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Background: Accurate prediction of treatment response in Crohn’s disease (CD) patients undergoing infliximab (IFX) therapy is
essential for clinical decision-making. Our goal was to compare the performance of the clinical characteristics, radiomics and deep
learning model from computed tomography enterography (CTE) for identifying individuals at high risk of IFX treatment failure.
Methods: This retrospective study enrolled 263 CD patients from three medical centers between 2017 and 2023 patients received
CTE examinations within 1 month before IFX commencement. A training cohort was recruited from center 1 (n=166), while test
cohort from centers 2 and 3 (n=97). The deep learning model and radiomics were constructed based on CTE images of lesion. The
clinical model was developed using clinical characteristics. Two fusion methods were used to create fusion model: the feature-based
early fusion model and the decision-based late fusion model. The performances of the predictive models were evaluated.

Results: The carly fusion model achieved the highest area under characteristics curve (AUC) (0.85-0.91) among all patient cohorts,
significantly outperforming deep learning model (AUC=0.72—0.82, p=0.06—0.03, Delong test) and radiomics model (AUC=0.72-0.78,
p=0.06-0.01). Compared to early fusion model, the AUC values for the clinical and late fusion models were 0.71-0.91 (p=0.01-0.41),
and 0.81-0.88 (p=0.49-0.37) in the test and training set, respectively. Moreover, the early fusion had the lowest value of Brier’s score
0.15-0.12 in all patient set.

Conclusion: The early fusion model, which integrates deep learning, radiomics, and clinical data, can be utilized to predict the
response to IFX treatment in CD patients and illustrated clinical decision-making utility.
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Introduction

Crohn’s disease (CD), a main form of inflammatory bowel disease (IBD), is characterized as a chronic, remitting, and
relapsing inflammatory disorder of the gastrointestinal tract, requiring ongoing management and surveillance." Infliximab
(IFX), shows efficacy in inducing and maintaining remission, also is the first anti-tumor necrosis factor (TNF) a agent.
Yet, primary loss of response (PLR) to IFX is observed in 13-40% of CD patients, while 23—-46% patients experience
a secondary loss of response (SLR).>> The reduction of response to IFX, an anti-TNF monoclonal antibody, is believed
to result from inadequate drug levels, attributed to the antibody’s degradation and clearance. Consequently, when
a decrease in the IFX’s effectiveness is suspected, a comprehensive assessment involving the evaluation of active
inflammation, potential IBD complications, clinical symptoms, biochemical markers, endoscopic findings, and imaging
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should be undertaken. Furthermore, consistent monitoring of disease activity during IFX treatment is crucial, enabling
timely adjustments to therapeutic strategies to achieve and maintain long-term remission.

For decades, the Crohn’s Disease Activity Index (CDAI) has been regarded as a valuable tool for measuring the
clinical activity of CD.*® Nevertheless, the accurate calculation of CDAI requires over a seven-day period and the
necessity for patient compliance limits its utility in daily clinical practice.”® While colonoscopy offers an objective and
accurate assessment of the intestinal condition, its invasiveness, high costs, and potential risks, including perforation,
bleeding, and cardiovascular complications related to sedation, detract from its desirability.()’10 Furthermore,
a considerable number of CD patients are unsuitable candidates for endoscopy due to intestinal luminal strictures or
a penetrating disease phenotype.'' Additionally, the psychological and physical burdens caused by repeated invasive
procedures require extended recovery times, further complicate their application for patients.'? Both CT and magnetic
resonance (MR) enterography serve as pivotal tools for assessing disease status and detecting extraintestinal complica-
tions in patients diagnosed with Crohn’s disease (CD).'*'* MR enterography, known for its provision of multi-sequence
imaging data and superior soft tissue contrast resolution, plays a crucial role in evaluating disease activity and treatment
response. Additionally, it aids in characterizing inflammatory or fibrotic lesions and facilitates routine clinical follow-
up.'>'® Conversely, computed tomography enterography (CTE) offers advantages such as shorter scanning times, cost-
effectiveness, and high inter-reader agreement in image interpretation, thereby enhancing its availability and accessibility
in clinical settings.'” With ongoing equipment upgrades and advancements in CT reconstruction algorithms, there has
been notable progress in obtaining high-quality images at reduced radiation doses. This development is particularly
advantageous when imaging young patients and conducting repeated examinations over time. CTE can effectively reflect
the characteristics of CD,'®2° and there have been studies specifically investigate the correlation between the features of
the intestinal wall and mesentery, and the mucosal condition under CTE.?!-*2

