
Zinc deficiency as a possible risk factor for increased susceptibility and severe
progression of Corona Virus Disease 19

Inga Wessels1, Benjamin Rolles2, Alan J. Slusarenko3 and Lothar Rink1*
1Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
2Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen
University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
3Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany

(Submitted 30 July 2020 – Final revision received 7 January 2021 – Accepted 21 February 2021 – First published online 1 March 2021)

Abstract
The importance of Zn for human health becomes obvious during Zn deficiency. Even mild insufficiencies of Zn cause alterations in haema-
topoiesis and immune functions, resulting in a proinflammatory phenotype and a disturbed redox metabolism. Although immune system mal-
function has the most obvious effect, the functions of several tissue cell types are disturbed if Zn supply is limiting. Adhesionmolecules and tight
junction proteins decrease, while cell death increases, generating barrier dysfunction and possibly organ failure. Taken together, Zn deficiency
bothweakens the resistance of the human body towards pathogens and at the same time increases the danger of an overactive immune response
that may cause tissue damage. The case numbers of Corona Virus Disease 19 (COVID-19) are still increasing, which is causing enormous prob-
lems for health systems and economies. There is an urgent need to reduce both the number of severe cases and the resulting deaths. While
therapeutic options are still under investigation, and first vaccines have been approved, cost-effective ways to reduce the likelihood of or even
prevent infection, and the transition frommild symptoms to more serious detrimental disease, are highly desirable. Nutritional supplementation
might be an effective option to achieve these aims. In this review, we discuss known Zn deficiency effects in the context of an infection with
Severe Acute Respiratory Syndrome-Coronavirus-2 and its currently known pathogenic mechanisms and elaborate on how severe pre-existing
Zn deficiency may pre-dispose patients to a severe progression of COVID-19. First published clinical data on the association of Zn homoeostasis
with COVID-19 and registered studies in progress are listed.
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In March 2020, the WHO declared the Corona Virus Disease 19
(COVID-19) to be a pandemic(1). Infections with Severe Acute
Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) can be
asymptomatic (40 % of the cases) or cause a mild illness (40 %),
but in about 15% of the cases, severe disease develops, charac-
terised by clinical signs of pneumonia (fever, cough and dysp-
noea) plus one of the following: respiratory rate > 30 breaths/
min; severe respiratory distress or SpO2< 90% on room air as
defined by the WHO. Patients with acute respiratory distress syn-
drome (ARDS), sepsis or septic shock are categorised as critically
ill which is the case in about 5 % of the cases(2). Amongst the co-
morbidities, resulting in severe COVID-19 progression, inappro-
priate nutrition is increasingly attracting attention(3). According
to the WHO, 1·9 billion adults are overweight or obese, while
462 million are underweight(4), underlining the relevance of

taking inappropriate nutrition into account when discussing pre-
vention and treatment of COVID-19. It is important tomention that
Zndeficiency is frequently observed inundernutrition aswell as in
obesity, although the underlying mechanisms are different(5).

In a previous article, we drew attention to the strong overlap of
risk groups for severe progression of COVID-19 with the groups
where Zn deficiency is frequently diagnosed(6). The effects of Zn
supplementation were described and discussed(6,7). In this article,
we would like to discuss how pre-existing Zn deficiency might
increase the susceptibility to COVID-19 infections as well as
pre-dispose individuals for severe progression of disease as sum-
marised in Fig. 1. Despite the many improvements in Zn research,
we still lack a valid biomarker to reliably assess the Zn status of an
individual(8,9). Serum or plasma Zn levels are often used but are
not completely reliable. Thus, serum levels below 642·5 μg/l
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are taken as an indication of Zn deficiency, but only partially
reflect intracellular concentrations and the Zn status of an individ-
ual. Therefore, clear clinical signs of Zn deficiency can be
observed even if serum Zn levels are above this critical value
or in the normal range. Circadian variations of serum Zn levels
were observed, and serum Zn also depends upon recent food
intake and the degree of hydration/dehydration of an individ-
ual(10,11). Early effects of Zn deficiency are often general and
include functional changes that can be associatedwith various dis-
eases. For this reason, mild Zn deficiency can be ‘hidden’(8).
Functional deficiencies in Zn-dependent immunological proc-
esses have been shown in human subjects and mice without
any significantly different serum or plasma Zn levels compared
with controls(12–14). Currently, Zn deficiency is mostly defined
by using a combination of clinical symptoms, calculating Zn
and phytate intake from food and measuring immunological
changes(15,16). For growing infants (<2 years) and children (<5
years), the ‘height-for-age ratio’ should be determined as an addi-
tional parameter(17). Moreover, it has been suggested that serum
and plasma Zn values need to be adjusted for situations where
inflammation is present(18,19). For these reasons, Zn deficiency
is often investigated using animal models of severe and induced
Zn deficiency and well-defined low-Zn diets. Alternatively, Zn
deficiency can reliably be modelled in cell cultures with either
Zn-depleted media or by using Zn-specific chelators. Whether
the latter rathermodels severe ormild Zn deficiency in the context
of the whole organism is hard to predict. In this review, we
describe data derived from clearly Zn-deficient humans andmice.
Individuals with subclinical Zn deficiency might be less severely
affected, but the effects are probably still not negligible(20). The

consequences of Zn deficiency are manifold(16,21–24), and only
effects that are relevant regarding the susceptibility and progres-
sion of infectious diseases such as COVID-19 (Fig. 1) are included
here. In regard to innate immunity, the article will focus on the
effects of Zn on the integrity of the epithelial cell barriers, on neu-
trophil and macrophage maturation and functions, and in regard
to adaptive immunity, we focus on lymphocyte maturation and
differentiation, and cytokine and antibody production. Known
effects of Zn deficiency on the vascular system and the association
of those effects with diseases affecting the heart, kidney, central
nervous system and intestine are described in relation to
COVID-19.

