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Abstract: Earthworms heavily modify the soil microbiome as it passes throughout their guts.
However, there are no detailed studies describing changes in the composition, structure and di-
versity of soil microbiomes during gut transit and once they are released back to the soil as casts.
To address this knowledge gap, we used 16S rRNA next-generation sequencing to characterize the mi-
crobiomes of soil, gut and casts from the earthworm Aporrectodea caliginosa. We also studied whether
these three microbiomes are clearly distinct in composition or can be merged into metacommunities.
A large proportion of bacteria was unique to each microbiome—soil (82%), gut (89%) and casts
(75%), which indicates that the soil microbiome is greatly modified during gut transit. The three
microbiomes also differed in alpha diversity, which peaked during gut transit and decreased in
casts. Furthermore, gut transit also modified the structure of the soil microbiome, which clustered
away from those of the earthworm gut and cast samples. However, this clustering pattern was not
supported by metacommunity analysis, which indicated that soil and gut samples make up one meta-
community and cast samples another. These results have important implications for understanding
the dynamics of soil microbial communities and nutrient cycles.

Keywords: earthworm microbiome; gut transit; earthworm cast; alpha diversity; metacommunity;
soil microbiome

1. Introduction

Earthworms are key components of temperate soil ecosystems, where they constitute
the largest biomass and contribute to the key processes of decomposition and nutrient
cycling through their interactions with microorganisms. As detritivores and soil feeders,
earthworms strongly modify the composition and structure of soil microbial communities
during gut transit, which results in increased rates of microbial activity [1–5]. Ingestion of
soil by earthworms implies that a mainly aerobic environment changes into an anaerobic
one [6]. Therefore, by transiting through the earthworm gut, some microorganisms seem to
perish, becoming part of the earthworm diet [7], whereas others, mainly fermenters, flour-
ish [6,8]. Recent studies have shown that most of the fermenters found in the earthworm gut
are also present in soil samples, reinforcing the tenet that the majority of bacteria found in
the earthworm gut are acquired from the soil [9] and references therein. Accordingly, most
of the studies characterizing the earthworm gut microbiome have revealed that its com-
position varies across diets and between earthworm species [1,10–16]. However, due to
methodological limitations of the chosen techniques (PLFAs, TRFLPs, cloning and sequenc-
ing), those studies were not able to characterize in detail the composition and structure of
the earthworm gut microbiome.
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More recent studies using next-generation sequencing techniques have provided
extensive data on earthworm microbiome composition, revealing that for earthworm casts
at least, diet seems to be an important factor determining microbial composition and
structure [17,18]. Moreover, it seems that earthworm casts are populated by native bacteria
(i.e., bacteria not found in the earthworm diet, [19]), which contribute to the diversity of the
earthworm microbiome. Since these studies were carried out in a laboratory manipulating
the natural earthworm diet, it is unknown if such insights hold in natural systems, and
in earthworms that feed on soil and not on decomposing organic matter. Similarly, it
is still unclear what happens to the earthworm gut microbiome once egested as casts,
does it change or remain unaltered? This is of critical importance since earthworm effects
on soil ecosystems may occur through the interaction of casts with soil [20] or by casts’
ageing-related processes [21–23].

In this study, we aimed to understand how earthworms change the composition, struc-
ture and diversity of soil bacterial communities during and after gut transit. We analyzed
and compared the structure of microbiomes from soil, gut and casts from the earthworm
species Aporrectodea caliginosa (Savigny, 1826) using 16S rRNA data collected with next-
generation sequencing technology. Our specific goals were to determine: (i) whether the
earthworm gut microbiome is largely populated by soil bacteria or earthworm native
bacteria (i.e., bacteria not present in soil), (ii) how transit through the gut modifies the
composition, structure and diversity of the soil microbiome, and (iii) how these three
microbiomes may be partitioned into 1–3 metacommunity types based on their taxonomic
similarity. To address these questions, we chose A. caliginosa because it is an endogeic
earthworm species (i.e., a soil feeding earthworm) and is the most prevalent earthworm in
grassland and in agricultural ecosystems across temperate regions [24].