Recent advancements in radiomics and deep learning have shown potential use in diagnosing diseases, classifying
molecular types, and forecasting treatment outcomes.” >> Meng et al performed research utilizing radiomics and deep
learning to analyze CT scans of patients with CD.?¢ Previous studies have identified relationship between the radiological
features of CD and IFX response.”’ >’ Moreover, recent studies indicates that imaging power radiomics can be applied to
diagnose CD mucosal healing.**>' Based on this foundation, we posited that employing artificial intelligence (AI) for
image analysis of CD might serve as a viable approach for predicting IFX response.

Medical imaging modalities like CT and MRI operate within three-dimensional (3D) spaces, and the application of
two-dimensional (2D) techniques to 3D tasks can lead to loss of essential structural information. Training a 3D deep
convolutional neural network (DCNN) typically requires larger datasets than 2D DCNN, presenting a substantial obstacle
in medical research due to the limited available data.>® Moreover, deep learning-derived features may be sensitive to the
global translation, rotation, and scaling of images, a vulnerability not shared by radiomics features.*> Recent studies
indicate that models integrating both radiomics and deep learning outperform models relying on a single approach.**>>

Our study was designed to evaluate the effectiveness of 3D deep learning, radiomics, and their integrated models in
the prediction of IFX response in CD patients. We implemented two strategies for model integration: early fusion based

on features and late fusion based on decisions.

Material and Methods
Study Cohort

This study retrospectively collected data from 263 Crohn’s disease patients across three hospitals (Figure 1). The training
cohort comprised 166 patients treated at the Center 1 (Wenzhou Medical University First Affiliated Hospital) from
January, 2017, to February, 2023. The external test cohort included 97 patients treated at Center 2 (Xiamen Second
Hospital) and Center 3 (Yueqing People’s Hospital) from March 2017 to January 2023. The three respective Hospital
Ethics Committee granted approval for this study, which was carried out in compliance with the Declaration of Helsinki
principles. Given the study’s retrospective and observational design, the requirement for informed consent was waived.
Patient confidentiality was assured by the protection of personal information in the medical record system.

7640  "eee Journal of Inflammation Research 2024:17

Dove!


https://www.dovepress.com
https://www.dovepress.com

Dove Cai et al

Infliximab-treated CD patients undergoing
CTE examination

Inclusion criteria:

(a) Available CTE scan within one month
prior to starting infliximab treatment

(b) Undergoing infliximab treatment with
routine follow-up for at least one year, unless
there was a failure in treatment

Center 1 Center 2 & 3
(n=189) (n=116)

Exclusion criteria: Exclusion criteria:

(a)  Adverse reactions to infliximab (a)  Adverse reactions to infliximab
therapy (n=2) therapy (n=3)

(b)  coexisting hematologic, (b)  coexisting hematologic,
metabolic diseases, or auto- metabolic diseases, or auto-
immune liver disorders (n=5) immune liver disorders (n=2)

(c)  missing clinical data (n=3) (¢)  missing clinical data (n=1)

(d)  poor quality CTE images (n=8) (d)  poor quality CTE images (n=10)

(e)  unavailability of standard IFX (e) unavailability of standard IFX

L. therapy (n=5) therapy (n=3)
Training set (n=166) Test set (n=97)
Response, n=83 Response, n=54
Non-response, n=83 Non-response, n=43

Figure | Flowchart diagram shows the patient selection process from three medical centers. CD, Crohn’s disease; CTE, computed tomography enterography; IFX,
infliximab.

The criteria for inclusion were as follows: a diagnosis of CD established according to the consensus statement of the
European Crohn’s and Colitis Organization;*° available CTE scan within one month prior to starting IFX treatment;
undergoing IFX treatment with routine follow-up for at least one year, or the IFX treatment failure within one year.
Exclusion criteria encompassed: adverse reactions to IFX therapy; coexisting hematologic, metabolic diseases, or auto-
immune liver disorders; missing clinical data; poor quality CTE images, including artifacts, overlap, noise; unavailability
of standard IFX therapy. The recruitment process is detailed in a flowchart in Figure 1.