In addition to nutritional causes (undernutrition, malnutri-
tion, veganism, geophagy, a phytate-rich diet, low-Zn parenteral
nutrition), conditioned Zn deficiency has been observed in asso-
ciation with many diseases and inflammatory reactions(18,25).
Attention was drawn to Zn deficiency in the 1960s due to a tradi-
tional soil-eating diet (geophagy) in a group in Iran leading to a
severe Zn deficiency associated with dwarfism. The group
revealed that a severely disturbed immune response, was more
susceptible to infection, suffered from lethargy, and none sur-
vived beyond the age of 25 years(16). Untreated severe Zn defi-
ciency, such as that seen during acrodermatitis enteropathica,
has a high mortality rate often because of the inefficient clear-
ance of infections(26). The subjects with acrodermatitis entero-
pathica, and the above-described group in Iran, suffered from
severe Zn deficiency. However, studies in mice and human sub-
jects have shown that detrimental effects are seen not only in
severe Zn deficiency but that also a slight to moderate Zn defi-
ciency can result in alterations of haematopoiesis and defects in
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Fig. 1 Summary of complications that can be expected in patients with pre-existing zinc deficiency, when challenged by Severe Acute Respiratory Syndrome-
Coronavirus-2 (SARS-CoV-2). A patient with no co-morbidities and a balanced zinc homoeostasis will most likely develop no or mild symptoms or complications if
infected with SARS-CoV-2 because immune cell numbers and functions are balanced, as are the other parameters listed in the Figure. However, zinc deficiency alone
will result in the alterations indicated in the Figure. Preconditions resulting from zinc deficiency may result in the development of severe symptoms, critical illness and
even death if the patient becomes infected with SARS-CoV-2. ARDS, acute respiratory distress syndrome; CNS, central nervous system; IFN, interferon; MMP, matrix
metalloproteinase; TH, T helper cell; Treg, regulatory T cell; ZA, zinc adequate; ZD: zinc deficient.
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the functions of immune cells(12–14,27), which thus increases the
susceptibility to infection. It is important to recall that the
immune system is affected negatively by Zn deficiency before
any other symptoms become obvious and before serum Zn lev-
els drop below 642·5 μg/l(28). Besides being essential for a
robustly functioning immune system, Zn is also important for
DNA synthesis, cell proliferation, cell differentiation, apoptosis,
protein structure, protein–protein interactions and signal trans-
duction as a second messenger for all kinds of cells. In the nerv-
ous system, Zn serves as an individual neurotransmitter that is
secreted into the synaptic cleft(29–33). Zn deficiency can manifest
itself in a variety of ways; amongst others, there are increased
frequencies of pneumonia and diarrhoea, an altered sense of
smell and taste, cytopenia, poor wound healing, hair thinning,
eczema, reduced fertility, increased fatigue, sicca syndrome
and nail dysplasia(22). Zn deficiency is a significant public health
problem, and high numbers of deaths worldwide, especially in
children, are associated with severe Zn deficiency(8,24,34,35).

The magnitude of the effects of a pre-existing Zn deficiency,
and the significance of mild compared with severe Zn defi-
ciency, remains to be clearly defined and clarified in relation
to COVID-19. A series of studies have been registered to analyse
retrospectively the serum Zn levels of patients (online
Supplementary Table S1), and the first published data in this
regard are starting to appear. Data from further registered stud-
ies, investigating prophylactic Zn supplementation to decrease
the susceptibility for infections and severe disease, especially
in medical and military personnel, are also underway (online
Supplementary Table S1). In the absence of experimental data,
we extrapolate the information from the existing literature, in
anticipation of the data from clinical studies, which should soon
be available (online Supplementary Table S1).

Zinc deficiency alters haematopoiesis and disturbs the
balance of innate and adaptive immune cells largely to
the detriment of cells from the lymphoid lineage

Severe infections with SARS-CoV-2 can cause major hematopoi-
etic changes. Most prominently, a decrease in lymphocytes has
been noted, especially affecting the T cells. In COVID-19 patients
with severe symptoms, the reduction in number and the func-
tional exhaustion of CD4þ as well as CD8þ T cells, as detected
by elevated expression of Tim-3 and PD-1, is frequently
described and observed early during disease(36,37). The recovery
of T cell numbers in severely ill patients was paralleled with the
improvement of the symptoms and with positive prognosis and
survival(38).

Available data on the effects of SARS-CoV-2 on CD4þ com-
pared with CD8þ T cells are somewhat controversial. While, in
one study, no significant difference in the CD4þ:CD8þ ratio but
increased expression of CD8þ was found(39), other studies have
reported a decrease particularly of CD8þ T cells, or a significantly
elevated CD4:CD8 ratio in COVID-19 patients(37,38,40). As high lev-
els of either perforin or granulysin, or both,were detected inCD8þ

T cells(41), it can be assumed that CD8þ cells are overreacting ini-
tially and are subject to exhaustion and apoptosis at later stages.
However, this hypothesis remains to be addressed. In contrast, B

cell numbers and serum levels of Ig (IgA, IgG and IgM) have been
reported to be rather weakly affected during COVID-19(38).

Haematopoiesis is severely disturbed during both severe and
mild Zn deficiency, which was found in human and animal stud-
ies as illustrated in Fig. 2. Especially, a loss in pre-B cells and
immature B cells, as well as early developmental T cells, includ-
ing CD4/CD8 double positive and pre-T cells, was described for
humans and rodents with Zn deficiency as diagnosed by low
plasma Zn levels. These effects can be corrected by Zn supple-
mentation, as shown in subjects over 65 years of age suffering
from mild serum Zn deficiency and in obese subjects with
decreased serum Zn levels(5,16,27,42–44). Several mechanismswere
described to underlie this decrease in cell numbers. Most impor-
tantly, thymus atrophy and decreased serum concentration of
thymulin, which is necessary especially during maturation of T
cells(45,46), and lower levels of growth factors such as IL-2 (T cells)
were reported in individuals with decreased serum Zn levels,
and a disruption of IL-2 signallingwas foundwhen analysing cell
cultures, where cellular Zn was depleted using a Zn chelator(47).
During dietary Zn deprivation in humans and rodents, a
decreased ratio of type 1:type 2 T-helper cells, with reduced pro-
duction of T-helper type 1 cytokines like interferon γ, is observed
due to increased apoptosis(16,30,44). Assuming that a Zn-deficient
individual has fewer B cells compared with a person with a
balanced Zn homoeostasis, a decreased generation of patho-
gen-specific antibodies can be expected. This might suggest that
individuals, especially with a pre-existing severe Zn deficiency,
would not be able to generate a sufficiently strong antibody
response against SARS-CoV-2(48,49).

In COVID-19 patients, especially those with severe symp-
toms, TH17 cell numbers were elevated, which is in line with
the hyperinflammatory status of the immune system(41).
Recent studies underline that differentiation into the main
CD4þ cell subtypes is disturbed when Zn supply is low. In vivo
data from patients with allergic asthma reveal that impaired Treg-
mediated suppression can be correlated with decreased serum
Zn levels(50). Data from in vitro differentiation experiments,
using Zn-deficient compared with Zn-adequate culture medium,
further strengthen the hypothesis, that development of proin-
flammatory TH17 cells is supported as a consequence of Zn
deficiency(51).

In contrast to the consistently observed lymphopenia in
COVID-19 patients, the numbers of myeloid cells in the blood
and in lung tissue were strongly elevated. Neutrophilia was asso-
ciated with the progression of severe disease to ARDS and with
increasedmortality therefrom, similarly to that described for bac-
teria-induced lung injury(52–55). As blood analyses of non-survi-
vors revealed severe lymphopenia combined with significantly
elevated numbers of neutrophils, the neutrophil:lymphocyte
ratio was suggested as a prognostic marker for COVID-19
patients(38,55). Similar to the neutrophil:lymphocyte ratio shift
in COVID-19 patients, the balance between adaptive and innate
immune cells is shifted towards the latter during Zn deficiency.
Investigation of severely Zn-deficient rodents, that were fed on a
low-Zn diet, showed high numbers of neutrophils and their spe-
cific products in the bone marrow and blood compared with
Zn-adequate animals(49,56,57). Our own unpublished results sug-
gest that maturation of myeloid precursors into granulocytes in
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Zn-deficient human cell cultures is also increased comparedwith
cells that differentiate in Zn-adequate cell cultures, while Zn sup-
plementation attenuates the development into mature neutro-
phils(58). As an underlying mechanism, the increased response
to growth factors, for example, to the granulocyte-macrophage
colony-stimulating factor and granulocyte-colony-stimulating
factor, can be named, as was determined in cell culture experi-
ments where Zn was added to the culture medium(54,59).

