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Abstract

Little is known about how attention changes the cortical representation of sensory information in 

humans. Based on neurophysiological evidence, we hypothesized that attention causes tuning 

changes to expand the representation of attended stimuli at the cost of unattended stimuli. To 

investigate this issue we used functional MRI (fMRI) to measure how semantic representation 

changes when searching for different object categories in natural movies. We find that many 

voxels across occipito-temporal and fronto-parietal cortex shift their tuning toward the attended 

category. These tuning shifts expand the representation of the attended category and of 

semantically-related but unattended categories, and compress the representation of categories 

semantically-dissimilar to the target. Attentional warping of semantic representation occurs even 

when the attended category is not present in the movie, thus the effect is not a target-detection 

artifact. These results suggest that attention dynamically alters visual representation to optimize 

processing of behaviorally relevant objects during natural vision.
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Attention is thought to increase information processing efficiency throughout the brain 

through several convergent mechanisms1. Neurophysiology studies in early visual areas 

have shown that spatial attention changes response baseline, response gain and contrast 

gain2–4. However, because the brain pools information across successive stages of 

processing, attentional modulation of baseline and gain at early stages likely causes changes 
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in neuronal tuning in higher sensory and cognitive brain areas3,5. Indeed, feature-based 

attention can cause modest changes in tuning of single neurons even as early as V45,6, but 

tuning changes of single neurons in pre-frontal cortex can be substantial7–9. Tuning shifts in 

single neurons change the way that information is represented across the neural population, 

warping the representation to favor certain signals at the expense of others5. Therefore, it 

has been proposed that tuning shifts reflect the operation of a matched-filter mechanism that 

optimizes task performance by expanding the cortical representation of attended targets5,10.

Attentional warping of cortical representation might be particularly valuable during 

demanding tasks such as natural visual search. Recent evidence from our laboratory suggests 

that the brain represents thousands of object categories by organizing them into a continuous 

semantic similarity space (Fig. 1a) that is mapped systematically across visual cortex11. 

Because natural scenes are cluttered with many different objects they may elicit patterns of 

brain activity that are widely distributed across this semantic space, making target detection 

difficult. Attention could dramatically increase sensitivity for the target and improve target 

detection under these demanding conditions5, by expanding the cortical representation of 

behaviorally relevant categories and compressing the representation of irrelevant categories 

(Fig. 1b–c).

It is currently unknown whether attention warps the cortical representation of sensory 

information in the human brain. To search for evidence for this complex attentional effect, 

we exploited the fact that attention would expand the representation of an attended category 

by causing neural populations throughout visual and non-visual cortex to shift tuning toward 

the target5–9 (see Supplementary Fig. 1 for alternative hypotheses). We thus hypothesized 

that visual search for a single object category should cause tuning shifts in single voxels 

measured by functional MRI (Fig. 1d–f).

To identify semantic tuning shifts we measured category tuning in single voxels during a 

natural category-based visual search task (Fig. 2). We recorded whole-brain fMRI data from 

five human subjects while they viewed 60 minutes of natural movies (see Online Methods). 

Subjects maintained steady fixation while covertly searching for ‘humans’ or ‘vehicles’. 

These categories were used because they are quite distinct from one another, they occur 

commonly in real-world scenes, and they are common targets of visual search12,13.

Category-based attention tasks have been used in several previous fMRI experiments12,14,15. 

However, these earlier studies used a small set of object categories and region-based data 

analysis procedures. Therefore, they did not explore voxel-based tuning and could not 

distinguish voxel-based changes in tuning from changes in response baseline or gain. To 

maximize our ability to detect tuning changes in single voxels, we used complex natural 

movie stimuli containing hundreds of different object and action categories16,17. To remove 

attentional effects on response baseline and gain, we normalized the blood-oxygen-level-

dependent (BOLD) responses of each voxel to have zero mean and unit variance 

individually within each attention condition before further modeling. This procedure 

allowed us to clearly separate tuning changes from simple modulation of response baseline 

or gain.
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We then employed a voxel-wise modeling approach developed previously in our laboratory 

to obtain accurate estimates of category tuning in single cortical voxels, and in each 

individual subject11,18–21. The WordNet lexicon22 was used to label 935 object and action 

categories in the movies (Supplementary Fig. 2). Regularized linear regression was used to 

fit voxel-wise models that optimally predicted the measured BOLD responses from the 

categorical indicator variables (Supplementary Fig. 3). Separate models were estimated 

using data acquired during visual search for ‘humans’ and for ‘vehicles’. The resulting 

model weights give the category tuning vectors for each voxel, under each attention 

condition.

Results

Attentional changes in semantic representation can be inferred by comparing category 

tuning vectors across attention conditions (see Fig. 3 for tuning vectors for one voxel located 

in lateral occipital complex). However, inferences drawn from this comparison will only be 

justified and functionally important if the fit category models can successfully predict 

BOLD responses to novel natural stimuli. To address this issue we validated the prediction 

performance of category models on separate data reserved for this purpose. Prediction scores 

were defined as the Pearson’s correlation between the BOLD responses measured in the 

validation dataset, and those predicted by the fit models (see Online Methods). All statistical 

significance levels were corrected for multiple comparisons using false-discovery-rate 

control23.

We find that category models provide accurate response predictions across many regions of 

visual and non-visual cortex (Supplementary Fig. 4). Overall, 83.7±5.12% (mean±s.d. 

across subjects) of cortical voxels are significantly predicted by the category model (t-test, 

p<0.05). The category model explains more than 20% of the response variance in 

11.60±5.84% (mean±s.d.) of these voxels across subjects. These results suggest that 

category tuning vectors accurately reflect category responses of many cortical voxels during 

visual search.

If attentional tuning changes are statistically significant, then category models for individual 

attention conditions should yield better response predictions than a null model fit by pooling 

data across conditions. To assess significance we therefore compared the prediction scores 

obtained from category models to those obtained using null models. We find that 

59.57±8.31% (mean±s.d. across subjects) of cortical voxels exhibit significant tuning 

changes (t-test, p<0.05). Across subjects 17.13±0.97% (mean±s.d.) of these voxels also have 

high prediction scores (above mean plus 1 standard deviation), yielding 4245-7785 well-

modeled voxels in individual subjects. Because all responses were z-scored individually 

within attention conditions, these results cannot be explained by additive or multiplicative 

modulations of responses in single voxels. Therefore, they indicate that attention causes 

significant tuning changes in many cortical voxels.

Our experiment used a category-based attention task that required attention to ‘humans’ or 

‘vehicles’. However, complex natural movies may contain low-level features that are 

correlated with these semantic categories. Do the attentional tuning shifts shown here reflect 
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category-based attention or rather are they due to attention to correlated low-level features? 