The primary outcome focused on IFX treatment failure within one year, defined as composite endpoints that encompass both
PLR and SLR to IFX. PLR refers to a lack of reaction to IFX during the induction phase (0—14 weeks), while SLR is identified
as a decline in clinical response (15-54 weeks) after initially responding to IFX treatment.>*>* The outcome was assessed by an
experienced multidisciplinary team at our institution, which based its determinations on clinical symptoms, laboratory indices,
radiological findings, and endoscopic results. This assessment included the following components: (a) The persistence of
disease-related symptoms or active inflammation, as indicated by criteria such as a CDAI exceeding 150 or showing less than
a 70% decrease, or a C-reactive protein (CRP) level exceeding 5 mg/L or demonstrating less than a 50% decrease compared to
baseline, was assessed during induction therapy. (b) In cases where persistent clinical remission was not achieved following
induction therapy or where there was evidence of disease relapse or progression within one year post-treatment, despite an initial
response to [FX, further evaluation was conducted. This evaluation encompassed criteria such as the return of CDAI levels to
baseline or higher, along with active intestinal inflammation indicated by endoscopic or imaging examinations. (c) Within
one year, criteria such as the necessity for surgical intervention, substitution of biological agents, escalation of corticosteroid

therapy, or more than two consecutive hospitalizations due to disease progression were also considered.
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CT Examination Procedure

Prior to CTE, all patients adhered to a standardized bowel preparation regimen and observed a fasting period of 12 hours.
Subsequently, within one hour preceding the scan, patients orally received a 2.5% isotonic mannitol solution
(400-500 mL) at 15-minute intervals. CTE was performed using either a 64-section (Philips Brilliance; Philips) or a 256-
section (GE Revolution; GE Healthcare) multidetector scanner. Scanning encompassed the region from the top of the
diaphragm to the symphysis pubis with patients in the supine position. Following the acquisition of nonenhanced images,
a nonionic contrast agent (320 mg/mL; loversol, Jiangsu Hengrui Medicine Corp Ltd) was administered intravenously at
a dose of 1.5-2.0 mL/kg, with an average injection rate of 3.0-4.0 mL/sec. Arterial phase images were obtained either
15 seconds after reaching an attenuation value of 100 hounsfield units (HU) in the abdominal aorta using automatic
bolus-tracking or with a delay of 32-35 seconds post-contrast injection. Subsequently, portal venous phase images were
acquired with a delay of 35 seconds following the arterial phase or at 70 seconds post-contrast injection. For radiomics
analysis in our study, CTE portal venous phase images with a slice thickness of 5 mm were utilized, consistent with
methodologies employed in prior research on radiomics in CD.

Volume-of-Interest Segmentation and Radiomics Features Extraction

Volumes of interest (VOIs) were delineated on CTE in intestinal segments reflecting the most serious inflammation for
medical image analysis. This approach aligns with criteria established in previous bowel radiomics research, where active
inflammation was identified through endoscopic and radiological findings.?’***! Characteristics include (1) evident
ulcers observable via endoscopy and/or CTE, (2) thickening of the intestinal wall and segmental mural hyperenhance-
ment, and (3) complications such as penetration (excluding abscesses), stricture, or the presence of creeping fat around
the diseased bowel segment. The segmentation process culminated with a senior abdominal radiologist’s review to verify
the selection of optimal VOIs. Two experienced radiologists (with the experience of 5 and 7 years, respectively), in
a blinded manner (blinded to clinical characteristics and outcome), outlined each lesion’s contour to capture the lesion
volume using the ITK-SNAP software (version 3.8, www.itksnap.org/), excluding the intestinal lumen, guided by the
diagnostic criteria for active intestinal inflammation as discerned through imaging or endoscopic outcomes.'**° Based on
linear interpolation, images were resampled to achieve isotropic voxel dimensions of 3.0 x 3.0 x 3.0 mm?. Subsequently,
using Python (version 3.7.0) with the PyRadiomics library (version 3.0.1), which adheres to the Imaging Biomarker
Standardization Initiative (IBSI) guidelines, a comprehensive extraction of 1116 radiomics features was performed from
the VOIs within the enteric phase images of CTE. For evaluating the reliability and consistency of the delineated VOIS,
a re-annotation of all patients’ VOIs was conducted two months following the initial delineation. This subsequent dataset

facilitated an analysis using the intraclass correlation coefficient (ICC).