2. Material and Methods
2.1. Soil, Earthworm Gut and Cast Sampling

We sampled twenty mature specimens of Aporrectodea caliginosa (Lumbricidae) from a
field site near to the Facultade de Bioloxía of the Universidade de Vigo by hand sorting.
We also collected surrounding soil samples (0.25 g fresh weight) (0–20 cm), avoiding
earthworm casts, for DNA analysis. Soil was sieved (2 mm) and placed in 20 Petri dishes.
We placed earthworms individually in sterile plastic Petri dishes that were filled with that
soil. Petri dishes (N = 20) were then randomly kept at 20 ◦C and 90% relative humidity in a
laboratory incubator.

We sampled fresh casts by placing earthworms washed in sterile distilled water on
sterile Petri dishes. Dishes were placed in the same incubator for 24 h. We handled the
earthworms and dishes in a laminar flow cabinet to prevent contamination. After 24 h,
we returned the earthworms to the dishes with soil and picked fresh casts with a sterile
spatula, which we sterilized by flame between samplings. Sampled casts were then kept in
Eppendorf tubes at −80 ◦C. We repeated this process up to five times to obtain 0.25 g of
fresh casts per earthworm specimen (N = 20). We then sampled the gut of the earthworms
(earthworm tissue plus gut content). To do this, earthworms were first rinsed in water, then
sterilized in water, anaesthetized in diluted ethanol, placed in glass tubes with absolute
ethanol and kept for two days at 5 ◦C until dissection. Again, all handling tasks were done
under sterile conditions in laminar flow cabinet using sterilized dissection instruments
(flame-sterilized between specimens).

2.2. Amplification, Sequencing and Analysis of 16S rRNA Genes

DNA was extracted from 0.25 g (fresh weight) of samples using the MO-BIO PowerSoil®

kit following the manufacturer’s protocols. DNA quality and quantity were determined
using BioTek’s Take3™ Multi-Volume Plate. All laboratory procedures were performed
under a laminar flow hood to prevent contamination of the samples with microorganisms
from the surrounding environment.



Microorganisms 2022, 10, 1025 3 of 13

We amplified the V4 region of the 16S rRNA gene and sequenced it following a
dual-index sequencing strategy [25]. Sequencing was done on an Illumina MiSeq genome
sequencer (2 × 250 bp run) at the Center for Microbial Systems, University of Michigan.
Twelve gut samples did not amplify and were not included in the analysis.

We used DADA2 (v. 1.16.0) to infer the amplicon sequence variants (ASVs) present
in each sample [26]. Amplicon sequence variants are more precise and reproducible than
OTUs defined at a constant level (97% or more) of sequence similarity [27]. We ran trimmed
and filtered forward/reverse read pairs truncating them at 220 nt and 100 nt respectively,
and removed reads with ambiguous bases and more than two expected errors. ASVs were
inferred from the forward and reverse of each sample, then merged. Chimeras were
identified and removed when found in a sufficient fraction of the samples in which they
were present. Taxonomic analysis of ASVs was carried out with RDP naive Bayesian
classifier using the Silva v132 within DADA2, fixing the minBoot parameter at 80 [28,29].
Prior to ASV inference and taxonomic classification, samples had 17,228 ± 10,116 sequences.
We remove ASVs unclassified at phylum level (0.5% of sequences) and remove samples that
after sequence processing had less than 1000 sequences. A total of 577,510 sequences (mean:
12,287, SD: 8144) passed all quality filters and were assigned to ASVs (6217). Sequence data
were uploaded to the GenBank SRA database under accession PRJNA807118.