To address this issue we fit simpler structural encoding models that reflect tuning for 

elementary features such as spatio-temporal frequency, orientation, and eccentricity (see 

Online Methods for details). We then compared predictions of category models and 

structural models across well-modeled voxels that showed significant tuning shifts in the 

category-based attention task.

We find that the average prediction score of structural models is only 0.22±0.03 (mean±s.d. 

across subjects), which is significantly lower than that of category models (0.54±0.11, 

randomized t-test, p<10−4). We also find that the percentage of response variance explained 

by structural tuning shifts is only 1.53±0.68% (mean±s.d.), which is significantly lower than 

that explained by category-based tuning shifts (13.57±7.65%, Wilcoxon signed-rank test, 

p<10−4). These findings suggest that tuning for elementary visual features cannot account 

for category-based tuning shifts measured here.

Next, we asked whether these changes in category tuning are consistent with the tuning-shift 

hypothesis5, in which attention warps semantic representation to favor behaviorally relevant 

categories at the expense of irrelevant categories. The tuning-shift hypothesis makes three 

explicit and diagnostic predictions about how attention alters semantic representation. First, 

it predicts that attention causes tuning shifts toward the attended category when the targets 

are present, expanding the representation of the attended category. Second, it predicts that 

attention causes tuning shifts toward the attended category even when no targets are present. 

Finally, it predicts that attention expands the representation of unattended categories that are 

semantically similar to the target, and compresses the representation of categories that are 

semantically dissimilar to the target. We tested the tuning-shift hypothesis by evaluating 

each of these predictions in turn.

Tuning Shifts in the Presence of Targets

To determine whether attention causes tuning shifts toward the attended category when the 

targets are present, we first projected voxel-wise tuning vectors measured during visual 

search into a continuous semantic space. The semantic space was derived from principal 

components analysis of tuning vectors measured during a separate passive-viewing task (see 

Online Methods). Different voxels that are tuned for semantically similar categories will 

project to nearby points in this space. We then visualized the distribution of tuning across 

well-modeled voxels that have significant category models (t-test, p<0.05). We find that 

most well-modeled voxels are selectively tuned for the attended category, and attention 

causes tuning shifts in most of these voxels (Fig. 4a).

We quantified the magnitude and direction of tuning shifts across attention conditions by 

measuring the selectivity of voxel tuning for ‘humans’ or ‘vehicles’ under each condition 

(see Online Methods; Supplementary Figs. 5 and 6a–e). We then computed a tuning shift 

index (TSI) that summarizes the difference in selectivity for the attended versus unattended 

category (see Online Methods). Under this scheme a voxel that shifts toward the attended 

category will have a positive TSI. We find that the mean TSI across well-modeled voxels is 

significantly greater than 0 in all subjects (Wilcoxon signed-rank test, p<10−6; 

Supplementary Fig. 7). Because all responses were z-scored individually within each 
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attention condition before TSI values were calculated, these tuning shifts cannot be 

explained by changes in voxel response baseline or gain (see also Discussion). Thus, these 

results are consistent with the view that attention changes tuning to expand the 

representation of the attended category.

Cortical Distribution of Tuning Shifts

Previous neurophysiology studies suggest that tuning shifts should be widespread across the 

brain, extending from higher-order visual areas into frontal cortex5–9. To visualize the 

distribution of tuning shifts across cortex, we projected TSI values onto cortical flat maps. 

We find that voxels in many different brain regions shift their tuning toward the attended 

category (Fig. 4b, see also Supplementary Fig. 6a–e). (Interested readers may explore the 

datasets at http://gallantlab.org/brainviewer/cukuretal2013.) These include most of ventral-

temporal cortex; the lateral-occipital and intraparietal sulci; the inferior and superior frontal 

sulci; and the dorsal bank of the cingulate sulcus (see also Supplementary Figs. 9 and 10). In 

contrast to most brain regions, voxels in the precuneus, temporal-parietal junction, anterior 

prefrontal cortex, and anterior cingulate sulcus shift their tuning away from the attended 

category. This finding suggests that these brain areas are involved in distractor detection and 

in error monitoring during visual search24,25.

To examine how specific brain areas change their representations of attended and 

unattended categories, we performed detailed analyses of tuning shifts in several common 

regions-of-interest. We find that regions in higher-order visual cortex and more anterior 

brain areas have high prediction scores, indicating that tuning shifts in these regions are 

functionally important (Fig. 5a). TSI is small in retinotopic early visual areas, but it is 

significantly larger in more anterior brain areas that correspond to later stages of visual 

processing (Wilcoxon signed-rank test, p<10−6; Fig. 5b). This result implies that attentional 

tuning shifts become progressively stronger towards later stages of processing. We also find 

that these tuning shifts occur for both attended (i.e., ‘humans’ and ‘vehicles’; Fig. 5c) and 

unattended categories (Wilcoxon signed-rank test, p<10−6; Fig. 5d). This finding is 

consistent with an attentional mechanism that alters the representation of the entire semantic 

space during visual search (see Supplementary Fig. 1d). Finally, we find that tuning changes 

for attended categories account for a relatively larger fraction of the overall tuning change in 

more anterior brain areas compared to earlier visual areas (Fig. 5c), while those for 

unattended categories account for a relatively smaller fraction of tuning changes (Fig. 5d). 

Taken together, these results suggest that more anterior brain areas are primarily involved in 

representing the attended category, and that visual representations in more frontal areas are 

relatively more dependent on the search task than are those at earlier stages of visual 

processing5–9,26.

Tuning Shifts in the Absence of Targets

The second prediction of the tuning-shift hypothesis is that attention causes tuning changes 

even when no targets are present. To address this issue we estimated voxel tuning using only 

those segments of the movies that did not contain ‘humans’ or ‘vehicles’. (Note also that 

because any systematic differences in arousal, respiration, and spatial attention across 

attention conditions are most likely to occur when the targets are present, this analysis also 

Çukur et al. Page 5

Nat Neurosci. Author manuscript; available in PMC 2014 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gallantlab.org/brainviewer/cukuretal2013


serves as a powerful control against such nuisance factors; see Online Methods for 

additional controls). Because data recorded when the targets were present were excluded 

from analysis, tuning for the attended categories cannot be assessed directly. However, our 

modeling framework allows us to measure tuning shifts for the remaining categories, and to 

infer the direction of shifts with respect to the attended categories from these measurements.

