τ) for the original series; (h) α(q,τ) for the surrogate
series; (i) color map of percentiles.

Figure 7 summarizes these findings showing the short-term and the long-term nonlinearity indices,
NLS(q) and NLL(q). The highest degree of nonlinearity is detected at Night by NLS(q), which is close to
100% for all the cardiovascular series between q = −2 and q = +4, with the notable exception of q = 2.
In fact, at q = 2 NLS falls to 0% for all the signals. NLS tends to be higher at night with significant
differences at some q < 0 for IBI and DBP and at q > 2 for IBI. Long-term nonlinear components are
mainly present in IBI at night. In fact, NLL(q) of IBI is greater than 50% during night-time at all q but
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q = 2. Furthermore, it is significantly greater at night for all q , 2. NLL too is close to 0% at q = 2, both
during Day and Night, for heart rate and blood pressure.Entropy 2020, 12 of 17 
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Figure 7. Day vs. Night comparison of short-term and long-term indices of nonlinearity. (a) Short-term
index, NLS(q), for IBI in Day (open circles) and Night (solid circles) periods and for −5 ≤ q ≤ +5: median
±standard error of the median over N = 14 participants; the * indicates Day vs. Night differences
significant at p < 0.05; (b) long-term nonlinearity index, NLL(q), of IBI; (c) short-term and (d) long-term
nonlinearity index of SBP; (e) short-term and (f) long-term nonlinearity index of DBP.

4. Discussion

This work compared patterns of blood pressure and heart rate complexity between daytime and
night-time as assessed by the multifractal multiscale DFA approach. To our knowledge, this is the
first study addressing night–day changes of multifractality in different cardiovascular signals and on
a continuum spectrum of temporal scales. Our work revealed specific scales τ and specific fractal
components (as identified by q) where the cardiovascular complexity differs between wake at daytime
and sleep at night. Furthermore, it introduced new indices of nonlinearity which highlight the areas of
the α(q,τ) surface that better reflect the nonlinear dynamics. A brief discussion of these points follows.
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4.1. Day vs. Night

Mean levels and spectral powers of heart and blood pressure (Table 1) reflect the day–night
changes reported previously [25,26], i.e., lower heart rate and blood pressure at night due to the lower
levels of physical activity and to the lying position, which are associated with a higher cardiac vagal
tone (HF power of IBI), a lower cardiac sympatho/vagal balance (LF/HF powers ratio of IBI), and a
lower vascular sympathetic tone (LF power of SBP and DBP [27,28]).

In addition to these known changes in heart rate and blood pressure mean levels and spectral
powers, we reported clear changes in the α(q,τ) fractal structure. In IBI, the more evident change is the
night decrease of coefficients around 128–256 s (Figure 4c). The decrease affects all the moment orders
but it is amplified at negative q and thus the night/day modulation of the long-term multifractal index
αL(q) is larger for q < 0 (Figure 4b). We may associate this night/day oscillation to an endogenous
circadian rhythm previously described in the heart rate by a monofractal DFA exponent (i.e., for q = 2)
estimated over scales between 20 and 400 beats [29]. This endogenous rhythm was hypothesized to
contribute to the period of the cardiac vulnerability reported in epidemiological studies. Our work
suggests that this night/day rhythm (1) is highlighted by a multifractal approach that assesses negative
moment orders and (2) is better quantified in a narrower range of scales, between 128 s and 256 s.
Therefore, our results may prove to be of clinical importance by allowing designing new tools for the
complexity analysis of heart rate that better stratify the cardiovascular risk. Interestingly, our study
also provides evidence that a night/day modulation with greater daytime values is present at the same
scales in blood pressure too, suggesting that a common physiological mechanism is at the origin of the
circadian oscillation in the heart rate and the blood pressure self-similarity coefficients.

By contrast, night–day changes at shorter scales affect heart rate and blood pressure differently.
While short-term coefficients of blood pressure are greater at night for moment orders q ≥ 2, the main
modulation of short-term scales of heart rate consists of lower values at night for −3 ≤ q ≤ 0 (Figure 4a).
Further studies controlling the effects of posture and physical activity are needed to understand the
nature of so different night/day changes between heart rate and blood pressure.