2.3. Statistical Analysis

We analysed and plotted all the data in R version 3.6.1 using the phyloseq, ggplot2,
ggtree and metacoder packages [30–33]. We filtered data using a prevalence criterion to
keep only ASVs present in at least 2.5% of the samples. This filtering procedure removed
66% of the ASVs but only 12% of the sequences. Sampling depth was optimal for both full
(6217 ASVs and 577,510 sequences, Supplementary Figure S1a) and filtered data sets (2106
ASVs and 507,459 sequences, Supplementary Figure S1b) as showed by rarefaction curves.
We used the filtered data set for all statistical analysis except α-diversity estimation and
metacommunity assembly.

We analyzed differential abundances of bacterial taxa applying negative binomial
models using raw ASV counts as implemented in the package DESeq2 [34,35]. We tested
for differential abundance of ASV and bacterial phyla among soil, gut and casts using
Wald tests [34]. Since we did multiple pairwise Wald tests among the three experimental
treatments (soil-gut, gut-cast and soil-cast), we adjusted “raw” p values using the Benjamini–
Hochberg FDR method to correct for multiple pairwise comparisons. After correction,
non-significant contrasts were considered to have an effect size (log2 fold change) of zero.

We defined native bacterial ASV as those ASVs present in gut and cast samples after
removing ASVs present in the soil samples. We also looked for ASVs shared between soil,
gut and casts in pairwise comparisons, as well as the percentage of sequences these shared
ASVs comprised.

We inferred a phylogenetic tree with FastTree 2.1 [36]. We transformed raw filtered
data (i.e., ASV counts) using the variance-stabilizing transformation to control homoscedas-
ticity and unequal variances usually present in amplicon sequence data [34]. We built
dendrograms (Ward method) with distance matrices (weighted and unweighted unifrac,
Bray-Curtis and Jaccard) to test whether microbiomes of soil and earthworm samples (gut
and cast together or alone) have the same structure. To do this, we used unifrac.weighted
and unifrac.unweighted commands with 10,000 iterations [37] as implemented in mothur,
and corrected obtained p-values with the Benjamini–Hochberg FDR correction method.
We used the same procedure to test whether soil, gut and cast microbiomes differed in
pairwise comparisons. These tests are best suited to hypothesis testing, as shown by
Schloss [38].

We calculated taxonomic α-diversity using the number of observed ASVs as a measure
of richness, and the inverse Simpson index as a measure of diversity. We used Faith’s
phylogenetic diversity [39] as a measure of phylogenetic diversity. We tested the effect
of the different environments (soil, gut and cast) on both taxonomic and phylogenetic
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α-diversity of microbiomes, using generalized linear models (GLM) [40]. We fixed error
distribution and link function to reduce the deviance in the model [41]. Thus, phylogenetic
diversity was analyzed using Poisson distribution and log link, while the other variables
were analyzed using quasiPoisson distribution and log link. We used Tukey’s test for post-
hoc comparisons, correcting p-values for multiple comparisons using Benjamini–Hochberg
FDR as implemented in the ‘multcomp’ package [42].

Microbiomes of soil, gut and casts were clustered into metacommunities using a
Dirichlet multinomial mixture model (DMM). We assessed the performance of DMM using
the Laplace approximation to the negative log model [43] as implemented in mothur [44].
DMM analysis is usually applied to single time points, although it has also been successfully
applied to temporal series [45], as which our data can be considered. Following Ding and
Schloss [45], we ran DMM analysis on the full dataset after rarefication. We also ran it
with the filtered data set after it was rarefied, to check whether prevalent filtering affected
the DMM analysis output. We also studied differential abundance of ASVs between the
metacommunities, using DESeq2 [34].