To assess the direction of tuning shifts in the absence of the targets, we projected the tuning 

vectors estimated in the absence of the targets into the semantic space. We find that voxels 

in many brain regions shift their tuning toward the attended category even when no targets 

are present (Fig. 6, Supplementary Fig. 11a–e; explore the datasets at http://gallantlab.org/

brainviewer/cukuretal2013). The mean TSI across the population of well-modeled voxels is 

significantly greater than 0 in all subjects (Wilcoxon signed-rank test, p<10−6; 

Supplementary Fig. 8). These results demonstrate that attention causes tuning shifts toward 

the attended category even when no targets are present, and that attentional tuning shifts are 

not a mere consequence of target detection.

Semantic Representation of Unattended Categories

The third prediction of the tuning-shift hypothesis is that attention expands the 

representation of categories that are semantically similar to the attended category, even 

when no targets are present. If the representation of an unattended category is expanded, its 

representation should shift toward the representation of the attended category (i.e., the 

region of the semantic space that many voxels are tuned for). To address this issue we 

assessed how the similarity between representations of unattended and attended categories 

changed across attention conditions. The similarity between representations of two 

categories was measured using Pearson’s correlation between corresponding BOLD-

response patterns across well-modeled voxels27. Responses for unattended and attended 

categories were estimated using target-absent and target-present movie segments, 

respectively. We find that during search for ‘humans’, representations of animals, body 

parts, action verbs, and natural materials shift toward the representation of ‘humans’. During 

search for ‘vehicles’, representations of tools, devices, and structures shift toward the 

representation of ‘vehicles’ (Wilcoxon signed-rank test, p<10−4; Fig. 7). This result suggests 

that attention expands the representation of unattended categories that are semantically 

similar to the target, at the expense of semantically dissimilar categories.

Discussion

Our results indicate that category-based attention during natural vision causes semantic 

tuning changes that cannot be explained by additive or multiplicative response modulations 

in single voxels. These tuning changes alter the cortical representation of both attended and 

unattended categories. Furthermore, attentional changes in tuning for unattended categories 

occur even when the attended categories are not present in the movie. These effects are 

consistent with an attentional mechanism that acts to expand the representation of semantic 

categories nearby the target in the semantic space at the cost of compressing the 

representation of distant categories.
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Because this study measured hemodynamic changes we cannot make direct inferences about 

the underlying neural mechanisms mediating tuning shifts. Several possible neural 

mechanisms might conceivably contribute to semantic tuning changes in single voxels. 

When the targets are present in the display, then it is possible that changes in response 

baseline or gain of single neurons that are tuned to the attended targets contribute to tuning 

changes. However, tuning changes for unattended categories observed when no targets are 

present cannot be explained by this mechanism: because the attended categories were never 

present in these cases, neurons tuned only to the attended categories never entered into the 

model estimation procedure and therefore they could not have any effect on estimated voxel-

wise tuning curves.

Our results are consistent with existing neurophysiology studies that have demonstrated 

tuning shifts in single neurons in as early as area V45,6, and which have shown far stronger 

tuning shifts at relatively higher levels of visual and cognitive processing7–9. Some of these 

single neuron studies have reported that tuning shifts are consistent with a matched-filter 

mechanism that shifts tuning toward the attended target, expanding the representation of 

attended stimuli at the cost of unattended stimuli. Our results are also consistent with 

theoretical expectations based on the anatomical structure of the cortical hierarchy: because 

neurons pool information across successive stages of processing, attentional modulation of 

baseline or gain at one level must inevitably cause tuning changes at subsequent levels3,5. 

Thus, it is reasonable to expect that changes in voxel tuning at least partly reflect tuning 

shifts in individual neurons within the underlying neural population.

Although natural movies have strong face validity, correlations inherent in natural movies 

could potentially complicate interpretation of the results. We took several measures to 

ensure that stimulus correlations did not confound our results. First, the collection of movies 

used in the experiments was highly diverse. Second, we used a regression-based modeling 

approach that minimizes the effect of residual correlations on the fit models. Third, we 

performed control analyses on raw BOLD responses to rule out biases due to correlations 

between attended and unattended categories (see Online Methods).

Given that our data are finite, there is always some chance that residual correlations may 

introduce some bias in the results. However, artificial stimuli that contain only a small 

number of categories introduce much more substantial and pernicious bias, and so are more 

likely to lead to misinterpretation. Interpretation of experiments that use limited stimulus 

sets inevitably rely on a strong assumption of linearity, that is, that responses to multiple 

objects in a natural context will be predictable from responses to isolated objects. In 

contrast, natural stimuli do not require any such linearity assumptions. Note, however, that 

this important issue is really not relevant to this study. The main goal of this study is not to 

measure tuning, but rather to measure changes in tuning between different search tasks. 

Because natural stimuli have high ecological relevance for natural visual search, natural 

movies appear to be better suited for these measurements.

An important question to be answered is the role of bottom-up processing versus top-down 

feedback in measured tuning changes. Because we used the same movie stimulus for the two 

separate search tasks in our experiment, all attentional tuning changes between the two tasks 
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must necessarily reflect top-down modulatory effects. We find small tuning shifts in 

retinotopic early visual areas, but significantly larger tuning shifts in higher visual areas in 

occipito-temporal cortex and relatively more anterior brain areas. We also show that tuning 

shifts cannot be explained by response modulations for lower-level visual features that are 

known to be represented in early visual areas. These results imply that attentional 

modulations primarily warp semantic representation at later stages of visual processing. 

However, the slow nature of BOLD responses makes it difficult for any fMRI study to 

measure the temporal relationship between signals arising in different brain areas at these 

later stages of processing. We plan to investigate this issue in the future with 

neurophysiology studies in animals to achieve sufficiently high temporal resolution.

The way that attention optimizes target detection depends not only on the target, but also on 

the similarity between the target and the distractors28. If the target is very different from the 

distractors, then target detection can be optimized by shifting tuning toward the target5. 

However, if the target is very similar to the distractors, target detection can be improved by 

enhancing the representation of task-irrelevant features that optimally distinguish the target 

from the distractors29. In the study reported here the attentional targets were highly distinct 

(‘humans’ and ‘vehicles’), so it is natural to expect that tuning should shift toward the target. 

An important topic for future research will be to determine whether attention causes tuning 

shifts toward task-irrelevant features when the target and distractors are very similar.

In conclusion, we find that natural visual search for a single category warps the entire 

semantic space, expanding the representation of nearby semantic categories at the cost of 

more distant categories. This effect suggests a more dynamic view of attention than is 

assumed under the conventional view that attention is a simple mechanism that merely 

modulates the baseline or gain of labeled lines. This dynamic mechanism can improve the 

effective resolution of the visual system for natural visual search, and it likely enables the 

use of limited neural resources to perform efficient search for many different object 

categories. Overall, these findings help explain the astounding human ability to perform 

complex visual tasks in an ever-changing natural environment.