Feature Selection and Model Construction

Radiomics features were standardized by z-score normalization. To address the issue of strong correlations among
features (Spearman correlation coefficient of 0.9 or higher), a methodical approach involving greedy recursive feature
deletion was adopted for feature filtration. This approach systematically eliminates the most redundant feature within the
set iteratively until no feature exhibits a correlation coefficient above 0.9. Subsequently, features exhibiting high stability
with intraobserver and interobserver ICC values surpassing 0.75 were maintained.

Further refinement of the feature set was achieved through the application of multivariate least absolute shrinkage and
selection operator (LASSO) regression (LASSO parameter: Alpha:1; Family: Binomial; nfolds:10). The support vector
machine (SVM) algorithm, renowned for its efficacy in delineating optimal hyperplanes for classification tasks, was
employed to develop predictive models*® (SVM parameter: Type: eps-regression; Kernel: Radial; Cost: 1; Gamma:0;
Epsilon:0.1). Input to the SVM classifier comprised the training dataset, with each sample containing a set of features and
an associated label denoting the response or non-response to IFX. The resultant output was a classifier model trained to
predict the likelihood of non-response to IFX in patients within the test set, quantifying the probability on a scale from 0
to 1.
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Clinical Model Construction

The clinical characteristics in Table 1 were used to construct the clinical model. Feature selection was performed using
LASSO regression, followed by SVM classifier for classification prediction. Detailed procedures were described in the
above section of “Feature Selection and Model Construction”.

3D Deep Learning Model Development and Feature Extraction

In the context of 3D deep learning, the term “bounding box™ specifically refers to the cubic boundary encapsulating the
lesion’s VOI. To standardize input dimensions, all VOI cubes were resized to 96x96x96 pixels through linear interpolation. To
augment the dataset, techniques including inversion along the X, Y, and Z axes were applied. These enhanced 3D images,
paired with their respective labels, served as inputs for the 3D ResNet. The training regimen spanned 300 epochs, employing
an initial learning rate of 0.02, culminating in a model capable of predicting IFX response in patients. To extract the 3D deep
learning features of a patient’s lesion, the 3D ResNet model’s penultimate average pooling layer yielded a total of 512 features.

Construction of the Fusion Model
In this study, two distinct fusion strategies were implemented to develop the fusion model.*'
The first strategy, known as feature-level fusion or early fusion, entails the amalgamation of all features derived from various

modalities into a unified feature vector. Specifically, radiomics features of the VOI were extracted utilizing PyRadiomics, and 3D

Table | Patient Demographics and Clinical Characteristics

Variables Total (n = 263) Responders (n = 134) | Non-responders (n = 129) | p

Sex, n (%) 0.983
0 62 (23.5) 32 (23.8) 30 (23.3)

| 201 (76.5) 102 (76.2) 99 (76.6)

Age, Median (Q1,Q3) 28 (22, 42.5) 27 (22, 38.75) 29 (23, 44) 0.312
Smoking, n (%) 0.796
0 205 (77.9) 104 (77.6) 101 (78.3)

| 58 (22.1) 30 (22.4) 28 (21.7)

Drinking, n (%) 0.625
0 230 (87.5) 119 (88.8) 11 (86.0)

| 33 (12.5) 15 (11.2) 18 (14.0)