3. Results
3.1. Composition of Soil and Earthworm Gut and Cast Microbiomes

Bacterial communities of soil, gut and casts comprised mainly bacteria from phyla Pro-
teobacteria, Actinobacteria, Verrucomicrobia and Bacteroidetes, with minor contributions
from bacterial phyla Acidobacteria, Chloroflexi, Firmicutes, Planctomycetes and Teneri-
cutes (Figure 1a). Bacterial phyla Firmicutes and Tenericutes only appeared in gut and cast
samples. For each bacterial phylum, some bacterial genera appeared in soil, gut and cast
bacterial communities, including Variovorax (Proteobacteria), Conexibacter (Actinobacteria),
Flavobacterium (Bacteroidetes), RB41 (Acidobacteria) and Cd. Udaeobacter (Verrucomicro-
bia), whereas most were specific to each bacterial community (Figure 1a). Therefore, we
found that bacterial communities of soil, gut and cast samples harboured a substantial
fraction of native bacterial ASVs, i.e., ASVs that were exclusively found in one bacterial
community. Bacterial communities of guts (89%) and casts (75%) were largely populated
by native ASVs, although these ASVs comprised a variable fraction of sequences (65 and
34% of the sequences for gut and cast respectively, Supplementary Table S1). Bacterial
communities of soil were also mainly composed of native soil ASVs (82%), although again
these ASVs only comprised 42% of their sequences (Supplementary Table S1). We also
found that soil, gut and cast bacterial communities shared a large proportion of their ASVs
(Figure 1b). Thus, soil shared a 35% and 26% of their ASVs with gut and cast bacterial
communities respectively, which comprised the 76% and 63% of soil sequences in each case.
These ASVs represented 20% and 35% of ASVs from gut and cast bacterial communities,
comprising 47% and 74% of their sequences. Gut and cast bacterial communities shared 17%
and 41% of their ASVs, which comprised the 43% and 73% of their sequences, respectively
(Figure 1b).

Earthworm samples (gut and cast together) showed a significant increase in the abun-
dance of 59 ASVs from diverse bacterial phyla, although those with higher logFC (above
5) were from phyla Acidobacteria, (Cd. Solibacter), Actinobacteria (Nakamurella, Kitaso-
tospora and Pseudarthrobacter), Bacteroidetes (Cytophaga, Dyadobacter and Flavobacterium),
Firmicutes (Paenibacillus and Bacillales), Planctomycetes (Planctomycetales), Proteobacteria
(Aeromonas, Burkholderia-Caballeronia-Paraburkholderia, Chitinibacter, Enterobacteriaceae, Mas-
silia, Methylophilaceae, Pseudomonas and Silvimonas) and Tenericutes (Cd. Lumbricincola)
(Supplementary Table S2). Earthworm samples showed significantly lower abundances
than soil in 79 ASVs, which included members of phyla Acidobacteria (Acidobacteriales,
and Cd. Solibacter), Actinobacteria (Micromonosporaceae), Armatimonadetes (Fimbriimon-
adaceae), Chloroflexi (Tk10), Gemmatimonadetes (Gemmatimonadaceae), Planctomycetes
(Gemmataceae and WD2101 soil group), Proteobacteria (Acidibacter, Anaeromyxobacter,
Burkholderiaceae, Micropepsaceae, Rhodoplanes and URHD0088) and Verrucomicrobia
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(ADurb.Bin063-1, Lacunisphaera and Pedosphaeraceae) among those with lower logFC
(below −5) (Supplementary Table S2 and Figure S3).
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Figure 1. Changes in composition and diversity of soil microbiomes during and after gut transit in
the earthworm Aporrectodea caliginosa. (a) Relative abundance of main bacterial phyla and genus
(those with relative abundance >1%), (b) Venn diagram representing the number of shared ASVs
between soil, gut and casts using the full data set as well as the unique ASVs of each type of sample.
(c) Changes in taxonomic and phylogenetic α-diversity. Letters indicate significant differences
between time points (Tukey HSD test).