Online Methods

Subjects

Five healthy adult volunteers (five males) with normal or corrected to normal vision 

participated in this study: S1 (age 30), S2 (age 32), S3 (age 25), S4 (age 25), and S5 (age 

26). The experimental procedures were approved by the Institutional Review Board at the 

University of California, Berkeley (UCB); and written informed consent was obtained from 

all subjects.

Stimuli

For each attention condition in the main experiment, 1800 sec of continuous color natural 

movies (24°x24°, 512x512 pixels) were presented without repetition in a single session. The 

stimuli were compiled by combining many short clips (10–20 sec) from a diverse selection 

of natural movies19. Only ‘humans’ or only ‘vehicles’ were present in 450 sec both, the two 

categories co-occurred in 450 sec, and both categories were absent during 450 sec. 
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‘Humans’ and ‘vehicles’ appeared in highly diverse scenes and in many different positions, 

sizes and viewpoints. A fixation spot (0.16° square) was superimposed on the movies and its 

color was alternated at 1 Hz, rendering it continuously visible. The stimuli were presented at 

a rate of 15 Hz using an MR-safe projector (Avotec Inc., Stuart, FL) and a custom-built 

mirror system.

Experimental Paradigm

Each subject participated in a total of seven scan sessions. Functional localizer, retinotopic 

mapping and anatomical data were collected in two sessions. Functional scans for the main 

experiment were collected in a single scan session. To increase sensitivity for the analysis 

performed in the absence of the target stimuli, another session of functional data was 

collected using the same experimental design, but with a different set of movie clips. To 

construct the continuous semantic space, 7200 sec of natural movies were presented in three 

separate sessions while subjects performed a passive-viewing task.

In the main experiment, subjects fixated continuously while covertly searching for ‘humans’ 

or ‘vehicles’ in natural movies. To ensure continuous vigilance subjects depressed the 

response button continuously whenever an exemplar of the attended category was present in 

the movies. The data for each attention condition were recorded within 3 separate 10-min 

runs. The movie clips within each run were selected randomly without repetition. To avoid 

sampling bias, an identical set of movie clips were presented for both attention conditions. 

The presentation order of these clips was counterbalanced across the conditions. Four 

mutually exclusive classes of stimuli (i.e., only ‘humans’, only ‘vehicles’, both ‘humans’ 

and ‘vehicles’, and neither ‘humans’ nor ‘vehicles’) were randomly interleaved and evenly 

distributed within and across the runs. The attended category was fixed within each run. The 

attention conditions were alternated in consecutive runs. A cue word, ‘humans’ or 

‘vehicles’, was displayed prior to each run to indicate the attended category. To compensate 

for hemodynamic transients caused by movie onset, each run was preceded by the last 10 

sec of that run. Data collected during the transient period were discarded.

MRI Protocols

MRI data were acquired on a 3 T Siemens scanner located at the University of California, 

Berkeley using a 32-channel head coil. Functional data were acquired using a T2
*-weighted 

gradient-echo EPI sequence customized with a water-excitation radiofrequency pulse to 

prevent contamination from fat signal. The following parameters were prescribed: repetition 

time = 2 sec, echo time = 34 msec, flip angle = 74°, voxel size = 2.24x2.24x3.5 mm3, field-

of-view = 224x224 mm2, and 32 axial slices to cover the entire cortex. Head motion was 

minimized with foam padding. To reconstruct cortical surfaces, anatomical data were 

collected with 1x1x1 mm3 voxel size and 256x212x256 mm3 field-of-viewusing a three-

dimensional T1-weighted MP-RAGE sequence. The anatomical and retinotopic mapping 

data for subjects S2 and S3 were obtained on a 1.5 T Philips Eclipse (Philips Medical 

Systems, NA, Bothell, WA) scanner.

Çukur et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2014 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Pre-processing

Functional scans were intra- and inter-run aligned using the Statistical Parameter Mapping 

toolbox (SPM8, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). All volumes were 

aligned to the first image from the first functional run for each subject. Non-brain tissue was 

excluded from further analysis using the Brain Extraction Tool (BET, http://

www.fmrib.ox.ac.uk/analysis/research/bet/). Voxels whose BOLD responses are primarily 

driven by button presses were identified using a motor localizer that included a button-press 

task. The identified voxels were contained within the primary motor, somatosensory motor 

and premotor cortices, and voxels within these regions were excluded from analysis. The 

cortical surface of each subject was reconstructed from anatomical data using Caret5 (http://

www.nitrc.org/projects/caret/). Cortical voxels were identified as the set of voxels within a 

4-mm radius of the cortical surface. Subsequent analyses were restricted to 47125-53957 

cortical voxels identified for the various subjects.

The low-frequency drifts in voxel responses were estimated using a 240-sec-long cubic 

Savitzky-Golay filter for each run (10 min). The drifts were removed from the responses, 

which were then normalized to have zero mean and unit variance. Neither spatial nor 

temporal averaging was performed on the data during pre-processing and model-fitting 

stages. The data from separate subjects were not transformed into a standard brain space.

Functional localizer and retinotopic mapping data were used to assign voxels to the 

corresponding regions-of-interest (ROI)11. All functional ROIs were defined based on 

relative response levels to contrasting stimuli (t-test, p<10−5, uncorrected).

Category Model

The object and action categories in each one-second clip of the natural movie stimulus were 

manually labeled using terms from the WordNet lexicon22. Three naïve raters performed the 

labeling, and potential conflicts were resolved by conferral among all raters. In WordNet, 

words are grouped into sets of synonyms according to the concepts they describe, and are 

organized into a hierarchical network of semantic relations based on word meaning. By 

definition, the existence of a category in a given scene indicates the existence of all of its 

superordinate categories. For example, if a clip is labeled with ‘child’, it also contains the 

following categories: ‘offspring’, ‘relative’, ‘person’, ‘organism’, ‘living thing’, ‘whole’, 

‘object’, and ‘entity’. To facilitate labeling, the raters exploited these hierarchical 

relationships in WordNet. The raters initially labeled 604 object and action categories, and 

inferred the presence of 331 superordinate categories from these initial labels.