Thrombocytopenia, which we will come back to later, and a
decline in Hb are also common in COVID-19 patients(37). Lower
Hb and erythrocyte counts were found in severe COVID-19
cases compared with moderate cases. Furthermore, higher ferri-
tin was found in severe COVID-19 cases, and a significant differ-
ence in themean ferritin levels was found between survivors and
non-survivors(60). Additional research is necessary to prove the
suggested important role of anaemia and a disturbed Fe in severe
cases of COVID-19. This might uncover new treatment options.

Alterations in bone marrow metabolism were related to
decreased serumZn concentrations in humans(21,61). This finding
together with the observation that the osmotic fragility of eryth-
rocyte membranes is elevated in animals with dietary Zn defi-
ciency, as are levels of lipid peroxidation in mitochondrial and
microsomalmembranes, suggests that theremight be some inter-
connection between Zn deficiency and anaemia(62). Indeed,
serum hypozincaemia is commonly observed in anaemic sub-
jects(61,63–66). However, importantly, a causal association
between Zn deficiency and anaemia has so far not been

established clearly and is discussed controversially. For exam-
ple, serum Zn concentration was correlated with serum ferritin
concentration in patients undergoing peritoneal dialysis(67).
Morover, lower serum ferritin was significantly correlated with
smaller sizes of Zn pools in premenopausal women, although
without anaemia(68). Regarding the effects of adjuvant Zn
therapy for improving anaemia in haemodialysis patients, Hb
levels were found to increase significantly in Zn-supplemented
patients compared with patients not supplemented with Zn. The
authors suggest a ‘zinc deficiency anemia’, which needs further
evaluation(64). In this regard, it should be pointed out that nutri-
tional deficits often include several elements concomitantly, as
shown for Zn and Fe, Se and others(10,63,65,69). Since the associ-
ation of anaemia with an increased risk and severe progression
of COVID-19 has not been clearly established, this will not be
discussed further in this article. However, as anaemia is generally
related to poor outcomes of infectious diseases(70), possible
nutritional deficits in COVID-19 risk groups should be addressed
and not only Zn but also Fe, Se and other elements might need to
be supplemented if applicable.

Comparing the disturbance of haematopoiesis observed in
individuals with low serum Zn levels or with COVID-19, various
congruencies become apparent. As lymphopenia, neutrophilia
and a decline in Hb are associated with progression to severe
COVID-19, it can be hypothesised that a pre-existing severe
Zn deficiency will predispose patients to stronger progression
of infectionswith SARS-CoV-2 and that even amild Zn deficiency

Fig. 2 Alterations in haematopoiesis are reported during zinc deficiency as well as in Corona Virus Disease 19 (COVID-19). During zinc deficiency, indicated by the red
arrow, differentiation of myeloid cells, including polymorphonuclear neutrophils (PMN) and monocytes (Mo), is prioritised over development of adaptive immune cells,
this especially impacts T cells (T). Amongst others, the prioritisation of myeloid cells may be explained by changes in growth factor expression: granulocyte-macrophage
colony-stimulating factor (GM-CSF) and granulocyte-colony-stimulating factor (G-CSF) were described to be highly expressed, while levels of IL-2 are decreased during
zinc deficiency. Furthermore, the T helper cell (TH)1:TH2 ratio is imbalanced during zinc deficiency, Th17 cell numbers are increased, while regulatory T cell (Treg) num-
bers were described as decreased as well as their functions. Most of those haematopoietic disturbances found during zinc deficiency are generally described for
COVID-19 patients, as detailed in the text. B, B cell; BCP, B-cell progenitor; E, erythrocyte; EPO, erythropoietin; GM, granulocyte-macrophage progenitor; HSC, hemato-
poietic stem cell; MEP, megakaryocyte–erythroid progenitor; NK, natural killer cell; Pl, platelets; SCF, stem cell factor; TC: cytotoxic T cell; TNK, T and NK cell progenitor;
TPO, Thrombopoietin.
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should be corrected to prevent more severe progression of the
viral infection. A pre-existing elevated neutrophil:lymphocyte
ratio, even one of lowmagnitude, as during Zn deficiency, might
be detrimental in the case of severe and aggressive infections
such as COVID-19. At first sight, elevated numbers of innate
immune cells as a first line of defence might appear beneficial.
However, they are easily overrun during viral infections as a spe-
cific response, and the release of anti-viral factors and antibod-
ies, especially by adaptive immune cells, is of major importance
here. The elevated numbers of hyperactivated innate immune
cells can even lead to high levels of inflammatory factors and oxi-
dative stress causing destruction of host tissue. In SARS-CoV-
infected mice, the recruitment of high numbers of monocytes
and macrophages to the lungs was observed, secreting high
numbers of proinflammatory cytokines and chemokines, which
are associatedwith vascular leakage, underlining the detrimental
effect of highly reactive immune cells(71). Similar scenarios are
suggested for SARS-CoV-2 in humans(72–74).

The next chapters will show that the alterations in immune
cell counts are not the only indication of an association between
Zn deficiency and COVID-19.

Pre-existing zinc deficiency could prime for the cytokine
release syndrome

A frequent complication among patients with severe COVID-19
is the cytokine release syndrome, which spreads throughout the
body from the focal infected area andmay lead to death because
of subsequent ARDS or multiple organ dysfunction syndrome
and other complications(75,76). It was reported that among the
COVID-19 patients, the classic serumproinflammatory cytokines
like TNF-α, IL-2, IL-6, IL-7, IL-8, IL-10, granulocyte-colony-stimu-
lating factor and C-reactive protein are elevated(72,73,76). IL-6 in
particular, which is produced by lung resident macrophages
and circulating immune cells(77–79), has been associated with
severe COVID-19 and increased mortality(80). Moreover,
D-dimers, ferritin, lactate dehydrogenase, aspartate aminotrans-
ferase, alanine aminotransferase and soluble CD25 (IL-2 recep-
tor) are increased, while fibrinogen is decreased(72).

Although there are planned and ongoing trials to counter the
cytokine storm using approved antibodies such as tocilizumab
(anti-IL-6 receptor), anakinra (IL-1 receptor antagonist, IL-1RA)
and anti-TNF antibodies used to treat other hyperinflammatory con-
ditions, and in spite of some benefits, so far their efficacy was not
proven in large-scale, randomised controlled trials(72,81–83), and
therefore, therapeutic options are still limited.