Gut transit significantly increased the abundance of five bacterial phyla from soil bacterial
communities, these being Tenericutes, Chlamydiae and Firmicutes, those with higher logFC
(Supplementary Table S3). Bacterial ASVs showing the highest increases in abundance during
gut transit (logFC > 5) were from those classified as Cd. Lumbricincola, Pseudarthrobacter and
Flavobacterium (Figure 2 and Supplementary Table S4). Meanwhile, gut transit significantly
decreased the abundance of bacterial phyla Acidobacteria, Elusimicrobia and Armatimon-
adetes compared to soil (Supplementary Table S3). Bacterial ASVs that showed the most
pronounced decreases in abundance (logFC < −5) during gut transit were those classified
as Acidobacteriales, Subgroup 6, Subgroup 2, Subgroup 8, Sphingobacteriaceae, Ferrugini-
bacter, Anaerolineaceae, Acidibacter, Phaselicystis, Duganella and ADurb.Bin063-1 (Figure 2
and Supplementary Table S4).
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distances, Ward method). Heat trees show changes in bacterial composition across taxonomic 
ranges of soil samples during and after gut transit in the earthworm Aporrectodea caliginosa. Each 
tree shows bacterial ASVs with significant differential abundance after DESeq2 pairwise compari-

Figure 2. Changes in bacterial ASV abundance and structure of soil microbiome during and after
gut transit in the earthworm Aporrectodea caliginosa. The dendrogram represents the dissimilarity
of bacterial communities at ASV level (variance stabilized matrix of counts, unweighted UNIFRAC
distances, Ward method). Heat trees show changes in bacterial composition across taxonomic ranges
of soil samples during and after gut transit in the earthworm Aporrectodea caliginosa. Each tree shows
bacterial ASVs with significant differential abundance after DESeq2 pairwise comparisons between
soil, gut and cast samples. ASVs are colored according whether they were more abundant in soil,
gut or cast. Rhizobium and Burkholderia classification are Allorhizobium-Neorhizobium-Pararhizobium-
Rhizobium and Burkholderia−Caballeronia−Paraburkholderia, respectively.
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Egestion of gut microbial communities as casts resulted in significant increases of
phyla Tenericutes, Bacteroidetes, Proteobacteria and Verrucomicrobia compared to gut
samples (Supplementary Table S3). Meanwhile, Planctomycetes, Chloroflexi, WPS-2,
Rokubacteria and Chlamydiae significantly decreased after the transition from gut to
cast (Figure 2, Supplementary Table S3). Regarding bacterial ASVs, those with higher
increases (logFC > 7) were classified as Flavobacterium, Massilia, Pseudomonas, Chitinibacter,
Burkholderia-Caballeronia-Paraburkholderia, Paenibacillus, Cd. Udaeobacter, Aeromonas, Cytophaga,
Ferruginibacter and Dyadobacter (Figure 2 and Supplementary Table S4). Bacterial ASVs with
the most pronounced decreases (logFC > −5) were those classified as AD3, Subgroup 6,
Rokubacteriales, Gemmatimonadaceae, Acidobacteriales, Gaiellales and Cd. Udaeobacter
(Figure 2 and Supplementary Table S4).

Bacterial communities of soil after they were egested as casts showed significant in-
creases in abundance of phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria,
Tenericutes and Verrucomicrobia, and significant decreases for phyla Acidobacteria, Ar-
matimonadetes, Chloroflexi, Elusimicrobia, Gemmatimonadetes, Rokubacteria and WPS-2
(Supplementary Table S3). Bacterial ASVs showing the highest increases (logFC > 7) were
those classified as Flavobacterium, Cd. Lumbricincola, Massilia, Pseudomonas, Paenibacillus, Chi-
tinibacter, Pseudarthrobacter and Enterobacteriaceae (Figure 2 and Supplementary Table S4).
Bacterial ASVs showing the most pronounced decreases (logFC < −7) were those classified
as Subgroup 7, AD3, Cd. Solibacter, Subgroup 2, Cd. Udaeobacter, Anaeromyxobacter, Aci-
dobacteriales, Gaiellales, WD2101 soil group, TK10 and Gemmatimonadaceae (Figure 2
and Supplementary Table S4).