A stimulus time-course (categories x seconds) was then formed by using a binary variable to 

indicate the presence or absence of each category in each one-second movie clip. The 

category model fit to each voxel describes evoked responses as a weighted linear 

combination of these indicator variables. The predicted response of each voxel to any 

category is the sum of weights for all the categories it encompasses (including itself). In 

other words, the weight for each category is the estimated difference between the response 

to that specific category and the cumulative response to all of its superordinate categories.
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Retinotopically-organized early visual areas (V1–V4) are selective to structural 

characteristics of visual stimuli19. To ensure that model fits were not biased by structural 

differences in movie clips, one additional regressor was included in the model that 

characterizes the total motion energy in each one-second clip. This regressor was computed 

as the average response of 2139 space-time quadrature Gabor filter pairs to the movie 

stimuli. The filters were selected to cover the entire image space (24°x24°), and reflected a 

wide range of preferred receptive-field sizes, orientations, and spatiotemporal frequencies. 

In addition, to ensure that semantic tuning changes do not simply reflect tuning changes for 

elementary visual features, a separate structural model (with all 2139 filter pairs) was fit to 

each voxel.

To ensure that the results were not biased by the hierarchical relationships in WordNet, 

reduced category models were fit using the subset of regressors for the 604 initially-labeled 

categories. The data presented in this study was also analyzed within this separate 

framework, and no significant discrepancies were observed in the obtained results. 

Furthermore, the original full category model outperformed this reduced category model in 

terms of prediction accuracy of BOLD responses (see Supplementary Fig. 12). This 

indicates that the full category model provides a better description of category selectivity in 

cortical voxels.

Model Fitting

The model for each attention condition was fit separately to 1800 sec of stimuli and 

responses. The stimulus time-course was down-sampled by a factor of 2 to match the 

sampling rate of the measured BOLD responses. To model the slow hemodynamic response, 

each category was assigned a distinct time-inseparable finite impulse response filter with 

delays restricted to 2–6 sec prior to the BOLD responses. All model parameters were 

simultaneously fit using L2-regularized linear regression.

To assess the significance of attentional tuning changes, a jackknifed model training/

validation procedure was repeated 1000 times. At each turn, 20% of the samples were 

randomly held out to validate the model performance. The regularization parameter (λ) for 

regression was selected with 10-fold cross-validation on the remaining 80% of training 

samples. These samples were further split into 10% testing and 90% training sets at each 

fold. The trained models were tested on the 10% held-out sets by computing prediction 

scores. Prediction score was taken as the correlation coefficient (Pearson’s r) between the 

actual and predicted BOLD responses. The optimal λ was determined for each voxel by 

maximizing the average prediction score. To prevent potential bias in the models, a final λ-

value was selected as an intermediate between the optima for models from two attention 

conditions. The model-fitting procedures were performed with in-house software written in 

Matlab (The Mathworks, Natick, MA).

Characterizing Tuning Shifts

Attentional tuning shifts toward the target will increase the degree of tuning selectivity –

tuning strength– for the attended category. Therefore, the magnitude and direction of tuning 

shifts can be assessed by measuring the tuning strengths for ‘humans’ and ‘vehicles’ 

Çukur et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2014 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



separately during each attention condition. Tuning strengths for ‘humans’ and ‘vehicles’ 

were quantified as the similarity between voxel tuning and idealized templates tuned solely 

for ‘humans’ and ‘vehicles’, respectively. The templates were constructed by identifying the 

set of labels that belong to these categories (Supplementary Fig. 5). Tuning strength for each 

category was then quantified as Pearson’s correlation between voxel tuning and the 

corresponding template.

Here, si,H is the tuning strength for ‘humans’, and si,V is the tuning strength for ‘vehicles’ 

during attention condition i (i=H: search for humans, and i=V: search for vehicles). 

Meanwhile, wi is the voxel-wise tuning vector during condition i; and tH and tV are the 

templates for ‘humans’ and ‘vehicles’, respectively.

Finally, a tuning shift index (TSI) was quantified using the measured tuning strengths for 

each voxel.

Here, the numerator measures the difference in tuning strength for the attended versus 

unattended category, summed across two attention conditions. Meanwhile, the denominator 

scales the TSI to range in [−1, 1]. Tuning shifts toward the attended category will yield 

positive TSIs, with a value of 1 in the case of a perfect match between voxel tuning and 

idealized template for the attended category. In contrast, tuning shifts away from the 

attended category will yield negative TSIs, with a value of −1 in the case of a total mismatch 

between voxel tuning and idealized template for the attended category. Finally, a TSI of zero 

indicates that the voxel tuning did not shift between the two attention conditions. 

Complementary tuning-shift analyses were performed in individual ROIs. For each attention 

condition, the mean tuning shift in each ROI was computed by averaging the TSI values of 

the corresponding set of voxels with significant models (t-test, p<0.05, FDR corrected) and 

positive prediction scores.

Eye-movement and Behavioral Controls

Eye movements are a legitimate concern in many experiments on visual perception and 

attention, especially when naïve subjects are tested. However, four lines of evidence 

demonstrate that eye movements were not a problem in our experiment, and that they could 

not have accounted for our results. First, all of the subjects tested in this experiment were 

highly trained psychophysical observers who had extensive experience in fixation tasks. 

Based on our previous work with trained and naïve subjects, we fully expect that our trained 

observers fixate much better than do the naïve subjects used in many attention experiments.
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Second, there is no statistical evidence that fixation differs across attention conditions in the 

main and control analyses, for any of the observers. Subjects’ eye positions were monitored 

at 60 Hz throughout the scans using a custom-built camera system equipped with an infrared 

source (Avotec Inc., Stuart, FL) and the ViewPoint EyeTracker software suite (Arrington 

Research, Scottsdale, AZ). The eye tracker was calibrated prior to each run of data 

acquisition. A nonparametric ANOVA test was used to determine systematic differences in 

the distribution of eye positions. The eye position distributions are not affected by attention 

condition (p>0.24), or by target presence/absence (p>0.61). To determine whether the 

results were biased by explicit eye movements during target or distractor detection, we also 

analyzed the distribution of eye positions during 250-msec, 500-msec and 1-sec windows 

around target onset, and target offset. The eye position distributions are not affected by 

target onset (p>0.26) or offset (p>0.49). Furthermore, there are no significant interactions 

between any of the aforementioned factors (p>0.14). To determine whether the results were 

biased by rapid moment-to-moment variations in eye position, we examined the moving-

average standard deviation of eye position within a 200-msec window (to capture potential 

saccades). There are no effects of attention condition (p>0.13), target presence/absence 

(p>0.52), target onset (p>0.47) or target offset (p>0.17), and there are no significant 

interactions between these factors (p>0.22).