BMI, Median (Q1,Q3) 19.15 (17.65, 21.26) | 19.47 (18, 21.3) 18.83 (17.48, 20.86) 0.098
Albumin, Mean * SD 36.16 + 632 38.17 + 5.87 34.08 + 6.11 < 0.001
ALT, Median (Q1,Q3) 13 (9, 20) 13 (9, 20.75) 14 (8, 20) 0.937
AST, Median (QI,Q3) 17 (13.5, 22) 17 (14, 21.75) 17 (13, 22) 0.882
Serum creatinine, Median (Q1,Q3) 66 (54, 73) 66 (54.25, 74) 65 (53, 73) 0.284
Urea Nitrogen, Median (Q1,Q3) 43 (3.5, 5.6) 4.55 (3.8, 5.6) 4.1 3.2,54) 0.028
Uric acid, Mean + SD 304.87 + 90.66 319.81 + 84.48 289.34 + 94.51 0.006
Total cholesterol, Median (Q1,Q3) 3.45 (3.01,4.12) 3.55 (3.14, 4.28) 3.3 (2.95, 4.05) 0.031
Triglyceride, Median (Q1,Q3) 0.99 (0.77, 1.39) 0.96 (0.81, 1.41) 1.03 (0.74, 1.36) 0.472
High density lipoprotein, Median (Q1,Q3) | 0.94 (0.81, 1.12) 1.02 (0.86, 1.2) 0.88 (0.74, 1.01) < 0.001
Low density lipoprotein, Median (Q1,Q3) | 2.01 (1.62, 2.58) 2 (1.67, 2.51) 2.01 (1.6, 2.6) 0.959
Neutrophil, Median (Q1,Q3) 4.08 (2.84, 5.8) 3.44 (243, 4.77) 4.99 (3.81, 6.9) < 0.001
Monocyte, Median (Q1,Q3) 0.55 (0.4, 0.75) 0.5 (0.39, 0.63) 0.62 (0.43, 0.8) 0.003
Lymphocyte, Median (Q1,Q3) 1.41 (1.08, 1.8) 1.45 (1.1, 1.9) 1.33 (1.04, 1.72) 0.163
Hemoglobin, Median (Q1,Q3) 122 (107, 135) 126 (113.25, 136.75) 117 (102, 129) < 0.001
Platelet, Median (Q1,Q3) 283 (219.5, 356) 263 (205, 352.5) 300 (226, 369) 0.027
PT, Median (Q1,Q3) 13.9 (13.25, 14.5) 13.7 (13.1, 14.17) 14 (134, 14.7) < 0.001
CRP, Median (Q1,Q3) 12.9 (3.13, 37.35) 323 (1.77, 14.2) 29 (11.5, 61.4) < 0.001
ESR, Median (Q1,Q3) 20 (7, 38) 12 (2, 24) 28 (16, 46) < 0.001

Abbreviations: BMI, body mass index; ALT, Alanine aminotransferase; AST,

erythrocyte sedimentation rate.

Aspartate Transaminase; PT, prothrombin time; CRP, C-reactive protein; ESR,
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deep learning features were acquired via 3D ResNet, as previously outlined. These features, in conjunction with clinical and
radiological data, underwent z-score normalization. Spearman correlation, ICC analyses, and least absolute shrinkage and
selection operator (LASSO) analyses were subsequently conducted to refine the feature selection. An SVM classifier was then
trained to create the feature-based fusion model, designated as early fusion, with comprehensive methods detailed in the section
“Feature selection and model construction”.

The second strategy, decision-level fusion or late fusion, integrates the output probabilities from various models. This
approach utilized a stacking ensemble learning technique to amalgamate the output probabilities derived from the three
above models.*' The trained SVM model of late fusion was evaluated in both the training and external test sets.
Workflow diagram for the development of the predictive models was presented in the Figure 2.

Statistical Analyses

To determine if the sample size in our study was adequate to identify an area under the receiver operating characteristic
(AUC) curve value different from 0.500, we calculated the necessary sample size using the following parameters: 80%
power, a two-sided significance level of 0.05, and an alternative hypothesis that the true AUC values of Early fusion
model in both the training and total test cohorts differ from the null hypothesis (AUC = 0.5). The class ratios were based
on actual data from the study: 91 non-responders and 75 responders cases in the training cohort, and 44 non-responders
and 53 responders cases in the total test cohort.***

The comparison of categorical variables was conducted using either the Chi-square test or the Fischer test, while the
Mann—Whitney U-test or the independent 7-test was utilized for continuous variables. The assessment of the predictive
model’s performance leveraged Receiver Operating Characteristic (ROC) curves, along with metrics such as AUC,
accuracy, sensitivity, specificity, and Brier’s score. The R package “glmnet” and “e1071” was used to perform LASSO
analysis and SVM model construction, respectively. All statistical analyses were executed using the R programming
language (version 3.4.3) and the scikit-learn library (version 0.18) in Python 3.7.