Night–day modulations of the heart rate self-similarity coefficients were also reported in a study
on 24-h Holter’s recordings performed on a large population of healthy subjects [30]. This study
applied the bi-scale model as in [3], which originally defined a short-term coefficient α1 for scales
between 4 and 16 beats and a long-term coefficient α2 for scales between 16 and 64 beats. The study
in [30] used the scale n = 11 beats to separate α1 from α2 and reported a significant decrease in α1 at
night. We did not consider scales short as in this study because at τ < 8 s the multifractal estimates
can be affected by large estimation bias for negative q orders. However, α1 and the LF/HF powers
ratio of the heart rate are correlated [13] and the reduction in the LF/HF powers ratio we reported
at night in Table 1 is coherent with the night reduction of α1 in [30]. These authors, however, also
showed a significant increase of α2 at night, which appears in contrast with the night decrease of the
long-term scale coefficients reported both in [29] and in our work. To correctly interpret the results of
the three studies, we should consider carefully the scale ranges where the coefficients are estimated. To
illustrate this point, Figure 8 plots the coefficients we calculated as the derivative of log Fq(n) vs. log n
in Equation (1), i.e., αB(q,n), for q = 2. The scale n is expressed in beats to facilitate the comparison
with previous studies [29,30]. As the estimation bias is negligible for q = 2, αB is plotted from n = 6
beats. The night/day comparison shows a significant nocturnal decrease of αB at scales < 11 beats,
in line with the α1 results in [30], and greater night-time values at scales where α2 was estimated
in [30]. These greater values correspond to the small area of statistical significance that appears in our
Figure 3 at scales τ ≤ 16 s and at orders q ≥ 2. The α coefficient calculated in [29] between 20 and 400
beats overlaps partially with α2 but covers a much wider range of longer scales, which includes the
band between 128 and 256 beats where we found a significant night decrease of αB. Therefore our
study and the studies in [29,30] provide coherent results if the correct scale ranges are considered. The
comparison of Figure 8 also highlights the importance to provide estimates of the scale coefficients as a
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continuous function of the scale n to correctly identify phenomena which may occur in nearby scales
with different characteristics.
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Figure 8. Day–night comparison of the multiscale monofractal DFA coefficients of IBI plotted vs. the
block size n in beats. (a) αB(q,n) calculated for q = 2 (second-order moment of the monofractal DFA)
during daytime (red) and nighttime (blue): mean +/− sem over the group of N = 14 participants; the
arrows indicate the scale ranges for estimating α1 and α2 as defined by Vanderput et al. in [31] and for
estimating α as defined by Hu et al. in [30]. (b) W statistics for the day-night difference in αB(2,n); when
W is above the red horizontal line, the difference at the corresponding scale is significant at p < 5%.

4.2. Nonlinearity

The comparison between original and Fourier-shuffled surrogates allowed us defining two concise
indices of nonlinearity, NLS(q) and NLL(q), that indicate the moment orders and the scale ranges, where
α(q,τ) provides information on nonlinear dynamics. These indices are close to 0% for q = 2, supporting
previous theoretical speculations indicating that the monofractal DFA and the power spectrum provide
similar information [12,13]. However, we also found clear nonlinear components for q between −2
and +4 at the short scales, more pronounced at night, both for the heart rate and the blood pressure.
Furthermore, at night, substantial nonlinear components appear in heart rate at the longer scales. It
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should be noted that higher nonlinear components at night have been previously demonstrated by
a noise titration procedure applied to Volterra/Wiener models fitting 24-h heart rate series [30]. The
similarity of results obtained with so different approaches supports the evidence that nonlinearity
prevails at night.

The finding of important nonlinear components detected by the multifractal multiscale DFA
method may help designing future clinical procedures aimed at better assessing the cardiovascular
risk. Actually, a recent review of complexity-based methods for the analysis of heart rate variability
reported that the prediction of cardiac events by the traditional short-term coefficient of the bi-scale
monofractal DFA, α1, and by the standard spectral methods are correlated [31]. This inevitably reduces
the additional prediction power of α1 compared to the spectral method. The traditional bi-scale
monofractal model is based on the second-order moment, q = 2. By showing that DFA coefficients
evaluated for q , 2 provide information substantially different from that of the spectral powers,
particularly at night, our study suggests that the multifractal multiscale DFA approach might effectively
integrate the information of traditional spectral methods, possibly improving the clinical value of DFA.

Finally, an unexpected pattern in the Fourier-shuffled surrogate series of Figures 5 and 6 consists
in systematically higher α values for positive than for negative q orders (blue lines above red lines)
when α increases with τ and in the opposite pattern (blue lines below red lines) when α decreases
with τ. As a possible explanation of this pattern, we may hypothesize that cross-over scales appear
anticipated at shorter scales when q > 0 and delayed at larger scales when q < 0.