Third, while there may be some micro-saccade scale eye movements during covert visual 

search, there is no statistical evidence for a bias in the recorded BOLD responses across 

attention conditions. Specifically, there are no significant differences in BOLD responses 

due to interactions between the search task and scenes likely to contain the attended 

category or scenes that contain objects that share visual features with the attended category 

(two-way ANOVA, F<1.8, p>0.18, FDR corrected). Because we measure attentional tuning 

shifts using BOLD responses, this analysis indicates that small eye movements could not 

have accounted for our results.

Finally, to further ensure that the results were not confounded by eye movements, we 

regressed the moving-average standard deviation of eye position out of the BOLD 

responses, and then we repeated the entire modeling procedure on these filtered data. 

Including this nuisance regressor did not affect the model fits or the results in any brain 

regions where the category model provided significant response predictions.

Behavioral responses were also recorded during the scans with a fiber-optic response pad 

(Current Designs Inc., Philadelphia, PA). A hit was defined as a button response detected 

within 1-sec of the target onset in the movies. A false alarm was defined as a button 

response when the target was absent from the movies. The behavioral performance, as 

measured by the sensitivity index (d′), was compared across the two attention conditions 

using Wilcoxon rank-sum tests. Participants performed equally well when searching for 

either category, indicating that the task difficulty was balanced across attention conditions 

(Supplementary Fig. 13).

Head-motion and Physiological-noise Controls

To ensure that our results were not biased by head motion or physiological noise, we used 

estimates of these nuisance factors to regress them out of the BOLD responses, and then we 
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repeated the entire modeling procedure on these filtered data. The moment-to-moment 

variations in head position were estimated during motion correction pre-processing. These 

six-parameter affine transformation estimates of head position were used to create head-

motion regressors. The cardiac and respiratory states were recorded using a pulse oximeter 

and a pneumatic belt. These recordings were used to create pulse-oximetry and respiratory 

regressors as low-order Fourier series expansions of the cardiac and respiratory phases. The 

inclusion of these various nuisance regressors did not affect the model fits or the results in 

any brain region where the category model provided significant response predictions.

Spatial-attention Controls

Given the stimulus correlations inherent in natural movies, differences in spatial attention 

across attention conditions might have confounded our results, even in the absence of 

targets. We performed two additional control analyses to ensure that the results derived from 

target-absent movie clips were not biased by stimulus correlations. First, all target-absent 

movie clips were coded to indicate whether they contained objects that shared visual 

features with ‘humans’ (i.e., scenes that contain animals, body parts, or animate motion) or 

with ‘vehicles’ (i.e., scenes that contain inanimate objects such as artifacts, buildings, or 

devices). Thereafter, a two-way ANOVA was performed on the evoked BOLD responses to 

determine whether there is any interaction between scene content and attended category. 

There are no significant interactions between scene content and attended category (F<1.8, 

p>0.18, FDR corrected).

Second, all target-absent movie clips were coded to indicate whether humans were likely to 

appear (i.e., scenes that contain animate motion, tools for human use, buildings, or rooms) or 

whether vehicles were likely to appear (i.e., scenes of urban areas or cities, and scenes 

containing roads or highways). Another two-way ANOVA was performed on the evoked 

BOLD responses to determine whether there is any interaction between scene type and 

attended category. There are no significant interactions between scene type and attended 

category (F<2.0, p>0.16, FDR corrected). Thus, there is no evidence for an interaction 

between scene content or type and the attentional target. These results suggest that the 

tuning shifts reported here are not biased by systematic differences in spatial attention across 

attention conditions.

Construction of the Semantic Space

To construct the continuous semantic space, functional data were collected while subjects 

passively viewed 7200 sec of natural movies. Voxel-wise tuning vectors were estimated 

using these data and following identical procedures to the main experiment. A semantic 

space of cortical representation was then derived using principal components analysis (PCA) 

across the tuning vectors of cortical voxels (following procedures described in ref. 11). PCA 

ensures that voxels tuned for similarly represented categories project to nearby points in the 

semantic space, whereas voxels tuned for dissimilarly represented categories project to 

distant points. Each PC represents a distinct dimension of the semantic space, ordered 

according to percentage of variance explained. To maximize the quality of the semantic 

space, only the first six PCs were selected that captured approximately 30% of the variance. 

To perform analyses of attentional tuning changes in the semantic space, voxel-wise tuning 
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vectors obtained under different attention conditions were first projected onto these PCs. 

The results did not significantly vary with the number of PCs used to define the semantic 

space.

Control Analysis in the Absence of Target Stimuli

A control analysis was performed to assess tuning changes for unattended categories in the 

absence of target stimuli. To increase sensitivity, additional functional data were collected in 

all subjects using the same experimental paradigm. A total of 1800 sec of stimuli were 

compiled from a different selection of movie clips than those used in the main experiment. 

To estimate tuning, the BOLD responses to movie clips where no ‘humans’ or ‘vehicles’ 

appeared were pooled across this additional session and the main experiment (yielding 900 

sec total). Tuning during each attention condition was estimated separately.

Tuning changes for unattended categories were measured, and the direction of tuning shifts 

with respect to the attended categories was then inferred from these measurements. For this 

purpose, we used the semantic space that assesses of the similarity between the attended 

categories and remaining ones in terms of cortical representation. Specifically, if a single 

voxel’s tuning shifts towards categories similar to ‘humans’, then we should find that its 

tuning vector is closer to the ‘humans’ template than the ‘vehicles’ template in the semantic 

space. To test this prediction, voxel-wise tuning vectors in the control analysis and the 

template vectors for the attended categories were projected into the semantic space. 

Thereafter TSI was quantified following procedures in the main analysis, but to increase 

sensitivity we first computed the tuning change between the two attention conditions. We 

then computed an idealized tuning change between the template vectors in the semantic 

space. Finally, TSI was taken as the correlation between the actual and idealized tuning 

changes. As in the main analysis, tuning shifts toward the attended category will yield 

positive TSI values, whereas tuning shifts away from the target will yield negative TSI 

values.

The mean TSI is significantly greater than 0 in all subjects (Wilcoxon signed-rank test, 

p<10−6; Supplementary Fig. 8). This result clearly shows that attention shifts tuning of 

unattended categories towards the attended category even when the targets are not present. 

Furthermore, the tuning shifts are in consistent directions across the main (Supplementary 

Fig. 7) and control analyses for an average of 65.42±7.73% (mean±s.d., averaged across 

subjects) of cortical voxels. While the direction of tuning shifts is highly consistent, the 

mean TSI is larger in the main analysis (when targets were present) than in the control 

analysis (when targets were excluded). TSI distributions are also less bimodal in the main 

analysis than in the control analysis. These differences are caused by two factors. First, the 

attentional effects on BOLD responses are strongest for the attended categories. Therefore, 

tuning changes obtained when the targets are present (main analysis) are naturally stronger 

than the tuning changes that occur when the targets are absent (control analysis). This 

reduces the TSI values in the control analysis.