Results

Demographics and Clinical Characteristics

A total of 263 CD patients were included in this study (median age, 28 years IQR: 22-42.5 years; 201 male) treated with
IFX, including 166 patients in the training set, 97 patients in the external test set. The detailed information of included
patients’ detailed information was summarized in Table 1. Between the non-response and response groups, there was no

A Image Processing B Training Procedure C Fusion Strategy
SVM

Classifier Response

() or (+)
SVM

Classifier Response

() or (+)

Figure 2 Workflow diagram for the development of the predictive models. Lesion segmentation and volume of interest (VOI) delineation are performed by experienced
radiologists. The Radiomics model is developed using PyRadiomics. The deep learning model is developed based on 3D ResNet. The clinical data are used to construct the
clinical model. For the early fusion model, the extracted features from three basic models are integrated to train an SVM classifier. For the late fusion model, the output
probabilities from three basic models are used to develop a stacking model with a SVM classifier. A, the process of image processing; B, the construction of single modality
models; C, the construction of fusion models. SVM, support vector machine.
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significant differences in terms of sex, age, history of smoking, drinking habit, BMI, ALT, AST, serum creatinine,
triglyceride, low density lipoprotein, lymphocyte count. The albumin, high density lipoprotein, neutrophil count,
monocyte count, hemoglobin, platelet, prothrombin time, C-reactive protein, and erythrocyte sedimentation rate in the
non-response group were significant different with those of response group.

Feature Selection and Model Development

Among the 1116 radiomic features and 512 deep learning features obtained from the CTE images, 212 radiomics features
and 89 deep learning features with intraobserver and interobserver ICCs greater than 0.75 differed between the IFX
treatment failure group and non-IFX treatment failure group in the training cohort (P<0.05). Following LASSO
regression analysis, 6 radiomics features and 7 deep learning features were finally screened out. Then, we further
conduct LASSO on clinical characteristics selection. Finally, 4 clinical characteristics were included into the next model
construction.

Performance Analysis of the Clinical, Radiomics, Deep Learning Models and the Fusion
Model

We created SVM machine learning models based on clinical, radiomics, deep-learning, and fusion model. The predictive
efficiency of each model is summarized in Table 2. Figure 3A demonstrated receiver operating characteristics curves of
the SVM machine learning models, with area under the curve (AUC) of 0.91 (95% CI: 0.85-0.95), 0.82 (95%
CI:0.76-0.88), 0.78 (95% CI: 0.71-0.84), 0.91 (95% CI: 0.86-0.95), and 0.88 (95% CI: 0.82-0.92) for clinical, radio-
mics, deep-learning, early fusion, and late fusion model in the training set, respectively. The external test set cohort had
AUC of 0.71 (95% CI: 0.61-0.80), 0.72 (95% CI: 0.62—-0.81), 0.72 (95% CI: 0.62-0.81), 0.85 (95% CI: 0.77-0.92), and
0.81 (95% CI: 0.72-0.87) in clinical, radiomics, deep-learning, early fusion, and late fusion model, respectively, as
shown in the Figure 3B. Moreover, the sensitivity and specificity of each model was: clinical model: 0.92, 0.80; deep-
learning: 0.70, 0.81; radiomics: 0.59, 0.87; early fusion: 0.92, 0.81; late fusion: 0.70, 0.99 in the training cohort. And, the
sensitivity and specificity of each model was: clinical model: 0.60, 0.80; deep-learning: 0.77, 0.61; radiomics: 0.60, 0.87;
early fusion: 0.77, 0.85; late fusion: 0.81, 0.67 in the test cohort. Brier’s score, commonly used metrics for assessing the
accuracy of probabilistic prediction models, indicated that early fusion model obtained the best performance among all
models (Table 2). Figure 4 also demonstrated that the early fusion model has top precision-recall curve AUC. Figure 5
displayed the decision curve analysis for the model’s training and external test cohort, showing significant net gains for
the early fusion based SVM model. Figure 6 presented the calibration curve of each model. Kaplan-Meier curves for IFX
response stratified by early fusion are shown in Figure 7. There were significant associations (Training cohort: Log rank

