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Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for
producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and
reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families.-e plastome of T. vernicifluum is 159,571 bp in
length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a
small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are
transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide
microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion
variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses
revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. -e phylogenetic relationships of the six families in
Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining
potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.

1. Introduction

Toxicodendron vernicifluum (Stokes) F. A. Barkley, com-
monly known as the Chinese lacquer tree, is a deciduous tree
species with a toxic sap in the sumac family, Anacardiaceae
[1]. -e generic name of the species is derived from the
Greek words toxikos, meaning “poison,” and dendron,
meaning “tree,” while the specific name vernicifluum means
“lacquer” in Latin [2]. T. vernicifluum is native to China and
the Indian subcontinent and has been cultivated in other
oriental countries, such as South Korea and Japan, for
probably thousands of years [3–5]. -rough tapping the
trunk, the species can provide us with the raw lacquer, an
excellent adhesive and painting material with multiple
characteristics, such as anticorrosion, antirust, non-
oxidation, acid resistance, alcohol resistance, and high-

temperature resistance [3, 6]. -e lacquer is traditionally
used to make various types of lacquerwares in China, Japan,
South Korea, and several countries in Southeast and South
Asia [1]. Furthermore, T. vernicifluum is sometimes used in
Chinese medicine for the treatment of internal parasites and
for stopping bleeding. Previous studies also reported that the
urushiols of the species probably have an anticancer activity
to human cancer cells, and the flavonoids extracted from its
leaves possess therapeutic potentials as a multipotent agent
against neurodegenerative diseases [7, 8].

Many recent studies of the Chinese lacquer tree have
focused on secondary metabolites [9–11], anatomic features
[12–14], growth traits [15–17], and classification and eval-
uation of cultivars of the species [18, 19]. Since 1978, more
than 90 local cultivars, including some rare ones, have been
recognized [20]. -ose cultivars have different properties,
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such as high yields, good quality of lacquer, and good timber
[21]. However, controversy still surrounded the delimitation
of the cultivars based on morphological and anatomic traits
[22]. Although some researchers have used different types of
molecular markers, such as nuclear microsatellites (nSSRs)
and amplified fragment length polymorphism (AFLP), to
describe the genetic variation of both natural populations
and cultivars of T. vernicifluum [23, 24], the information on
the genetic diversity and structure of the species was still
limited by small sample size, narrow sampling range, and a
few number of molecular markers. -us, more studies on
both nuclear and plastid genomes are expected to provide
more useful markers to reveal the genetic variation pattern
of T. vernicifluum and its cultivars in the future.

-e genus Toxicodendron Mill. is well known for pos-
sessing urushiols, which can cause severe allergic contact
dermatitis [25]. It consists of approximately 24 species with a
disjunct distribution in temperate North America and
eastern Asia [26]. Fifteen of them are native to China, mainly
distributed in the regions south of the Yangtze River [27].
Previous studies have shown that Toxicodendron is a
monophyletic group distinct from other genera of the Rhus
complex [28]. Two temperate disjunct lineages have been
recovered, one from section Toxicodendron and the other
between the eastern North American T. vernix and the
eastern Asian T. vernicifluum. -e biogeographic history of
the genus suggested that the Bering land bridge may have
acted as the migration route that resulted in the current
pattern of temperate disjunctions. Nonetheless, intrageneric
relationships of Toxicodendron are still poorly understood
[28]. Furthermore, Anacardiaceae is among the families of
Sapindales, which is known for citrus, maples, lychees,
mangos, and cashews [29]. Previous studies have shown that
Sapindales is a monophyletic group [30, 31]. However,
phylogenetic relationships among several families of the
order, such as Simaroubaceae, Rutaceae, and Meliaceae, are
still not fully resolved [30–32].