5. Limitations and Conclusions

Nowadays, the clinical practice replaced the continuous invasive measures with intermittent
noninvasive blood pressure measures for monitoring free-moving subjects, limiting the number of
recordings available for the present study. Thus, it was not possible to stratify our results by gender or
age, factors possibly influencing the circadian profile of the cardiovascular complexity [30]. Future
studies on cardiovascular complexity can make use of noninvasive instrumentation measuring arterial
blood pressure at the finger site continuously for 24 h even in ambulant subjects [32]. However, the
scale coefficients of SBP could be affected by the amplification of the Mayer waves when blood pressure
is measured at the digital artery [24]. Furthermore, if IBI is derived as the series of intervals between
consecutive R peaks of the electrocardiogram rather than between consecutive pulses of blood pressure,
as in this study, results at the shortest scales might differ because of the different amplitude of the
respiratory sinus arrhythmia [33].

Finally, this study represents the temporal scales in seconds of time and not in number of beats, a
relatively new methodological aspect originally proposed for comparing conditions with markedly
different heart rate levels after selective autonomic blockade [6]. We adopted the same approach here
because of the day–night differences in the mean heart rate and because we expected the differences
to involve neural/humoral mechanisms which depend on time delays in seconds and not in number
of beats (let’s think to the Mayer rhythm with a 10-s period due to the slow response of vascular
resistances; or to the dynamics of removal of noradrenaline released by the sympathetic nerve endings,
with a time constant of 1 min; or to long-term humoral fluctuations possibly responsible for the
circadian component we found at scales of about 4 min). Mapping the temporal scales from beats
n to time τ does not change the estimate of α, still based on the calculation of the derivative of log
Fq(n) vs. log n. This axis transformation is similar to mapping the “cycles/beat” in “Equivalent Hz” in
the spectral analysis of cardiovascular series [34]. However, if results obtained with scales expressed
as τ in seconds are discussed in relation to other studies based on scales defined in number of beats,
readers should be aware that discrepancies may arise because possible differences in the heart rate level
between conditions or groups may change the ranges of scales that define short-term and long-term
DFA coefficients.

In conclusion, the multifractal multiscale DFA provides a detailed description of the complexity
features of the cardiovascular series and highlights circadian modulations occurring at specific scales
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and affecting the individual fractal components differently. In perspective, by focusing on the more
informative portions of the α(q,τ) surface it could be possible to design more powerful tools for
assessing the cardiovascular risk. Furthermore, coefficients with q , 2 reflect well the nonlinear
components during night-time sleep, suggesting that they may effectively integrate the spectral
information with complexity-domain information. Therefore, the evaluation of the multifractal
multiscale surface of scale coefficients during wake and sleep may improve the risk assessment in
cardiovascular prevention, the evaluation of cardiovascular interventions as well as the monitoring of
the efficacy of rehabilitation protocols.
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10. Kokosińska, D.; Gierałtowski, J.; Zebrowski, J.J.; Orłowska-Baranowska, E.; Baranowski, R. Heart rate
variability, multifractal multiscale patterns and their assessment criteria. Physiol. Meas. 2018, 39, 114010.
[CrossRef]

11. Castiglioni, P.; Merati, G.; Parati, G.; Faini, A. Decomposing the complexity of heart-rate variability by the
multifractal-multiscale approach to detrended fluctuation analysis: An application to low-level spinal cord
injury. Physiol. Meas. 2019, 40, 084003. [CrossRef] [PubMed]

12. Heneghan, C.; McDarby, G. Establishing the relation between detrended fluctuation analysis and power
spectral density analysis for stochastic processes. Phys. Rev. E 2000, 62, 6103–6110. [CrossRef] [PubMed]