3.2. Structure and Diversity of Soil and Earthworm Gut and Cast Microbiomes

The structure of soil bacterial communities significantly changed once they entered
the earthworm digestive system, clustering away from the earthworm samples (gut and
cast) (weighted and unweighted unifrac tests, p < 0.0001, Figure 1c). Moreover, earthworm
digestion also significantly modified bacterial community composition, with gut and cast
samples comprising two significantly different clusters (weighted and unweighted unifrac
tests, p = 0.001, Figure 1c). The same was true for the other distance measures used
(weighted unifrac, Bray-Curtis and Jaccard, Supplementary Figure S2). Transit through
the gut of earthworms significantly affected the richness and diversity of soil bacterial
communities. Thus, richness of gut bacterial communities was significantly higher than
those of soil and cast, as it demonstrated increased diversity estimated using the inverse
Simpson index (Figure 1a, Supplementary Figure S4). However, at the phylogenetic level,
soil and gut samples showed the same level of diversity, whereas cast samples again
showed lower phylogenetic diversity (Figure 1a).

3.3. Metacommunity Assembly of Soil and Earthworm Gut and Cast Microbiomes

Although all the dendrograms and unifrac tests indicated that soil, gut and cast sam-
ples comprise three different bacterial communities, the DMM analysis identified only
two bacterial metacommunities (Figure 3, insert). These bacterial metacommunities are
represented by a group of relatively abundant profiles of different ASVs (Figure 3). A close
examination of the 30 most important ASVs, which accounted for 30% of the difference
in fit between the two metacommunities in our data, showed that in metacommunity
type 1, which included soil and gut samples, ASVs from phyla Acidobacteria (ASV30,
ASV34 and ASV49), Chloroflexi (ASV38 and ASV46), Planctomycetes (ASV16), and Ver-
rucomicrobia (ASV9 and ASV27) were significantly overrepresented, excluding ASV17
(Acidobacteria) and ASV4 and ASV13 (Proteobacteria) (Figure 3, Supplementary Table S5).
On the other hand, metacommunity type 2, which included all cast samples except one,
was characterized by the remaining 19 ASVs, from which ASVs from phyla Actinobacteria
(ASV79), Bacteriodetes (ASV1, ASV5, ASV6 and ASV8) and Proteobacteria (ASV2, ASV3,
ASV10, ASV13, ASV14, ASV15, ASV18, ASV26, ASV40, ASV63 and ASV74) had signifi-
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cantly higher abundances in metacommunity 2 compared with metacommunity 1 (Figure 3,
Supplementary Table S5).
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Figure 3. Relative abundance of the 30 most abundant ASVs in the samples assigned to each of the two
metacommunity types found in transit of soil from gut to casts of the earthworm Aporrectodea caliginosa:
metacommunity type 1 (Navajo white) corresponds to soil and gut, while metacommunity type 2
(dark brown) corresponds to cast samples. The insert represents the support for two metacommunity
types when applying Dirichlet multinomial mixture models. ASVs are sorted in decreased order
of importance from bottom to top. The lower X-axis represents ASV1 and ASV2 and the top X-
axis the other ASVs. Asterisks indicate significant differences in ASV abundance between the two
metacommunities analyzed with DESeq2. For each ASV we have included phylum (by color) and its
most inclusive taxonomic classification.

4. Discussion

As soil microbiomes pass through the earthworm gut their components experience a
large change in environmental conditions, moving from aerobic (soil) to anaerobic (gut)
conditions. Accordingly, facultative and strict anaerobic bacteria from soil will rise dur-
ing gut transit [6]. However, there is very little, if any, knowledge of how this anaerobic
microbiome returns to an aerobic one when is egested as casts. We should expect large
changes in microbiome composition in the transition between gut and cast, because of
reduction in water and increase in oxygen content. Furthermore, after earthworm digestion
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is complete, the change from metabolite concentrations that promote and feed the specific
gut microbiota [6] should favor the rise of different bacterial species. Previous studies
regarding the earthworm gut microbiome using next-generation sequencing techniques
were focused on detritivore earthworms (i.e., earthworms that preferentially feed on de-
composing organic matter), which may limit extrapolation of their results to earthworms
with different feeding habits. Those studies showed that diet seems to play a prominent
role in structuring the earthworm gut microbiome [17,18] and that the majority of bacteria
found in earthworm casts did not come from the diet [19]. Correspondingly, although we
did not test different soils, we clearly showed that the bacterial taxa populating the gut and
casts of geophagous earthworms like A. caliginosa did not come from the diet (i.e., ingested
soil). Thus, our results point to the fact that bacterial communities of earthworm guts,
and hence earthworm casts, are native in earthworms in general, and that most bacteria
ingested perish during gut transit.