Second, different metric spaces were used to estimate the TSI distributions in the main and 

the control analyses. In the main analysis, TSI was computed across 935 dimensions of the 

category model, and each category was treated as a separate dimension. As such, a tuning 
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shift in the direction of ‘humans’ represents tuning changes for ‘humans’ alone. Therefore, 

the main analysis only considers tuning changes for the attended categories, which account 

for 38.79±0.07% (mean±s.d.) of tuning changes in cortical voxels. However, in the control 

analysis, TSI was computed across 6-dimensions of the semantic space that organizes 

categories according to semantic similarity. A tuning shift in the direction of ‘humans’ 

represents tuning changes for both ‘humans’ and nearby categories in this space. Therefore, 

the control analysis considers tuning changes for both attended and unattended categories, 

and tuning shifts toward the attended categories account for 72.70±0.04% (mean±s.d.) of 

tuning changes in cortical voxels. This causes TSI distributions to be more bimodal in the 

control analysis.

Cortical Flat Map Visualization

The cortical surface of each hemisphere was flattened after five relaxation cuts were applied 

to reduce distortions. For surface-based visualization, functional data were aligned to the 

anatomical data using in-house Matlab scripts (MathWorks Inc., Natick, MA). The 

functional data were then projected onto the cortical surface. Each point in the generated flat 

maps corresponded to an individual voxel.

A custom color map was designed to simultaneously visualize the cortical distribution of 

tuning strength for the attended categories. The tuning strengths (i.e., sH for ‘humans’ and 

sV for ‘vehicles’) were measured as the correlations between the voxel-wise tuning vectors 

and the idealized templates tuned solely to these attended categories. Distinct colors were 

assigned to 6 landmark values of the pair (sV, sH): red for (0.75, 0), turquoise for (−0.75, 0), 

green for (0, 0.75), magenta for (0, −0.75), gray for (0, 0), and black for (−0.75, −0.75). The 

colors for the remaining values were linearly interpolated from these landmarks. A gray 

color was assigned to voxels with insignificant model weights.

A separate color map was designed to visualize the cortical distribution of semantic tuning. 

For this purpose, voxel-wise tuning vectors for each attention condition were projected into 

the semantic space. The first four PCs that captured approximately 20% of the variance were 

selected. The first PC mainly distinguishes categories with high versus low stimulus energy 

and so was not visualized. The projections onto the second, third and fourth PCs were 

assigned to the red, green and blue channels. Voxels with similar semantic tuning project to 

nearby points in the semantic space and so they were assigned similar colors. In this color 

map, voxels tuned for humans and communication verbs appeared in shades of green-cyan. 

Voxels tuned for animals and body parts appeared in yellow-green, whereas those tuned for 

movement verbs appeared in red. Voxels tuned for locations, roads, devices and artifacts 

appeared in shades of purple, whereas those tuned for buildings and furniture appeared in 

blue. Finally, voxels tuned for vehicles appeared in magenta. A gray color was assigned to 

voxels with insignificant model weights.

Statistical Procedures

Statistical comparisons of prediction scores were based on raw correlation coefficients 

between the predicted and actual responses. Prediction scores were Fisher transformed; and 

one-sided t-tests were applied to assess significance. While this procedure is appropriate for 
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significance testing, noise in the measured BOLD responses biases raw correlation values 

downward30. Thus, to attain reliable estimates of model performance across subjects, 

correlation values were corrected for noise bias11.

Unless otherwise noted, all other comparisons were performed using one-sided non-

parametric Wilcoxon signed-rank tests. All statistical significance levels were corrected for 

multiple comparisons using false-discovery-rate control23.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tuning-shift hypothesis predicts that attention warps semantic representation
Hypothesized changes in semantic representation (top panel). Previous studies suggest that 

the brain represents categories by organizing them into a continuous space according to 

semantic similarity. a, During passive viewing semantically similar categories project to 

nearby points in the semantic space. b–c, The tuning-shift hypothesis predicts that attention 

to one specific category expands the representation of both the attended and nearby 

categories within the semantic space, and compresses the representation of distant 

categories. Attentional warping of semantic representation implies corresponding changes in 

voxel-wise semantic tuning (bottom panel). d, During passive viewing cortical voxels 

(orange dots) are tuned for different categories, and so they can also be visualized within the 

semantic space as in a. e–f, During visual search many voxels should shift their tuning 

toward the attended category in order to expand representation of the corresponding part of 

semantic space. This causes fewer voxels to be tuned for distant categories.
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Figure 2. Voxel-wise tuning vectors are measured from BOLD responses evoked by natural 
movies
Tuning changes in single voxels are a unique, diagnostic aspect of the tuning-shift 

hypothesis. Therefore, to test this hypothesis we measured changes in voxel tuning during 

covert visual search for either ‘humans’ or ‘vehicles’ in complex natural movies. A separate 

category model was fit to each voxel within each attention condition, in order to optimally 

predict evoked BOLD responses (predicted response: dashed lines, measured response: solid 

lines). The category model gives voxel tuning under each condition, and tuning shifts can be 

identified by comparing tuning across conditions.
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Figure 3. Attentional tuning changes for a single voxel in LO
Tuning for 935 object and action categories in a single voxel selected from lateral occipital 

complex (LO) in subject S1, during search for ‘humans’ (left) and for ‘vehicles’ (right). 

Each node in these graphs represents a distinct object or action, and a subset of the nodes 

has been labeled to orient the reader. The nodes have been organized using the hierarchical 

relations found in the WordNet lexicon. Red versus blue nodes correspond to categories that 

evoke above- and below-mean responses. The size of each node shows the magnitude of the 

category response (see legend on the right). This well-modeled LO voxel (a prediction score 

of 0.401) exhibits significant tuning changes across attention conditions (t-test, p<10−6). The 

voxel is strongly tuned for the attended category in both conditions. Furthermore, significant 

albeit weaker tuning is observed for the unattended categories.
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Figure 4. Attention causes tuning shifts in single voxels
a, Semantic tuning of single voxels during two attention conditions: search for ‘humans’ 

(left) and ‘vehicles’ (right). To assess attentional changes, voxel-wise tuning vectors were 

projected into a continuous semantic space. The semantic space was derived from principal 

components analysis (PCA) of tuning vectors measured during a separate passive-viewing 

task. Horizontal and vertical axes correspond to the second and third PCs (the first PC 

distinguishes categories with high versus low stimulus energy and so is not shown here). A 

total of 7785 well-modeled voxels with significant model weights (t-test, p<0.05) and high 

prediction scores (above mean plus 1 standard deviation) are shown for subject S1. Each 

voxel is represented with a dot whose color indicates the tuning shift index (TSI), red/blue 

for shifts toward/away from the target. The positions of the idealized templates for attended 

categories are shown in colored circles. The marginal distributions are displayed with 

separate histograms (green). Most well-modeled voxels strongly shift toward the attended 

category (Wilcoxon signed-rank test, p<0.05). b, The TSIs for subject S1 are shown on a 

cortical flat map of the right hemisphere. The color bar represents the 95% central range of 

TSIs and voxels with insignificant TSIs appear in gray (p>0.05, within dashed black lines). 