13. Willson, K.; Francis, D.P. A direct analytical demonstration of the essential equivalence of detrended
fluctuation analysis and spectral analysis of RR interval variability. Physiol. Meas. 2002, 24, N1–N7.
[CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevLett.59.381
http://www.ncbi.nlm.nih.gov/pubmed/10035754
http://dx.doi.org/10.3389/fphys.2017.00533
http://www.ncbi.nlm.nih.gov/pubmed/28798694
http://dx.doi.org/10.1016/S0022-0736(95)80017-4
http://dx.doi.org/10.1063/1.1562051
http://dx.doi.org/10.1109/TBME.2008.2005949
http://dx.doi.org/10.1113/jphysiol.2010.196428
http://dx.doi.org/10.1016/S0378-4371(02)01383-3
http://dx.doi.org/10.1088/0967-3334/32/10/014
http://dx.doi.org/10.1103/PhysRevE.85.021915
http://dx.doi.org/10.1088/1361-6579/aae86d
http://dx.doi.org/10.1088/1361-6579/ab2b4a
http://www.ncbi.nlm.nih.gov/pubmed/31220823
http://dx.doi.org/10.1103/PhysRevE.62.6103
http://www.ncbi.nlm.nih.gov/pubmed/11101940
http://dx.doi.org/10.1088/0967-3334/24/1/401
http://www.ncbi.nlm.nih.gov/pubmed/12636199


Entropy 2020, 22, 462 17 of 18

14. Mancia, G.; Ferrari, A.; Gregorini, L.; Parati, G.; Pomidossi, G.A.; Bertinieri, G.; Grassi, G.; Di Rienzo, M.;
Pedotti, A.; Zanchetti, A. Blood pressure and heart rate variabilities in normotensive and hypertensive
human beings. Circ. Res. 1983, 53, 96–104. [CrossRef]

15. Di Rienzo, M.; Castiglioni, P.; Parati, G. Arterial Blood Pressure Processing. In Wiley Encyclopedia of Biomedical
Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 98–109.

16. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology.
Heart Rate Variability. Circulation 1996, 93, 1043–1065. [CrossRef]

17. Castiglioni, P.; Faini, A. A Fast DFA Algorithm for Multifractal Multiscale Analysis of Physiological Time
Series. Front. Physiol. 2019, 10, 115. [CrossRef]

18. Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.; Havlin, S.; Bunde, A. Detecting long-range correlations
with detrended fluctuation analysis. Phys. A Stat. Mech. Appl. 2001, 295, 441–454. [CrossRef]

19. Bunde, A.; Havlin, S.; Kantelhardt, J.W.; Penzel, T.; Peter, J.-H.; Voigt, K. Correlated and Uncorrelated Regions
in Heart-Rate Fluctuations during Sleep. Phys. Rev. Lett. 2000, 85, 3736–3739. [CrossRef]

20. Castiglioni, P.; Parati, G.; Lombardi, C.; Quintin, L.; Di Rienzo, M. Assessing the fractal structure of heart rate
by the temporal spectrum of scale exponents: A new approach for detrended fluctuation analysis of heart
rate variability. Biomed. Tech. Eng. 2011, 56, 175–183. [CrossRef]

21. Gautama, T. Surrogate Data; MATLAB Central File Exchange; MATLAB: Natick, MA, USA, 2005.
22. Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D Nonlinear Phenom. 2000, 142, 346–382. [CrossRef]
23. Castiglioni, P.; Parati, G.; Faini, A. Can the Detrended Fluctuation Analysis Reveal Nonlinear Components

of Heart Rate Variabilityƒ. In Proceedings of the 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Berlin,
Germany, 2019; Volume 2019, pp. 6351–6354.

24. Castiglioni, P.; Parati, G.; Omboni, S.; Mancia, G.; Imholz, B.P.; Wesseling, K.H.; Di Rienzo, M. Broad-band
spectral analysis of 24 h continuous finger blood pressure: Comparison with intra-arterial recordings. Clin.
Sci. 1999, 97, 129–139. [PubMed]

25. Di Rienzo, M.; Castiglioni, P.; Mancia, G.; Parati, G.; Pedotti, A. 24 h sequential spectral analysis of arterial
blood pressure and pulse interval in free-moving subjects. IEEE Trans. Biomed. Eng. 1989, 36, 1066–1075.
[CrossRef] [PubMed]

26. Parati, G.; Castiglioni, P.; Di Rienzo, M.; Omboni, S.; Pedotti, A.; Mancia, G. Sequential spectral analysis of
24-hour blood pressure and pulse interval in humans. Hypertension 1990, 16, 414–421. [CrossRef] [PubMed]

27. Castiglioni, P.; Di Rienzo, M.; Veicsteinas, A.; Parati, G.; Merati, G. Mechanisms of blood pressure and heart
rate variability: An insight from low-level paraplegia. Am. J. Physiol. Integr. Comp. Physiol. 2007, 292,
R1502–R1509. [CrossRef] [PubMed]
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