Table 2 The Performance Evaluation of the Developed Models in the Training and External Test Cohorts

Model AUC (95% CI) | p-value Youden’s index | Sensitivity | Specificity | Accuracy | PPV | NPV | Brier score
Training

Clinical 0.91 (0.85-0.95) 0.41 0.30 0.92 0.80 0.86 | 082 | 0.90 0.12
Deep-learning | 0.82 (0.76-0.88) 0.03 0.47 0.70 0.8l 075 | 078 | 0.73 0.20
Radiomics 0.78 (0.71-0.84) 0.0l 0.51 0.59 0.87 073 | 082 | 0.8 0.23
Early Fusion 0.91 (0.86-0.95) | Reference 0.36 0.92 0.8l 0.86 | 083 | 09I 0.12
Late Fusion 0.88 (0.82-0.92) 0.37 0.86 0.70 0.99 084 | 098 | 0.77 0.13
Test

Clinical 0.71 (0.61-0.80) 0.0l 0.45 0.60 0.80 071 | 070 | 0.72 0.23
Deep-learning | 0.72 (0.62-0.81) 0.02 0.44 0.77 0.6l 0.68 | 06l 0.77 0.22
Radiomics 0.72 (0.62-0.81) 0.06 0.51 0.60 0.87 075 | 079 | 0.73 0.22
Early Fusion 0.85 (0.77-0.92) | Reference 0.37 0.77 0.85 081 | 080 | 082 0.15
Late Fusion 0.81 (0.72-0.87) 0.49 0.16 0.8l 0.67 073 | 066 | 082 0.21

Abbreviations: AUC, area under characteristic receiver operating curve; Cl, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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Figure 4 Prediction performance of the clinical, radiomics, deep learning, early fusion, and late fusion models with precision-recall curve analysis in the training (A) and test
(B) cohorts.

test, p <0.001, hazard ratio [HR]=0.120; Test cohort: Log rank test, p <0.001, HR=0.113) among predicted responders
and predicted non-responders patients stratified by early fusion model. This underscored the clinical relevance of our
model in prediction of non-responsive to IFX treatment.

For the early fusion training, a sample size of 14 patients was necessary, consisting of 8 non-responders and 6
responders. To perform independent validation, a separate sample size of 19 patients was required, including 10 non-
responders and 9 responders. As a result, the sample sizes used in this study—166 for the training cohort and 97 for the

total test cohort—were sufficient to detect true AUC values of 0.91 and 0.85, respectively, each differing from 0.500,
with 80% power.

Discussion

Currently, IFX therapy is crucial in the initial clinical management of CD patients for maintaining long-term remission.
Our study developed a CTE-based multimodal fusion model to predict [FX treatment outcomes. By incorporating clinical
characteristics, radiomics, deep-learning features, we crafted a comprehensive model to early identify CD patients at high
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risk of IFX treatment failure. This model achieved an AUC of 0.91 (95% CI: 0.86—0.95) and 0.85 (95% CI: 0.77-0.92) in
the training and test cohorts, respectively. Our findings, leveraging radiomic and deep-learning features of intestinal
lesions from routine CTE images alongside clinical characteristics, could enhance personalized prediction and treatment
planning for CD patients.

The prediction of response to IFX in CD patients has raised much concern for a long time. Bai et al suggested that
baseline gene expression was related to PLR to IFX in CD patients.** Previous study by Nissila et al also reported that
faecal bacterial and fungal microbiota composition could offer a predictive tool to evaluate IFX response in CD
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patients.*> Moreover, there were several studies focused on prediction of IFX response based on clinical characteristics or
radiomics data, and exhibiting moderate accuracy in predicting IFX response with AUC<0.850.>**%*" The present study
tried to develop an integrated model based on deep-learning, radiomics, and clinical features to predict the IFX response
in CD patients. Our integrated model can comprehensively analyze the routine medical imaging by deep learning and
radiomics, and non-invasively predict IFX response, therefore, not only avoiding inappropriate therapy but also screening
more patients suitable for I[FX treatment. The findings from our study suggest that the proposed model offers additional
value in the realm of personalized diagnostic approaches and treatment decision-making.