Regions of fMRI signal dropout and motor areas excluded from all analyses are shown with 

dark gray patches. The boundaries of cortical areas identified by standard localizers are 

indicated with solid (functionally-inferred) and dashed (anatomically-inferred) white lines. 

Major anatomical landmarks (blue font) and sulci (orange font and black lines) are also 

labeled (see Supplementary Tables 1 and 2 for abbreviations). Voxels in many brain regions 
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shift their tuning toward the attended category. These include most of ventral-temporal 

cortex; lateral-occipital and intraparietal sulci (LO and IPS); inferior and superior frontal 

sulci (IFS and SFS); and dorsal bank of the cingulate sulcus (CiS). In contrast, the precuneus 

(PrCu), temporo-parietal junction (TPJ), anterior prefrontal cortex (PfC), and areas along the 

anterior CiS shift their tuning away from the search target. Note: readers may explore the 

datasets at http://gallantlab.org/brainviewer/cukuretal2013.
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Figure 5. Attention causes different degrees of tuning shifts in functional regions-of-interest
a, Prediction scores (Pearson’s r; mean±s.e.m. results averaged across all 5 subjects). RET 

denotes the retinotopically-organized early visual areas V1–V3, and abbreviations for 

remaining regions-of-interest (ROIs) are listed in Supplementary Table 1. The average 

prediction score in category-selective areas in occipito-temporal cortex (FFA, EBA, LO, 

TOS) is 0.48±0.07 (mean±s.d.); and the average prediction score in more anterior brain 

areas in frontal cortex (FEF, SEF, and FO) is 0.49±0.07 (mean±s.d.). a, Tuning shift indices 

(TSI; mean±s.e.m.) within functional ROIs. TSI is significantly greater than 0 in all ROIs 

(Wilcoxon signed-rank test, p<10−6). Furthermore, TSI increases towards relatively later 

stages of visual processing. c, Fraction of the overall tuning change (mean±s.e.m.) explained 

by tuning changes for attended categories. d, Fraction of the overall tuning change (mean

±s.e.m.) explained by tuning changes for unattended categories (i.e., excluding both 

‘humans’ and ‘vehicles’). The degree of tuning shift (i.e., TSI) is positively correlated with 

the fraction of variance explained by tuning changes for attended categories (r =0.86±0.02, 

t-test, p<10−6).
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Figure 6. Semantic tuning for unattended categories shifts toward the attended category even 
when no targets are present
a, Distribution of semantic tuning across the cortex (subject S1, right hemisphere) during 

passive viewing. Tuning was estimated from responses to all available movie clips. A four-

dimensional semantic space was derived from these data using PCA. The tuning vector for 

each cortical voxel was then projected into this space; and the projections onto the second, 

third and fourth PCs were assigned to the red, green and blue channels. Here voxels with 

similar tuning project to nearby points in the semantic space and so they are assigned similar 

colors (see legend). Insignificant voxels are shown in gray. Yellow-green voxels are more 

selectively tuned for animals and body parts, and purple-red voxels are more selectively 

tuned for geographic locations and movement. Anatomical landmarks are labeled as in Fig. 

4b. b, Distribution of semantic tuning for the same subject as in panel (a), but during search 

for ‘humans’. Tuning was estimated only from responses evoked by movie clips in which 

the target did not appear. Color assignment same as in panel (a). Yellow-green voxels that 

are tuned for animals and body parts predominate during search for ‘humans’. Many voxels 
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in posterior areas that are tuned for vehicles under passive viewing (e.g., PPA, RSC, and 

TOS) shift their tuning away from vehicles; and many voxels that are not tuned for humans 

under passive viewing (in FEF, FO, IPS, PfC and insular cortex) shift their tuning toward 

humans. c, Distribution of semantic tuning for the same subject as in panel (a), but during 

search for ‘vehicles’. Tuning was estimated only from responses evoked by movie clips in 

which the target did not appear. Color assignment same as in panel (a). Purple-magenta 

voxels that are tuned for geographic locations and artifacts predominate during search for 

‘vehicles’. Many voxels in posterior areas that are tuned for humans under passive viewing 

(e.g., EBA, FFA, TPJ, and PrCu) shift their tuning away from humans; and many voxels that 

are not tuned for vehicles under passive viewing (in FEF, FO, IPS, PfC and insular cortex) 

shift their tuning toward vehicles. Note: readers may explore the datasets at http://

gallantlab.org/brainviewer/cukuretal2013.
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Figure 7. Attention expands the representation of unattended categories that are semantically 
similar to the attended category
The tuning-shift hypothesis predicts that attention expands the representation of unattended 

categories that are nearby the attended category within the semantic space. This implies that 

the representation of unattended categories that are semantically similar to the target will 

shift toward the representation of the attended category. To address this issue we measured 

the similarity of BOLD-response patterns evoked by unattended categories to those evoked 

by the attended category. In each subject, response patterns were estimated across a total of 

4245–7785 well-modeled voxels that were used in the main analysis. The response patterns 

for unattended and attended categories were estimated using target-absent and target-present 
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movie segments, respectively. The similarity of response patterns was quantified using 

Pearson’s correlation (r), and the results were averaged across subjects. In this figure each 

node represents a distinct object or action, and some nodes have been labeled to orient the 

reader. The nodes have been organized using the hierarchical relations found in the 

WordNet lexicon. The size of each node shows the magnitude of change in similarity 

(Wilcoxon signed-rank test, p<10−4; see legend at the bottom). During search for ‘humans’, 

representations of semantically similar categories (e.g., animals, body parts, action verbs and 

natural materials) shift toward the representation of ‘humans’ (green nodes). During search 

for ‘vehicles’, representations of semantically similar categories (e.g., tools, devices, and 

structures) shift toward the representation of ‘vehicles’ (magenta nodes).
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