-e chloroplast (cp) genome is nonrecombinant and
uniparental and is more conserved than mitochondrial and
nuclear genomes in terms of gene content, organization, and
structure [33]. Also, the nucleotide substitution rate of
chloroplast genes is higher than those of mitochondria
genome but lower than those of nuclear genome [34].-e cp
genome plays an important role in reconstruction of the
green plant phylogeny and understanding the origins of
economically important cultivated species and changes that
have taken place during domestication [35, 36]. With the
development of bioinformatics and high-throughput se-
quencing technology, various studies on the evolution of cp
genomes have emerged in recent years [37].

Recently, the cp genome of T. vernicifluum cv.
Dahongpao, a natural triploid cultivar, has been reported
[38]. However, the differences of plastomes between diploid
and triploid are rarely known. In this study, we sequenced
and analyzed the complete cp genome of diploid T. verni-
cifluum and reconstructed the phylogeny of Sapindales
based on 52 cp genomes of six families. -e following
questions were addressed: (1) What are the features of the cp
genome of diploid T. vernicifluum? (2) How many potential

microsatellite markers can the cp genome provide for us? (3)
What kinds of structural variation events have occurred
across the cp genomes in Anacardiaceae? and (4) Can the cp
genome information provide supporting data for phyloge-
netic reconstruction of both Anacardiaceae and Sapindales?

2. Materials and Methods

2.1. Sampling, DNA Extraction, and Illumina Sequencing.
Healthy and fresh leaves of diploid T. vernicifluum were
collected from an adult tree growing in the Lacquer Paint
Research Institute, Shaanxi Province, China, during Sep-
tember 2018. -e voucher specimen of the individual
(voucher accession number LW20180905001) was stored at
the Herbarium of Lacquer Paint Research Institute. Total
genomic DNA was extracted using a modified CTAB
method [39] and was fragmented by mechanical interrup-
tion (ultrasonic). After quality testing, the PCR-amplified
library was sequenced with the Illumina Hiseq X Ten
platform (Illumina Inc., San Diego, CA, United States)
according to the manufacturer’s manual.

2.2. Chloroplast Genome Assembling and Annotation. -e
NOVOplasty ver. 2.7.2 software [40] was used for the de
novo assembly of the chloroplast genome of T. vernicifluum
based on the cp-like reads extracted from a total of
25,291,737 high-quality sequences (Phred score ≥30) gen-
erated by Illumina sequencing. -e CpGAVAS pipeline [41]
was applied to annotate the protein-coding, rRNA, and
tRNA genes. -e tRNAscan-SE ver. 1.21 software [42] was
used to verify the tRNA genes with default settings. -e
circular gene map was drawn by the OrganellarGenome-
DRAW tool (OGDRAW) ver. 1.3.1 [43]. -e relative syn-
onymous codon usage (RSCU) value was estimated for each
codon based on the coding sequences of 81 protein-coding
genes using Phylosuite ver. 1.1.152 [44]. Simple sequence
repeats (SSRs) across the cp genome were determined
by MISA (http://pgrc.ipk-gatersleben.de/misa/misa.html)
[45], with the minimum number of repeats set to 10
for mononucleotide, to 6 for dinucleotide, and to 5 for tri-,
tetra-, penta-, and hexanucleotide SSRs. We also used
REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer/)
[46] to identify forward, reverse, complement, and palin-
dromic repeats, with the minimum repeat size set to 8 and
the hamming distance set to 1.

2.3. Genome Comparison. We used the publicly available
chloroplast genome sequences of species from five genera of
Anacardiaceae (last accessed 1 April 2019), i.e., Rhus chi-
nensis Mill. (GenBank accession number KX447140), Pis-
tacia weinmannifolia J. Poiss. ex Franch. (MF630953),
Anacardium occidentale L. (KY635877),Mangifera indica L.
(KY635882), and Spondias mombin L. (KY828469) to per-
form the comparative cp genomic analysis with T. verni-
cifluum. -e sequence identity of those genomes was plotted
using the mVISTA program [47] with LAGAN mode.
Multiple genome alignments were conducted through the
progressive Mauve algorithm [48] as implemented in the
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Geneious software (Biomatters, Auckland, New Zealand) to
detect the presence of large-scale evolutionary events such as
rearrangement and inversion. -e borders of large single-
copy (LSC), small single-copy (SSC), and inverted repeat
(IR) regions were visually displayed and compared among
the six species using Irscope [49]. To detect the hotspots of
intergeneric divergence, sequences of 100 common genes
and 37 intergenic spacers were extracted for each species
using Phylosuite ver. 1.1.152 [44] and aligned byMAFFTver.
7.313 [50]. Following this step, the nucleotide diversity (Pi)
value was calculated for each of the 137 loci using DnaSP ver.
6.12.03 [51].