In recent years, in vivo and in vitro data supporting the
hypothesis that a pre-existing Zn deficiency augments the acti-
vation-induced inflammatory response, and results characteriz-
ing the possible underlying mechanisms, are constantly
accumulating. Serum hypozincaemia was correlated with
increased serum levels of, amongst others, IL-1β, IL-6, TNFα,
IL-8, granulocyte-colony-stimulating factor, IL-10, IL-1RA,
IL-17, C-reactive protein and calprotectin; thus, a whole battery
of proinflammatory mediators is increased, especially during
severe Zn deficiency, and particularly in combination with the
inflammatory response to a pathogen(54,84–88). In the case of

IL-1β and TNFα, Zn chelation was shown to induce epigenetic
changes in the promoters of both genes in cell culture experi-
ments. More specifically, the accessibility of regions in the
DNA close to the transcriptional start site was significantly
increased so that after inflammatory activation of the cells, by,
for example, lipopolysaccharide, gene expression was aug-
mented(88). Moreover, activation of NFκB a central player in
the signalling pathways involved in the generation of inflamma-
tory factors is increased when Zn is limiting, as found in mice
with diet-induced serum hypozincaemia(87). Cell culture experi-
ments using Zn-depleted medium revealed increased expres-
sion of calprotectin in myeloid precursors and mature
monocytic cells(89)

Activated T cells express lower IL-2 and interferon γmRNA lev-
els, as was shown in vitro and observed in individuals with low
serum Zn(90). IL-2 is essential for natural killer cell and cytotoxic
T lymphocyte activity. Interferon γ is essential for killing viruses,
parasites and bacteria. Thus, the decreased efficiency of
the immune response in Zn-deficient subjects is easily
explained(14,90,91). Defects in T cell function as a consequence
of Zn deficiency can also be explained by the accumulation of
deoxyguanosine, which results from decreased Zn-dependent
nucleoside phosphorylase activity in human lymphocytes,
derived from human Zn-deficient volunteers before and after
Zn supplementation(92). Serum Zn deficiency strongly affects
Th1 cells, while Th2 cells are largely unaffected, and production
of IL-4, IL-6 and IL-10 (Th2 cytokines) remains rather stable.
However, production of interferon γ and IL-2 (Th1 cytokine) is
decreased(93).

Although Treg cell numbers might be constant, or even
elevated, during in vitro differentiation under Zn deficiency, it
was suggested that their function is disturbed(51). In vivo data
are so far scarce, but some studies in mice suggest decreased
transforming growth factor β (Treg cytokine) levels duringZndefi-
ciency, pointing to a malfunctioning of Treg cells and thus imbal-
ance of the immune response(94). As Treg cells are important
master regulators within the immune system, essential for toler-
ance and balance and differentiation of the remaining CD4þ T cell
subtypes, a disturbed immune response can be expected.

Treatment of cell cultures with a Zn chelator disturbed the cyto-
toxic activity of natural killer cells(95,96). Similar effectswere reported
for rats fed on a Zn-deficient diet(97). This effect might decrease the
killing of host cells which become infected by the virus.

A number of effects described above are due to the require-
ment of Zn for intracellular signal transduction and the conse-
quent disruption of a multitude of signalling pathways when
Zn supply is limited. Zn’s effect on phosphatases and kinases
is central here, as is its ability to induce changes in membrane
fluidity and thus receptor expression and dimerization as found
in vitro and in vivo(47,59,98). Finally, epigenetic changes occur
during Zn deficiency as described above as found in various
models of Zn deficiency(99,100).

In the case of IL-6, another connection to Zn deficiency has
been described. A SNP was found in the IL-6 gene at position
−174. It is associated with a disturbed age-related Zn deficiency,
and it seems to be relevant during the regulation of Zn-related
genes such as metallothioneins. The frequency of this polymor-
phism increaseswith age and offers an additional explanation for
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the high risk of Zn deficiency described for the elderly(46,101).
Interestingly, the IL-6–174 SNP was also associated with an
increased risk for severe progression of and mortality from
COVID-19, as was suggested previously for sepsis, but never
proven up to now(102–104). Individuals with this SNP could be
actively supplemented with Zn, not only to help prevent severe
COVID-19 but also to enable a balanced immune response in
general(46,105).

Glucocorticoids were suggested as a means to attenuate the
cytokine storm and proposed as a treatment option during the
hyperinflammatory phase of COVID-19(72). On the other hand,
chronically increased glucocorticoids may augment lymphope-
nia(106,107). Serum Zn deficiency was associated with chronically
elevated levels of glucocorticoids, especially corticosteroids.
However, data are not clear in this regard yet, and studies have
been publishednot recommending the use of glucocorticoids dur-
ing COVID-19 treatment, or at least recommend caution. Criticism
of glucocorticoid use is largely based on data on SARS from 2003,
where improper use of systemic corticosteroids increased the risk
of osteonecrosis of the femoral head, which is, however, a
classical side effect of glucocorticoid therapy and not related to
the virus(108–111). At first sight, this is one of the only consequences
of Zn deficiency that might be viewed as an advantage in terms of
COVID-19. In this regard, it should also be mentioned that the
chronically increased glucocorticoid levels were suggested to
be associated with the increased apoptosis of lymphocytes and
probably also of cells of the thymus, thus explaining thymic atro-
phy in mice and humans with decreased serum Zn levels(112–114).
However, those suggestions require experimental verification.

The cytokine storm is central to the progression from mild or
severe disease to complications and critical illness associated with
COVID-19 and should be prevented by any possible means. The
hyper-inflammation is largely involved in damaging various organs,
including the lung, heart, liver, kidney andprobably also the intestine
and the brain. Interestingly, the central nervous system, the gastroin-
testinal tract, lungs, liver, the epidermal, reproductive and skeletal
system are clinically affected by severe Zn deficiency which causes
elevation of inflammatorymarkers(16,62). As the treatment of the cyto-
kine storm is complex and the individual patient response to certain
treatments is almost impossible to predict, the best option is to pre-
vent the cytokine storm. Thus, groups that are at risk of Zndeficiency
should be supplemented routinely. Of course, individuals with
severe pre-existing Zn deficiency will benefit the most; however,
adjustingmild Zndeficiencies is also of importance especially in indi-
viduals from COVID-19 risk groups such as the elderly, diabetic
patients and individuals with heart and vascular co-morbidities.

Additional roles of Zn in the regulation of immune cell func-
tion, but perhaps not obviously relevant for what is known of
SARS-CoV-2 infection, have been reviewed extensively
elsewhere(25,29,44,51,87,96,99,115,116).

Zinc deficiency and vascular complications: possible
association with complications affecting multiple organs

Cardiovascular complications are frequently reported during
COVID-19, especially in patients with pre-existing pathologies
of the heart and vascular system, such as atherosclerosis(79,117).