4.1. Composition of Soil and Earthworm Gut and Cast Microbiomes

Composition of bacterial communities of gut and casts from the earthworm A. calig-
inosa are similar to those described for casts of this earthworm species [23] and to those
of other earthworm species like Allolobophora chlorotica, Aporrectodea caliginosa, A. tubercu-
lata, Eisenia andrei, Eudrilus eugeniae, Lumbricus rubellus and L. terrestris. Thus, in all cases
Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria and Verru-
comicrobia comprise most earthworm gut microbiomes, with differences in abundance and
composition at lower taxonomic levels that are mainly attributable to earthworm species
and diet [8,9,12,17–19,46–51].

We found that gut and cast bacterial communities in A. caliginosa were populated by
a majority of native bacterial ASVs, i.e., bacterial ASVs that were not found in the soil.
Moreover, although a minor fraction of gut bacterial ASVs were passed to casts, these
constitute a significant part of cast bacterial communities (41% and 75% of their ASVs
and sequences, respectively). Our results also agree with those reported by Dominguez
et al. [19] using different earthworm species and diets, but clearly contradict the tenet that
most of the bacteria found in the guts of geophagous earthworms come from soil [[9] and
references therein]. In fact, our data and results clearly show that soil bacteria seem to be
a food source for A. caliginosa, at least in this soil, because we found hardly any bacterial
ASV in the gut and cast samples. Soil bacterial communities also showed a high percentage
of native bacterial ASVs, although they comprised barely half of the sequences. Thus, the
remaining sequences belong to ASVs shared with earthworm samples, underlining the
strong impact that earthworms have on soil microbial communities. Native bacteria, i.e.,
bacterial lineages found only in the animal and not in the environment, have been described
in sponges, Drosophila and Caenorhabditis elegans [51–54], but their contribution to their gut
microbiomes is lower than those described for earthworms [19].

Despite the high amount of native ASVs, we did not find many ASVs differentially
abundant between soil and earthworm samples or in each pairwise soil-gut-cast comparison.
However, log2 fold changes of bacterial phyla and ASVs were extremely high, with most
of the values over 5 (i.e., 32 times higher), indicating the high impact that transit through
the gut has on soil bacteria. As expected, gut samples showed increased abundance
of Firmicutes [9,48], as well as of other bacterial phyla that exclusively thrive within
earthworm guts, like Cd. Lumbricincola [55]. Remarkably, the presence of only one
ASV of Cd. Lumbricincola in gut and cast samples that was absent from soil raises the
question of whether this ASV is vertically or horizontally transmitted. Previous data from
other known earthworm symbionts (Verminephrobacter and Cd. Nephrothrix) showed high
genetic variability (i.e., a high number of ASVs) [56]. Our results support previous studies
by showing that transit through the earthworm gut and earthworm casts increased the
abundance of the bacterial phyla Actinobacteria, Bacteroidetes, Proteobacteria, Chloroflexy,
Planctomycetes and Verrucomicrobia [19,23], although at different rates across earthworm
species and diet (soil vs. sewage sludge).
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4.2. Structure and Diversity of Soil and Earthworm Gut and Cast Microbiomes

We also found that gut transit increased the richness and diversity of the gut micro-
biome compared to that of the soil, but the opposite was true for the cast, which showed
lower diversity values than the soil. Other studies have reported similar results, with
higher bacterial diversity in earthworm samples than in their diet and values in the range
of those described here [19,23,46]. However, our estimates were clearly lower than those
described by Sapkova et al. [50] for A. caliginosa.