2.4. Phylogenetic Analysis. We reconstructed the phylogeny
of Sapindales based on 52 cp genomes representing 38
genera of six families (Table S1), including two genera of
Burseraceae, two genera of Simaroubaceae, 10 genera of
Meliaceae, six genera of Anacardiaceae, 10 genera of
Sapindaceae, and nine genera of Rutaceae. Two species of
Brassicales (Carica papaya L.) and Huerteales (Tapiscia
sinensis Oliv.) (Table S1) were selected as outgroups fol-
lowing the interrelationships of orders recognized by APG
IV [52]. -ese genomes cannot be aligned directly due to the
occurrence of numerous differences regarding gene content
and structure. -erefore, we used the HomBlocks pipeline
[53] that automatically recognizes locally collinear blocks
(LCBs) and excavates phylogeny informative regions to
construct the multigene involved alignment. In brief, the
progressive Mauve algorithm [48, 54] was applied at first to
identify coexisting blocks. -ose LCBs were extracted and
then trimmed by Gblocks [55]. -e circoletto webserver
(http://tools.bat.infspire.org/circoletto/) was used for the
visualization of genes that were integrated into the final
alignment. -e best-fit partitioning schemes and DNA
substitution models were determined by PartitionFinder
[56] using a greedy search strategy. Finally, the GTR+G
model was chosen for the subset including LCBs 2-3, and the
TVM+ I +G model was chosen for the subset including
LCBs 4–6, the subset including LCBs 8-9, and the subset
including only LCB5 (Table S2). -e phylogenetic rela-
tionships among those 54 species were reconstructed using
Bayesian-inference (BI) analyses as implemented in
MrBayes ver. 3.2.6 [57]. A Markov chain Monte Carlo
(MCMC) was run for 2,000,000 generations with two par-
allel searches using four chains, each starting with a random
tree. Trees were sampled every 100 generations and the first
25% was discarded as burn-in. -e maximum likelihood
(ML) analyses were also performed with RaxmlGUI ver.
1.5b1 [58, 59]. -e GTRGAMMA model was selected for all
the subsets, and branch support values were estimated for
each node based on 1,000 samples for rapid bootstrap.

3. Results

3.1. Features of T. vernicifluum Chloroplast Genome. A total
of 25,291,737 paired-end reads were produced by the Illu-
mina Hiseq X Ten sequencing platform. After de novo as-
sembly, the complete cp genome sequence of T. vernicifluum

was obtained and submitted to the NCBI database under the
GenBank accession numberMK419151.-e cp genome of T.
vernicifluum is a circular molecule of 159,571 bp, consisting
of a large single-copy (LSC) region of 87,475 bp, a small
single-copy (SSC) region of 19,074 bp, and a pair of inverted
repeats (IRa and IRb) of 26,511 bp (Table 1 and Figure 1).
-e base composition of the complete cp genome sequence
was analyzed and found to be 31.30% T, 30.74%A, 19.06% C,
and 18.90% G. -e overall GC content was 37.96%, which is
very close to those of other Anacardiaceae species, e.g., M.
indica (37.89%), R. chinensis (37.79%), and A. occidentale
(38.12%) (Table 1) and also to those of other species in
Sapindales, e.g., Toona ciliata M. Roem. (37.90%) [60],
Commiphora gileadensis (L.). C. Chr. (37.90%) [61], and
Xanthoceras sorbifolium Bunge (37.70%) [62]. Furthermore,
the GC contents are unevenly distributed across regions of
the cp genome, which were found to be 36.08%, 32.63%, and
42.96% for the LSC, SSC, and IR regions, respectively
(Table 2).