Venous, arterial and microvascular thromboses are increased
in patients with COVID-19. Moreover, COVID-19-associated
hypercoagulopathy closely resembles the pathophysiology
and phenotype of complement-mediated thrombotic microangi-
opathy(117). An increase of proinflammatory cytokines, increased
complement activation, endothelial dysfunction and immuno-
thrombosis are considered to be key mechanisms of hypercoa-
gulopathy. For instance, venous thromboembolisms, also driven
by a hyperinflammatory milieu, were described in 20–31 % of
severe COVID-19 cases(37,118–121). Moreover, an increased num-
ber of especially polymorphonuclear neutrophils (PMN)
together with high amounts of neutrophil extracellular traps
were observed in the thrombi of COVID-19 patients(122).
Arterial embolism, including acute pulmonary embolism, ischae-
mic stroke and acute myocardial injury, was also increased in
patients with severe SARS-CoV-2 infection(123–126). Subsequent
thrombocytopenia was associated with poor prognosis for
COVID-19 patients. Concerning the endothelial dysfunction, it
was proposed that direct endothelial damage can lead to an
increased thrombogenic effect in the microcirculation(127). An
impaired microcirculation can cause complications in various
organs including the lung, the kidneys, the heart, the brain,
the liver or the pancreas.

As already indicated, an increased activation and tissue recruit-
ment of PMN in Zn-deficient individuals are likely(54,128,129). Thus,
pre-existing Zn deficiencymay be indirectly associatedwith throm-
bus formation. The association of pre-existing Zn deficiency with
hyperinflammation was already described in this article and can
also be related to an increased risk for thromboembolism. In addi-
tion, Zn is essential for various aspects of physiological coagulation
and might impact thrombogenesis as well as fibrinolysis(130,131).
However, Zn’s effects seem to depend on the microenvironment
and might be locally restricted and temporary(130). For example,
Zn can be secreted by activated platelets resulting in locally
increased Zn concentrations in the vicinity of a thrombus, while
the systemic Zn homoeostasis remains probably rather stable.
The direct effects of pre-existing Zn deficiency on coagulation
are not entirely clear. Studies in Zn-deficient humans, rodents
and guinea pigs revealed clotting abnormalities, impaired platelet
function as well as an increased and prolonged bleeding ten-
dency(132,133). Those Zn-deficiency-induced defects were reversible
by Zn supplementation(134). In a recent in vitro study, Zn deficiency
inhibited the agonist-activated production of reactive oxygen spe-
cies (ROS) by platelets and decreased glutathione levels and gluta-
thione peroxidase activity, which might result in altered thrombus
formation(135). Due to the lack of detailed and consitent data, a clear
conclusion on the effects of Zndeficiency regarding fibrinolysis and
coagulation cannot be drawn. However, as with many topics dis-
cussed in this review, awell-balancedZnhomoeostasis seems to be
key to a physiological balance also in the example of coagulation
and fibrinolysis.

The risk of developing an acute coronary syndrome during
SARS-CoV-2 infection is especially increased in patients with ath-
erosclerotic vascular disease(136). Thedevelopment and subsequent
rupture of vulnerable plaques can result in heart attack or stroke,
and subsequent heart failure and death(137,138). During the develop-
ment of atherosclerosis, up-regulation of adhesion molecules on
endothelial cells is one of the central events, largely involving
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the transcription factor NFκB. An increased activation and DNA
binding of selected transcription factors during Zn deficiency were
established in vitro(139,140). In addition, the role of Zn in NFκB-
related signalling has been described in various studies(87,96). The
association of severe pre-existing serum Zn deficiency inmice with
an increased risk of atherosclerosis was additionally explained by
the Zn-dependent alteration of endothelial surface markers,
changes of the plasma lipid composition and the promotion of
the proinflammatory milieu(85,96,141). Results from various in vivo
and in vitro studies as summarised by Choi et al. indicate that
Zn supplementationmay reduce the risk of atherosclerosis andpro-
tect against myocardial infarction as well as ischaemia/reperfusion
injury(23). The vasculitis described in COVID-19 patients resembles
the reaction to infections withVaricella zoster virus, where the viral
replication in the cerebral arterial wall directly triggered local
inflammation(142). Zn supplementation in cell culture experiments
was shown to decrease viral replication(143), and Zn supplementa-
tion might thus attenuate virus-induced vasculitis. Recently, a
molecular modelling study predicted an interaction of Zn with
RNA-dependent, RNA-polymerase and 3C-like proteinase enzymes
of SARS-CoV-2, which awaits experimental verification.

Associations of diseases such as arterial hypertension, athero-
sclerosis, congestive heart failure and CHD are described in both
Zn deficiency and COVID-19(85,144–150), but a causal link between
Zn deficiency and the observations in COVID-19 remains to be
established.

Pre-existing zinc deficiency is associated with severe
progression of respiratory diseases

SARS-CoV-2 enters the human body predominantly via the respi-
ratory tract. In healthy individuals, viral entry is hampered by the
mucous-coated membrane of the alveoli as well as the immune
cells and their anti-viral products protecting the lungs(151).
When SARS-CoV-2 has crossed the epithelial barrier, it can elicit
extensive alveolar injury and pulmonary fibrosis, which are irre-
versible pathological changes. The progression ofmild COVID-19
to pneumonia, acute lung injury and subsequently to ARDS is the
leading cause of mortality, affecting 5–10% of the COVID-19
patients worldwide(152,153).

As illustrated in Fig. 3, the expression of tight-junction pro-
teins is decreased under Zn-deficient conditions. This as well
as reduced expression of adherens junction proteins reduces
the integrity of the endothelial barrier and might facilitate viral
entry, as shown in a variety of studies investigating human
and rodent tissue in vivo, ex vivo and in vitro(54,141,154–157).
Experiments using an ex vivomodel of differentiated human air-
way epithelium showed that exposure to Zn-depleted medium
significantly augmented the down-regulation of the tight junc-
tion proteins such as Zonula Occludens-1 and Claudin-1 that
was induced by cigarette smoke extract(154). Another study,
which investigated primary human upper airway and type I/II
alveolar epithelial cells that were grown in Zn-depleted
compared with Zn-adequate medium, revealed that Zn depriva-
tion augmented activation-induced proteolysis of E-cadherin
and β-catenin, both adherens junction proteins(157). Since intra-
cellular Zn levels of endothelial cells largely depend on the

protein-bound Zn pool in the blood serum, the cells are deprived
of Zn during serum hypozincaemia. Low endothelial Zn disturbs
cellular metabolism and is associated with oxidative stress.
Increased serum levels of oxidised LDL and high amounts of
inflammatory cytokines derived from activated monocytes are
frequently observed in individuals with serum Zn deficiency,
and together with the high oxidative stress, this leads to
increased apoptosis of epithelial cells. Consequently, mild pre-
existing Zn deficiency combined with inflammation-induced
serum hypozincaemia may exacerbate epithelial barrier per-
meability of the lung in COVID-19 patients.