We found that microbiomes of soil, gut and cast showed marked and significant differ-
ences in structure. Previous studies have already shown differences in bacterial community
structure between soil, gut and cast of A. caliginosa, although with lower resolution tech-
niques (14). Differences between animal microbiomes and their diet or environment have
been described for earthworms, sponges and nematodes [1,15–17,19,51–54].

4.3. Metacommunity Assembly of Soil and Earthworm Gut and Cast Microbiomes

Despite marked differences in composition due to native ASVs and structures, soil
and gut microbiomes comprised one metacommunity, while the cast microbiome made
up another. These two metacommunities were defined based on complex configurations
of numerous bacterial ASVs, which were mostly over- or underrepresented in each com-
munity. This result may be due to higher levels of ASV-sharing between gut and soil than
between soil and cast or between gut and cast, which was also confirmed by the amount
of differentially abundant ASVs compared between soil, casts, and gut and casts together.
Interestingly, these same groupings were also recovered by a dendrogram when using
weighted unifrac distances, but unifrac tests did not support it.

Our results are important, because earthworm casts will enter and potentially mix
with soil, modifying their bacterial communities and nutrient dynamics either by their eas-
ily assimilable nutrients [2] or by their composition [20]. In fact, we found that most
of the sequences from the soil bacterial community came from bacteria shared with
earthworm samples.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10051025/s1, Figure S1. Rarefaction curves
indicating the number of amplicon sequence variants (ASVs) identified in bacterial communities of
soil, gut and casts of earthworm species Aporrectodea caliginosa using (a) the full dataset (6,217 ASVs
and 577,510 sequences) and (b) the prevalence filtered dataset (2,106 ASVs and 507,459 sequences),
Figure S2. Dendrograms representing the dissimilarity of bacterial communities at ASV level with
(a) weighted unifrac, (b) Bray-Curtis and (c) Jaccard distances (variance stabilized matrix of OTU
counts, Ward method). All pairwise comparisons of soil, gut and casts, as well as soil and earthworm
samples (gut and cast together), were significantly different with unifrac weighted and unweighted
tests, Figure S3. Variation in soil bacterial abundance through gut transit in Aporrectodea caliginosa.
Relationship between differential ASV representation (log2 fold change) and mean of normalized
counts in a) soil over earthworm samples (gut and casts samples together) with negative (Navajo
white) and positive (olive drab) values indicating taxa significantly underrepresented and overrepre-
sented in earthworm samples, respectively. (b), (c), and (d) pairwise test results for soil, gut and cast
samples. In these plots, significant bacterial ASVs are colored by treatment, positive and negative
logFC indicate significant increases and decreases for each treatment. In all plots non-significant taxa
are colored in black, Table S1. Native bacterial ASVs from soil, gut and cast bacterial communities.
Native bacterial ASVs from gut and casts are those found only in these samples and not in soil.
Native soil ASVs are those found only in soil samples, Table S2. Differential abundance in bacterial
amplicon sequence variants (ASVs) of soil and earthworm samples (gut and cast together) from
earthworm species Aporrectodea caliginosa analyzed using negative binomial models, as implemented
in the package DESeq2, Table S3. Differential abundance of bacterial phyla in soil, gut and casts of
earthworm species Aporrectodea caliginosa analyzed using negative binomial models, as implemented
in the package DESeq2, Table S4. Differential abundance in bacterial amplicon sequence variants
(ASVs) of soil, gut and casts of earthworm species Aporrectodea caliginosa analyzed using negative
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binomial models, as implemented in the package DESeq2, Table S5. Summary of DMM analysis
showing which ASVs were most responsible for separating the two communities (soil–gut and casts).
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