-e complete cp genome of T. vernicifluum encodes 126
predicted functional genes, including 81 protein-coding
genes, 37 transfer RNA (tRNA) genes, and eight ribosomal
RNA (rRNA) genes (Table S3). Among those, 107 are
unique, and 19 are duplicated in the IR regions. For the 107
unique genes, 30 are tRNA genes, four are rRNA genes, and
73 are protein-coding genes. For the 19 duplicated genes,
eight are protein-coding genes, seven are tRNA genes, and
four are rRNA genes. Within the cp genome of T. verni-
cifluum, 12 genes, including six tRNA genes and six protein-
coding genes, contain only one intron. Two genes (ycf3 and
clpP) contain two introns (Table S4).

3.2. Codon Usage Bias. -e relative synonymous codon
usage (RSCU) value was estimated for each codon based on
the coding sequences (CDS) of 81 protein-coding genes,
which presented a total length of 80,280 bp and accounted
for 50.31% of the complete cp genome of T. vernicifluum. A
total of 26,760 codons were found in those coding regions.
-e most prevalent amino acid is leucine (2,794 codons,
approximately 10.44%), followed by isoleucine (2,249 co-
dons, approximately 8.40%) and serine (2,107 codons, ap-
proximately 7.87%), while the rarest one is cysteine (318
codons, approximately 1.19%) (Table S5). In addition, al-
most all of the A/U-ending codons showed RSCU values
greater than 1, whereas the C/G-ending codons showed
RSCU values less than 1. For example, synonymous codons
GUU, GUC, GUA, and GUG encode valine, and the cor-
responding RSCU values for these four codons are 1.43, 0.51,
1.49, and 0.57, respectively, as expected from the low GC
content of CDS.

3.3. Repeat Sequences. Simple sequence repeats (SSRs) are
DNA stretches consisting of short, tandemly repeated motifs
with a length of 1–6 bp, which have been widely used as
molecular markers in population genetics and evolutionary
biology [63–65]. In this study, a total of 52 chloroplast SSRs
(cpSSRs) were identified ranging in length from 10 to 78 bp.
Among those, 44 are distributed in intergenic spacers (IGSs),
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six are located at coding regions of three genes (rpoC2, atpB,
and ycf1), and only two are within the introns of ycf3 and
clpP (Table S6). On the other hand, most SSRs are distributed
in LSC and SSC, whereas only 11 are located at IR regions
(Table S6).

Mononucleotide SSRs were found to be the richest, with
49 of 52 belonging to this type. One of the other three is
dinucleotide microsatellite with (AT)n repeats, and two are
complex microsatellites that include a small insertion and/or
contain two different types of repeats (Table S6). No tri-,
tetra-, penta-, and hexanucleotide SSRs were detected.
Among the mononucleotide SSRs, polyadenine (poly A) and
polythymine (poly T) occupy the highest portion (91.84%)
and mononucleotide C and G are rare (8.16%). -e higher
level of A or T within those cpSSRs is consistent with the
overall A/T content (62.04%) of the cp genome of T. ver-
nicifluum. -ese SSR loci could be used for investigations
into genetic diversity and genetic structure of natural
populations and cultivars of T. vernicifluum.

Long repeats may promote the cp genome rearrange-
ment and increase the population genetic diversity [66].
Using REPuter (https://bibiserv.cebitec.uni-bielefeld.de/
reputer), 49 long repeats were identified across the
T. vernicifluum plastome, ranging from 22 to 66 bp in length
(Table S7). Among those, 23 are forward repeats, 22 are
palindromic repeats, and four are reverse repeats. Multiple
nested sequence repeats were detected in ycf2.