Previous investigations on SARS-CoV-1 infections revealed
that phagocytic cells largely contributed to the antibody-medi-
ated elimination of the virus(158). Amongst the phagocytes, resi-
dent macrophages are constantly patrolling the lung, while high
numbers of PMN are recruited during infections, abundant ones.
PMN are highly reactive cells, equippedwith their complete anti-
microbial weaponry when they leave the bone marrow. Upon
activation, they release their granular content which includes
highly reactive mediators such as ROS, reactive nitrogen species,
antimicrobial peptides, matrix metalloproteases that degrade
extracellular matrix and more(159,160). Those factors are primarily
secreted to destroy invading pathogens. However, if secreted in
excessively high amounts, they can destroy the host tissue as
well(161), as was suggested to explain tissue injury in SARS-
CoV-2 infections.

With respect to PMN activity, the effects of Zn deficiency are
not clearly defined. While some studies describe attenuated
motility of PMN in moderately Zn-deficient individuals(162,163),
the numbers of PMN found in the infected tissues of animals
with pre-existing Zn deficiency are higher compared with
animals with adequate Zn supply(128,129). Whether the defect
in chemotaxis is compensated by the elevated numbers of
PMN observed in Zn-deficient rodents, remains to be investi-
gated(49). The formation of ROS and neutrophil extracellular
traps by PMNwas reported to be decreased in Zn-deficient cells
in culture(164). Surprisingly, Zn supplementation ofmice in vivo,
or of human neutrophils in cell culture, also decreased activa-
tion-induced neutrophil extracellular trap formation(54). In this
context, we would like to mention that it was shown for various
cell types, mostly in cell culture models, that Zn deficiency
alters redox metabolism and results in oxidative stress(165–169).
There are several suggestions for the mechanisms responsible
for the elevated ROS levels in Zn-deficient conditions, as sum-
marised in Fig. 4. First, Zn deficiency was related to the
decreased activity of enzymes which are central to ROS
metabolism, such as the Cu/Zn superoxide dismutase in vitro.
Here, the inactivation of enzymes due to the lack of Zn in their
catalytic centre was described(168,170,171). Second, expression of
metallothioneins, not only the major intracellular Zn binding
proteins but also an important free radical scavenger, is
decreased during Zn deficiency, which was shown using vari-
ous models of Zn deficiency and was recently summarised(168).
As a third mechanism, Zn is necessary to protect the free sulf-
hydryl groups in proteins from oxidation. A lack of Zn might
also alter the formation of intramolecular disulphide bonds,
causing steric hindrance and conformational changes, which
can be associated with increased activity or the loss of function
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of molecules involved in balancing the redox state of the cells,
determined in cell culture experiments and suggested by in
vivo examination of Zn-deficient animals(172). In Zn-adequate
conditions, Zn competes with other redox-active metal ions
with similar coordination chemistry such as Cu or Fe for protein
binding. The lack of Zn as competitor is a fourth suggested
mechanism explaining the increased oxidative stress when
Zn is limited. This was investigated for the oxidation of myoglo-
bin and the activity of superoxide dismutase(170,173). Zn also
competes with Fe and Cu for binding to the NADPH oxidase
and usually inhibits NADPH oxidase activity. Increased
NADPH oxidase activity was reported for neuronal cells cul-
tured in the Zn-depleted medium(174). In this context, Zn can
bind NADPH, but not NADH, and thus inhibits NADPH-depen-
dent enzymes in vitro(175,176). Moreover, Zn interferes with the
Fenton reaction in vitro suppressing lipid peroxidation(177,178).
As a fifth point, Zn deprivation was associated with dysfunc-
tions of mitochondria and the endoplasmic reticulum.
Finally, Zn’s effect on gene expression might affect redox

metabolism. Zn was shown to be involved in the up-regulation
of several transcription factors, and some antioxidant mole-
cules such as glutathione and detoxifying enzymes such as glu-
tathione S-transferase and haemeoxygenase-1 mostly
investigated using Zn-deficient cell cultures(176,179). The nuclear
factor erythroid 2-related factor 2 can be induced by Zn, as was
investigated in rats fed on a low-Zn, Zn-adequate or high-Zn
diet(176,179,180). Whether Zn deficiency has the opposite effect
to Zn supplementation remains to be explored, but in sum-
mary, the multiple mechanisms described above can explain
the overall increase in ROS during Zn deficiency, which was
consistently found in various models of Zn deficiency. We thus
hypothesise that in combination with the infection-induced
inflammation observed in COVID-19 patients, pre-existing Zn
deficiency might augment the formation of ROS and reactive
nitrogen species causing severe tissue damage. On the other
hand, the anti-oxidative properties of Zn are widely described
and accepted(23,140,181,182), suggesting benefits of Zn supple-
mentation for COVID-19 patients.
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Fig. 3 Pulmonary effects observed in Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infected patients with pre-existing zinc deficiency as com-
pared with patients with a balanced zinc homoeostasis. Pre-existing zinc deficiency (left) was suggested to increase the number, recruitment and inflammatory potential
of especially PMN to the insides of the bronchi. Lymphocyte numbers are generally decreased, most prominently affecting T helper cell (TH) cells. The zinc deficiency-
related decrease in tight junction expression and the increase in endothelial cell apoptosis have several consequences. Thus, infiltration of the lung by host cells, as well
as the leakage of pathogens such as SARS-CoV-2 and secondary pathogens such as Streptococcus pneumoniae into the vascular system, is frequently observed
during zinc deficiency. Detailed explanations can be found in the text. For comparison, the characteristics of zinc-adequate individual are indicated on the right. Ab,
antibody; B, B cell; E, erythrocyte; G-CSF, granulocyte colony-stimulating factor; GC, glucocorticoid; GM-CSF, granulocyte-macrophage CSF; MMP, matrix metallo-
proteinase; Mo, monocyte; Mϕ, macrophage; NET, neutrophil extracellular trap; NK, natural killer cell; Pl, platelet; PMN, polymorphonuclear neutrophil; ROS, reactive
oxygen species; Tc, cytotoxic T cell; TJ, tight junction; ZA, zinc adequate; ZD, zinc deficient.
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COVID-19 often shows systemic effects in the patient’s tissues
and organs, often resulting in multi-organ failure and high death
rates(3,74,82,183). Furthermore, ‘septic shock’ is another cause of
mortality from SARS-CoV-2 and is currently observed in 4–8 %
of COVID-19 patients(52,53,184). When reading all the articles on
COVID-19 discussing the symptoms in individuals undergoing
mild compared with severe viral disease, one cannot help but
notice the parallels to mild bacterial infections compared with
bacterial sepsis and its progression to ARDS(37,161,185).
Regarding bacterial sepsis, various studies in animals and
humans describe an association of disease progression and mor-
tality in relation to the Zn status, which could be extrapolated to
COVID-19. It was shown that pre-existing Zn deficiency was a
prerequisite for the progression frommild inflammation to pneu-
monia and severe sepsis in mice. Severity of disease was moni-
tored by analysing the serum levels of proinflammatory
cytokines (i.e. assessment of the cytokine storm) and damage
to the lungs, the liver and the kidney. Also, serum Zn concentra-
tions were inversely correlated with sepsis severity. Thus, serum
Zn was suggested as a prognostic marker for mortality in septic