Radiomics, through the high-throughput extraction of quantitative features from medical imaging, transforms images
into analyzable data for clinical decision support. This process, when combined with other significant variables, aids in
constructing predictive models for diagnosis and prognosis.*®*’ Previous studies have indicated the value of radiomic
features from CTE images of inflammation diseased bowel walls in predicting mucosal healing or identifying intestinal
fibrosis in CD patients.*'*° Given the common occurrence of multiple intestinal segment involvement in CD, for
consistency and efficiency, our analysis focuses on the segment exhibiting the most active inflammation. Previous
studies have shown a direct correlation between the thickness of the intestinal wall and disease activity in CD, with
specific thickness thresholds providing accurate assessments of inflammatory activity.’'>* Intestinal strictures in CD,
characterized by varying degrees of inflammation and fibrosis, are linked to the emergence of penetrating
complications.'®>* Hence, the presence of intestinal strictures and penetrating complications in affected bowel walls
are important markers of active inflammation.

Deep Learning represents a cutting-edge trend in artificial intelligence research,’® marking significant advancements
in computer vision, machine learning, and various other fields. Li et al developed and validated a deep learning-based
nomogram for CT images, aimed at predicting lymph node status in gastric cancer. This model demonstrated strong
discrimination ability in the test set, with an AUC of 0.821 (95% CI: 0.722-0.920).>> However, to the best of our
knowledge, there are few literatures focusing on the deep learning features from medical images in CD patients. Thus, in
our study, we also separately validated the deep learning efficacy in CD.

A recent systematic review compared the performances of radiomics models, deep learning models, and multidomain
fusion models in medical research.’® The findings showed that the fusion model excelled in 63% of the studies, fell short
in 25%, and matched the performance of others in 13%. Our study indicated that the effectiveness of the fusion model
largely depends on the fusion methods employed. And early fusion being the predominant approach in biomedical
research.’’ In a related study, Huang et al employed a CT-based Convolutional Neural Network (CNN) and clinical data
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to detect pulmonary embolism, evaluating seven different fusion architectures.”® When choosing a fusion approach for
a specific medical issue, relying solely on past experience is not recommended. Instead, conducting preliminary
experiments with various approaches and selecting the most optimal one is advisable.

Our study introduced a noninvasive approach using a fusion model to predict IFX response in CD patients, offering
prediction support and assisting in making informed treatment choices. The model recommended alternative therapy for
patients identified as non-response to IFX, therefore reducing the likelihood of complications occurrence and economic
burden. Additionally, this early fusion model can aid clinicians in treatment decision by allowing for the early prediction
of possible non-response, ensuring that necessary therapeutic interventions are applied without delay. Compared to
previous studies focus on identifying IFX non-responders, our research not only employed potential clinical character-
istics, but also tried to extract data from medical imaging based on radiomics and deep learning.*’>° Our manuscript
showed that model based on clinical characteristics, radiomics, and deep learning features using early fusion strategy
could contribute to decision-making for clinicians in IFX administration management in CD patients.

It’s important to acknowledge its limitations in our study. Firstly, our analysis was retrospective and prospective,
which led to unavoidable selection bias. Multicenter studies are required to validate our findings. Secondly, we currently
employed a manual method to delineate the VOI. In the future, we will involve leveraging artificial intelligence for
automatic segmentation and measurement of the bowel, aiming to enhance the model’s accuracy. Furthermore, MR
enterography also plays a crucial role in assessing the disease in CD patients. Our results warrant further investigation in
subsequent MR enterography studies.

In conclusion, the proposed early fusion model showed high accuracy in identifying Crohn’s disease patients at high
risk for IFX response. Our study introduced a noninvasive tool using standard CTE, which could help predict individual
treatment responses in CD patients undergoing IFX therapy. This tool aims to enhance clinical remission rates through
reasonable treatment planning.
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