3.4. Genome Comparison of Anacardiaceae Species. To in-
vestigate the intergeneric divergence of cp genome se-
quences, the percentage of identity was plotted for six species
from different genera in Anacardiaceae using the mVISTA
program with T. vernicifluum as the reference. High simi-
larity was detected among those six genera, and the IR
regions were found to be more conserved than the LSC/SSC
regions (Figure 2). Furthermore, the variation of noncoding
regions is significantly higher than that of coding regions
(Figure 2).

-e nucleotide diversity (Pi) values were calculated for
137 loci (100 genes and 37 intergenic spacers) to determine
the hotspots of divergence. -ose values ranged from 0 to
0.154, with a higher level of genetic variation detected within
the LSC (average Pi � 0.025) and SSC regions (average

Pi � 0.037) than within IR regions (average Pi � 0.003)
(Figure 3). In addition, intergenic spacers (average
Pi � 0.053) were found to be more variable than genes
(average Pi � 0.013) (Figure 3). Six of these loci, including
trnH-psbA (0.154), trnT-trnL (0.154), atpF-atpH (0.126),
ccsA-ndhD (0.096), petD-rpoA (0.083), and trnL-trnF
(0.078), showed high levels of nucleotide diversity
(Pi > 0.070) across the six genera of Anacardiaceae
(Figure 3).

To characterize the structure and synteny, the cp genome
sequences of the six Anacardiaceae species were aligned by
Mauve, and T. vernicifluum was used as a reference to
compare the gene orders among these cp genomes
(Figure 4). Synteny analysis indicated that no rearrangement
events were identified. However, differences were still found
in terms of inversion variation in LSC and gene loss in IRs,
leading to the occurrence of four collinearity modules across
the six cp genome sequences. First, a large inversed segment
was detected for M. indica, which resulted in the separation
of the first block from the third block. -is inversion was
between trnE-UUC and trnL-UAA, with a length of 16,910
bp (ranging from 33,130 to 50,039 bp). Fourteen genes were
included in this fragment, and two tRNA genes (trnT-GGU
and trnT-UGU) were observed at the two ends. Second, due
to the loss of a large fragment (∼9,800 bp) in the IRb region
of R. chinensis, the remaining part of the cp genome was
divided into two blocks (the third and the fourth blocks).
Instead, if the plastome of R. chinensis was removed, only
three collinearity modules were identified across the cp
genome sequences of the rest five species (Figure S1). -is
event has reduced the IR length of R. chinensis severely
(Table 1) and shifted four genes (ycf2, trnI-CAU, rpl23, and
rpl2) from IR to LSC regions.

3.5. IR Expansion and Contraction. For the six Anacardia-
ceae species, the length of IR was found to be significantly
correlated with the total length of the complete cp genome
(R� 0.962, P � 0.002) (Figure S2). Among those, R. chinensis
presented the shortest length of cp genome, which was
mainly attributed to the loss of a long fragment (∼9,800 bp in
length) at the IRb/LSC boundary. By contrast, A. occidentale
showed the longest length of cp genome, which was asso-
ciated with the size expansion of ycf2-trnL spacer (∼6,200 bp

Table 1: Summary of features of six Anacardiaceae chloroplast genomes.

Genome features Toxicodendron
vernicifluum

Rhus
chinensis

Pistacia
weinmannifolia

Anacardium
occidentale

Mangifera
indica

Spondias
mombin

Cp length 159,571 149,011 160,767 172,199 157,780 162,302
LSC length 87,475 96,882 88,402 87,727 86,673 89,938
SSC length 19,074 18,647 19,129 19,046 18,349 18,012
IR length 26,511 16,741 26,618 32,713 26,379 27,176
ycf2-trnL length 1,010 1,083 1,011 7,251 1,011 1,018
Genes 126 126 132 129 128 130
CDS 81 82 87 84 83 86
tRNA 37 36 37 37 37 36
rRNA 8 8 8 8 8 8
GC% 37.96 37.79 37.84 38.12 37.89 37.60
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longer than the other five species) within the IR regions
(Table 1). Furthermore, minor shifts of IR/SC boundaries
were detected for those species (Figure 5). For example, -e