mice, pigs, adult humans and infants. In critically ill children,
complications of sepsis, the necessity for mechanical ventilation
and resulting mortality rates were correlated with low serum Zn
levels.(101,128,129,186–193). Moreover, Boudreault et al. revealed that
pre-existing Zn deficiency primes the lungs for severe complica-
tions derived frommechanical ventilation, including the progres-
sion from acute lung injury to ARDS(194). In cystic fibrosis, Zn
deficiency, caused by a splice switch in the Zn Importer ZIP2,
caused hypersecretion of the glycoprotein mucin in airway epi-
thelial cells, significantly increasing disease severity(195). Pre-
existing serum Zn deficiency was implicated to be responsible
for the high incidence of pneumonia in elderly, hospitalised
patients(192,196,197). Enhanced infection and virulence of
Streptococcus pneumoniae in Zn-deficient mice were reported.
In addition to disrupted epithelial barriers and inadequate
immune response, the enhanced virulence was explained by
the sensitivity of S. pneumonia to Zn intoxication, reduced dur-
ing Zn deficiency(189). Direct effects of Zn deficiency on viral rep-
lication have not been addressed to date. Finally, the correlation
between Zn deficiency and infection severity may be due to
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reverse causality, that is, the negative effects that inflammation
has on serum Zn concentration. We thus suggest that when
the serum Zn levels fall below a certain threshold, the inflamma-
tory response will be self-perpetuating. Again, most tissue dam-
age and detrimental consequences can be expected for patients
with pre-existing severe Zn deficiency, but in view of the mani-
fold effects of already mild deficiency, normalising the Zn status
offers an easy and cost-efficient approach to reduce disease
symptoms.

The hypothesis that Zn deficiency is a risk factor for severe
COVID-19 progression and the development of pneumonia
and ARDS is supported by successful supplementation studies
using Zn to prevent or attenuate respiratory diseases, as we sum-
marised previously(6). Moreover, first data indicating the congru-
ency of low-Zn status of COVID-19 patients as well as the inverse
correlation between serum Zn levels and COVID-19 severity
were recently published(10,198). However, the low serum Zn lev-
els might, once more, be the result of the severe inflammatory
response elicited by the virus(18). Clear data on possible pre-
existing serum Zn defiicencies are still lacking.

Disrupted epithelial barrier integrity during zinc
deficiency: opening the way for Severe Acute Respiratory
Syndrome-Coronavirus-2 and co-infections

Evidence is accumulating that, in addition to attacking the lungs
and the respiratory tract, SARS-CoV-2 frequently damages other
organs (heart, vessels, nerves/brain, kidneys and skin).
Disruption of tissue barriers is an integral part of the pathophysi-
ology of infectious diseases, as it facilitates distribution of the
pathogen within the body(151). The effects of Zn deficiency,
described above regarding the lung endothelial barrier, were
similarly described for other endothelial layers, including those
of kidney, liver, intestine and brain.

It should also be mentioned that the expression of ACE2,
lately also called ‘SARS-CoV-2 receptor’, is not limited to the
lungs, that is, the goblet and ciliated epithelial cells of the upper
airways, alveolar (Type II) epithelial cells and cells of the pul-
monary vasculature. ACE2 is also expressed on migratory
angiogenic cells, and vascular smooth muscle cells, cardiofi-
broblasts, cardiomyocytes, pericytes and epicardial adipose
cells of the heart; glomerular endothelial cells, podocytes
and proximal tubule epithelial cells of the kidneys; cholangio-
cytes and hepatocytes of the liver; pigmented epithelial cells,
rod and cone photoreceptor cells and Müller glial cells of the
retina; enterocytes of the intestines and on cells from circum-
ventricular organs of the central nervous system. Binding of
SARS-CoV-2 was claimed to result in the loss of ACE2 from
the cell surface due to receptor endocytosis and proteolytic
cleavage(199). On the other hand, ADAM17-mediated ACE2
shedding facilitates SARS-CoV-1 entry and induces tissue dam-
age by TNF-α production, which remains to be shown for SARS-
CoV-2(200). However, disturbed ACE2 expression levels on the
cell surface and increased viral entry result from both scenarios.
Amongst the normal physiological functions of the ACE2 sys-
tem are protection against heart failure, myocardial infarction
and hypertension. This can explain heart-related COVID-19

complications. Furthermore, defects in the ACE2 system were
associatedwith lung disease, diabetes mellitus and gut dysfunc-
tion(199). ACE2 is a Zn-metalloenzyme, and its normal function
is therefore Zn-dependent. Thus, a likely explanation for the
association of pre-existing Zn deficiency with COVID-19 com-
plications is the decreased ACE2 activity reported for animals
fed on a low-Zn diet(201,202). ACE activity was even suggested
as a biomarker for moderate Zn deficiency in patients with idi-
opathic taste impairment(203). A Zn deficiency-related, mildly
restricted ACE2 activity might not result in clinical symptoms.
However, if ACE2 activity is further impaired by the virus, it
might fall below a certain threshold and cause vascular compli-
cations, heart problems, gut disturbances and so on.
Conversely, one study reported increased ACE2 activity in
the lung tissue of Zn-deficient rats(204). Thus, further clarifica-
tion is needed before conclusions can be drawn regarding
the relation to COVID-19. As Zn is a structural element of
ACE2, the receptor’s conformation and subsequent affinity
for the virus might be altered in patients with pre-existing Zn
deficiency, which remains to be tested(201). Furthermore, Zn
deficiency might impair ACE2 expression, as was reported
for other Zn-containing metalloenzymes(182). Zn supplementa-
tion led to decreased Sirtuin-1 activity as found in cell culture.
Interestingly, Zn removal from the closely related Plasmodium
falciparum Sirtuin-2 deacetylase, resulted in structural collapse
and malfunction of the enzyme. Since Sirtuin-1 is involved in
regulating ACE2 transcription, this might result in disturbed
ACE2 expression in patients with a Zn imbalance(100,205,206).

In summary, pre-existing Zn deficiency might alter ACE2
expression, structure and/or activity in a tissue-specific manner,
which could affect viral entry and pre-dispose to virus-induced
tissue damage, but more and detailed studies are necessary to
verify those speculation.

Acute kidney injury is another complication that can cause high
mortality inCOVID-19patients(207). The total incidenceof acute kid-
ney injury in COVID-19 patients is estimated to be about 4–9%,
while in a retrospective study, it was demonstrated that the percent-
age of patients with complications can reach 37–78%(207,208). In
addition to increased epithelial barrier permeability and the infec-
tion with the virus via ACE2, Zn deficiency was associated with
renal insufficiency(85). Although described for rats, severe Zn defi-
ciency that was observed in parallel decreased the glomerular fil-
tration rates and renal blood flow, while renal vascular resistance
increased(209). The resulting renal insufficiency might be a pre-
requisite for acute kidney injury and kidney failure during
COVID-19. This hypothesis is supported by the finding that the role
of Zn in renal function seems to bemore crucial in diseased animals
than in healthy ones. Tubulointerstitial nephropathy and glomeru-
lar haemodynamics were, for example, aggravated in rats with pre-
existing Zn deficiency that were suffering from unilateral ureteral
obstruction. Zn deficiency further increased the disease-related
high expression of endothelin-1 in the glomeruli of the obstructed
kidneys(210,211). Since during kidney diseases and dialysis, Zn loss is
increased, Zn deficiency is self-perpetuating and a vicious circle
develops causing more severe disease(212).