rps19 gene is across the IRb/LSC border with 2–275 bp
extending into the LSC region, while it was found to be 103
bp away from the border of P. weinmannifolia. Similarly, the
trnH gene is located in the LSC region, 38–162 bp away from
the IRa/LSC border, while it extends only 1 bp into the IRa
region of P. weinmannifolia. For all the six species, the IRa/
SSC junction is located in the ycf1 region, and the IRb/SSC
junction is located in the ndhF region. However, the length
included in the IRs varies significantly across species,
namely, 1,095–1,440 bp for ycf1 and 12–42 bp for ndhF.
Previous studies have shown that pseudogene ycf1 overlaps
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Figure 1: Gene map of Toxicodendron vernicifluum chloroplast genome. Genes shown inside the circle are transcribed clockwise and those
outside are transcribed counterclockwise. Genes of different functions are color-coded. -e darker gray in the inner circle shows the GC
content, while the lighter gray shows the AT content.

Table 2: Base composition of the Toxicodendron vernicifluum
chloroplast genome.

Region A (%) T (U) (%) C (%) G (%) AT (%) GC (%)
LSC 31.33 32.59 18.53 17.55 63.92 36.08
SSC 33.83 33.54 16.97 15.67 67.37 32.63
IR 28.51 28.51 21.48 21.48 57.04 42.96
Total 30.74 31.31 19.06 18.90 62.04 37.96
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with normal gene ndhF in the IRa/SSC border for many
higher plants [67, 68]. -is was observed for T. vernicifluum,
R. chinensis, and S. mombin, but not for P. weinmannifolia,
A. occidentale, and M. indica.

3.6. Phylogenetic Inference. Using HomBlocks, nine locally
collinear blocks (LCBs) were identified across the cp ge-
nome sequences of 52 species in Sapindales, and two
outgroups from Brassicales and Huerteales. After trim-
ming, the final alignment produced a matrix of 65,219 bp
(Figure S3), including 20,974 variable sites and 13,581
parsimony-informative sites. Most protein-coding genes
have been integrated into the final alignment (Figure S4).
-e ML and Bayesian analyses yielded identical tree to-
pologies, with all the nodes at or above the generic level
allocated posterior probabilities (PP) ≥0.99 and bootstrap
support (BS) values ≥80% (except for the genus Dipteronia,
Figure 6). Our results showed that Anacardiaceae and

Burseraceae form a monophyletic clade (1.0 PP/100 BS),
and the remaining four families form another clade (0.998
PP/83 BS). Simaroubaceae and Rutaceae were resolved as
sister to Meliaceae with strong support (1.0 PP/100 BS).
Within the Anacardiaceae, the genus Spondiaswas found to
be sister to the rest five genera (1.0 PP/100 BS), and T.
vernicifluum was sister to the clade of R. chinensis and two
Pistacia species (1.0 PP/100 BS).

3.7. Differences of Plastomes between Diploid and Triploid T.
vernicifluum. -e size of the cp genome (159,571 bp) was
completely consistent with the result of T. vernicifluum cv.
Dahongpao, a natural triploid cultivar of the species [39].
Only two single nucleotide variants were detected between
the two genotypes: one located at the rpoB-trnC(GCA)
spacer and another within the ycf1 gene region (Table S8).
No indels were observed between them.
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Figure 3: Nucleotide diversity (Pi) values among the six Anacardiaceae species.
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4. Discussion

In this study, we sequenced the complete cp genome of the
Chinese lacquer tree by using Illumina high-throughput
sequencing technology. No size variation and only two single
nucleotide variants were detected between diploid and
triploid of T. vernicifluum, suggesting that the species
exhibited extremely conserved genome size and structure at
the intraspecific level. Compared with closely related species
in Anacardiaceae, the length of the cp genome of
T. vernicifluum is shorter than those of A. occidentale
(172,199 bp), S. mombin (162,302 bp), and P. weinmannifolia
(160,767 bp), but longer than those ofM. indica (157,780 bp)
and R. chinensis (149,011 bp) (Table 1). We found that the
total length of the complete cp genome was significantly
correlated with the length of IR (R� 0.962, P � 0.002)
(Figure S2), suggesting that the IR expansion and con-
traction may be a critical factor underlying the size variation
of cp genomes [69–72].-e shortest length of the cp genome
of R. chinensis was mainly attributed to the loss of a long
fragment (∼9,800 bp in length) at the IRb/LSC boundary,
which contains four genes including rpl2, rpl23, trnI-CAU,
and ycf2. Previous studies have shown that the loss of a small
number of genes, or even all, of the IR is more common in
conifer species from cupressophytes and Pinaceae [73, 74].
Nonetheless, similar cases were still reported for several
angiosperms, such as Erodium L’Hér., Geranium L., Mon-
sonia L. [75], Trifolium L. [76], and Vicia L. [77]. For those
species, the loss of the complete or partial IR has shifted
numerous genes, e.g., rpl2, rpl23, and ndhB, into the SC
regions. Recent studies have revealed that most genes that
moved from the IR into the SC exhibited higher synonymous
substitution rates consistent with the SC genes, and IR lo-
calization is a critical factor underlying the reduced

substitution rates in plant plastomes [78]. Among the six
Anacardiaceae species, the longest length of the cp genome
was observed for A. occidentale, which was associated with
the size expansion of ycf2-trnL spacer (∼6,200 bp longer than
other five species) in the IR regions. Based on experimental
evidence, Rabah et al. [79] have shown that an intracellular
gene transfer event of mitochondrial DNA into the plastome
may have occurred <20 million years ago in a single clade of
the genus Anacardium. -is event led to an insertion of an
∼6,700 bp fragment between ycf2 and trnL-CAA, which is
also responsible for the highly expanded IR of A. occidentale.

We compared the complete cp genome structure of
T. vernicifluum with five species from different genera in
Anacardiaceae. Our results indicated that the six Ana-
cardiaceae cp genomes were relatively conserved (Figure 4),
which is consistent with the slow rates of sequence and
structural evolution of plant plastomes [78, 80, 81]. How-
ever, the synteny analysis still detected a large inversed
segment (16,910 bp in length) in the LSC region ofM. indica.
Similar events have been reported for other species of
Malvids, such as Aquilaria sinensis (∼16,000 bp in length,
from rpl20 to rbcL genes) [82]. Previous studies have shown
that tRNA activity may be a key factor triggering the in-
version events [83]. We found that both the upper and lower
flanks of the inversed segment identified in this study had
tRNA genes, i.e., trnE-UUC and trnT-UGU at the upper
flank and trnT-GGU and trnL-UAA at the lower flank.
Furthermore, higher genetic variation and lower GC content
of the flank regions could also promote gene rearrangements
in plastid genomes [84].

-e mVISTA analysis showed that intergenic spacers
were more variable than genes (Figure 2). Numerous di-
vergence hotspot regions (e.g., trnH-psbA, trnT-trnL, atpF-
atpH, ccsA-ndhD, petD-rpoA, and trnL-trnF) were identified
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through calculating and comparing the nucleotide diversity
(Pi) values (Figure 3). -ose highly variable loci can be used
as potential molecular markers for the phylogenetic studies
in the future [85, 86]. Among those, trnL-trnF has been
proved to be a useful marker for the phylogenetic studies of
Toxicodendron. A total of 82 variable sites and 45 parsimony-
informative sites were detected across 68 accessions of
Toxicodendron and some closely related taxa [28]. A more
detailed study identified 180 variable sites among the trnL-
trnF sequences of 85 taxa, representing 22 of the 30 species in
Toxicodendron and 60 related taxa in Anacardiaceae [87].
-is marker was also found to be useful in analyzing the
intraspecific variation of T. vernicifluum. Combined with the
sequence of trnL intron, Suzuki et al. [3] have detected three
chloroplast DNA haplotypes across populations from China,

South Korea, and Japan. Notably, only one of them was
shared by populations in northeastern China, South Korea,
and Japan, suggesting that the Chinese lacquer trees in Japan
were more likely to be introduced from Liaoning and
Shandong provinces of China.

-e phylogenetic relationships among several families of
Sapindales, such as Sapindaceae, Simaroubaceae, Rutaceae,
and Meliaceae, are not fully resolved in the Angiosperm
Phylogeny Website (http://www.mobot.org/MOBOT/
research/APweb/). A recent phylogenetic study based on
plastid rbcL, atpB, and trnL-trnF sequences indicated that
Simaroubaceae was sister to Meliaceae, with moderate
support (0.98 PP/82 BS), but the position of Sapindaceae
could not be resolved with confidence [30]. Using 80 genes
of plastomes, Lin et al. [31] found that Simaroubaceae was
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sister to Rutaceae with strong support (100 BS), but the
position of Sapindaceae was still poorly supported (57 BS).
In this study, both BI and ML analyses generated a well-
resolved phylogeny of the six families of Sapindales. Two
distinct clades were recognized: one consisting of Ana-
cardiaceae and Burseraceae (1.0 PP/100 BS) and the other
comprised of the remaining four families (0.998 PP/83 BS).
In addition, our results strongly supported that Simar-
oubaceae and Rutaceae form a monophyletic group as sister
to Meliaceae (1.0 PP/100 BS). -ese findings were consistent
with the results of the angiosperm phylogeny based on five
plastid and nuclear markers [32] and also with the topology
of the most recent plastid phylogenomic angiosperm (PPA)
tree [88]. Notably, all of those studies using different dataset
presented short internodes (e.g., at the base of the
Sapindaceae + Simaroubaceae +Rutaceae +Meliaceae clade,
and at the base of the Simaroubaceae + Rutaceae +Meliaceae
clade) connected by long branches, indicating that rapid
radiation may have occurred among those families [89, 90].

Within the Anacardiaceae, both BI and ML analyses
supported that T. vernicifluum was more closely related to R.
chinensis and two Pistacia species. -is is consistent with the
phylogeny obtained through three nuclear DNA (ITS, ETS,
and NIA-i3) and two chloroplast (ndhF and trnL-trnF)
regions [87]. However, due to lack of cp genome data for
congeneric species, we did not provide more details on the
intrageneric relationships of Toxicodendron. More studies
on the plastomes of those species are expected to provide
new insight into the evolutionary history of T. vernicifluum
and its siblings.

5. Conclusions

In this study, we assembled, annotated, and analyzed the cp
genome of T. vernicifluum, an important commercial arbor
species widely cultivated in East Asia for producing highly
durable lacquer. Forty-nine mononucleotide microsatellites,
one dinucleotide microsatellite, two complex microsatellites,
and 49 long repeats were determined. Several hotspots (e.g.,
trnH-psbA, trnT-trnL, atpF-atpH, ccsA-ndhD, petD-rpoA,
and trnL-trnF) of intergeneric divergence were also iden-
tified. -e unique inversion (in M. indica), insertion (in A.
occidentale), and gene loss (in R. chinensis) events may
provide informative markers for phylogenetic resolution
among different genera in Anacardiaceae. Both BI and ML
analyses revealed that the genus Toxicodendron is closely
related to Pistacia and Rhus. -e phylogenetic relationships
of the six families in Sapindales were well resolved, strongly
supporting the topology that the clade including Simar-
oubaceae and Rutaceae is sister to Meliaceae. -e genomic
resources presented in this study will be useful for further
studies on evolutionary patterns of T. vernicifluum and its
closely related species.
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