Diarrhoea was reported as a consequence of COVID-19 in a
high number of cases(77). The association of Zn deficiency with
intestinal alterations and a leaky gut are well described in clinical
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investigations and Zn supplementation studies, and there are
excellent reviews focusing on the underlyingmechanism(213–215).

Infection routes of COVID-19 may not include the intestinal
tract. However, the leaky gut increases the risk of secondary
infections, and intestinal morbidities as commensals are able
to enter the human body(216,217), especially if the immune system
is otherwise occupied by the response to SARS-CoV-2. During
renal diseases, nutrients not only Zn but also other elements
important for an effective immune response can be lost from
the body together with fluids. Consequently, dehydration and
deficiency of various minerals can be expected(213,218).

Finally, it is not without reason that Zn supplementation,
especially of children in developing countries, is recommended
by the WHO to prevent and treat diarrhoea, underlining the rel-
evance of Zn for preserving a healthy gut, as a basic step towards
improving the overall health status of individuals(219).

Pre-existing Zn deficiency decreases wound healing and
tissue regeneration

Long-term consequences of COVID-19 including the damage to
multiple organs are becoming more and more apparent. This is
of course partly due to the severe damage caused by the virus but
also due to slow and inefficient recovery and healing. Again,
there are striking parallels between COVID-19 symptoms and
impaired healing observed in Zn deficiency(220,221), as found dur-
ing ex vivo investigation of differentiated human airway epi-
thelium and described by several research groups(150,154).

In Zn-deficient rats, intestinal cell proliferation and the quality
of intestinal wound healing after intestinal surgery were
decreased compared with Zn-adequate controls. This was
explained by higher expression of matrix metalloproteinases
2, 9 and 13 and decreased expression of Ki67 (proliferation
marker). In addition, the collagen type I:III ratio was reduced
in the Zn-deficient animals(222). Whereas collagen type III domi-
nates the early phase of wound healing, collagen type I rather
represents late phase wound healing.

When the influx of Zn into the liver after partial hepatectomy
was inhibited in a knock-out mutant of the Zn importer Zip14 in
mice, proliferation of hepatocytes was significantly decreased(223).
Pre-existing Zn deficiency had similar effects regarding regenera-
tion of heart and lungs. Moreover, Zn supplementation improved
the recovery from ischaemia as for example shown in rats where
Zn was added during re-perfusion or to the diet(154,224,225).

A Zn-adequate nutrition may thus also be relevant during
recovery from COVID-19.

Zinc deficiency as pre-requisite to virus-induced neuronal
damage and loss in smell and taste

In healthy and Zn-adequate individuals, the brain is usually sep-
arated frommost of the immune cells by the blood–brain barrier.
If the blood–brain barrier is damaged, for example, due to high
levels of matrix metalloproteinase-9 or other matrix-degrading
factors, the brain can easily be infiltrated by immune cells as well
as by pathogens, causing neuronal damage(226). Thus, entry of a
virus into the brain and subsequent damage of the neuronal

system culminating in disturbances of their sensory function
might be expected during severe Zn deficiency.

Neurological complications of COVID-19 include meningitis
and encephalitis, followed by delirium and coma, acute dissemi-
nated encephalomyelitis, myelitis, Guillain-Barré syndrome and
cerebrovascular complications (stroke, transient ischaemic
attack, central nervous system vasculitis)(227). However, in com-
parison with patients with respiratory complications, the propor-
tion of patients with neurological manifestations of COVID-19
might be rather small. Since a high percentage of the world’s
population is likely to be infectedwith the virus, the total number
of patients with neuronal complication might be expected to be
high. Moreover, lifelong disabilities can result from encephalitis
and stroke. Psychosis and paralysis are also discussed as
COVID-19-related(227,228). Subsequent health, social, care and
economic costs to society will be high(227,228). Although the exact
mechanisms underlying the neurological disturbances in
COVID-19 patients are so far not clearly defined, a combination
of direct viral invasion with secondary effects of the over-
responding immune system is likely.

Serum Zn deficiency has been related to neuronal conditions
such as autism, depression, psychosis, Alzheimer’s disease, stroke
and schizophrenia. Disturbed neurogenesis and elevated apoptosis
of neuronal cells,which can result in defects in learning andmemory,
were described during Zn deficiency, as was shown in animals fed
on a Zn-deficient diet. Retrospective studies on stroke patients also
suggest a clinical significance for serum Zn deficiency(229–235). The
increase in neuronal apoptosis might involve mitochondrial p53 as
well as p53-dependent caspase-mediated mechanisms as shown
in vitro(236). Moreover, a deficiency in synaptic Zn, achieved by
Zn chelation, elevated the susceptibility to epileptic seizures in
rodents(237,238). Also, Zn deficiency reduces the amount of Zn avail-
able for signal transmission and processing of information, consider-
ing that Zn functions as a neurotransmitter, as reviewed in detail
elsewhere(239). Zn is usuallypackaged into synaptic vesiclesof a large
sub-population of excitatory neurons for the purpose of neurotrans-
mission. In addition, Zn functions as an important neuromodulator in
the olfactory bulbs in rodents(240,241). Restricting the release of Zn by
knocking out the Zn exporter ZnT3 inhibited cell proliferation and
neuronal differentiation in the adult hippocampus in mice(242).
Surprisingly, Zn in the brain remains unaltered or might even be
elevated and involved in Alzheimer-related plaque formation in
Zn-deficient animals and humans(243–245). Thus, the relevance of
direct effects of Zn deficiency to explain neuronal damage and
defects in brain function awaits further data to assist verification.
However, ROS, reactive nitrogen species and matrix metalloprotei-
nase-9, which can cross the blood–brain barrier, are elevated during
Zndeficiencyandaffect blood–brainbarrier integrity, thusexplaining
the neuronal damage that has been found in vitro and in vivo(246,247).

Although not in itself life threatening, descriptions of dis-
turbed sense of smell or taste, or both, in COVID-19 patients
have accumulated(248–251). An association between Zn deficiency
and the (partial) loss of smell, taste or both has been described in
several studies(252,253). However, underlying mechanisms are so
far not clear. Thus, a connection between Zn deficiency and the
disturbances in taste and smell in COVID-19 patients must be
carefully analysed in future studies. Extrapolating from the liter-
ature, however, still suggests some logical associations.

224 I. Wessels et al.



The elderly: a risk group not only for Zn deficiency

The above-discussed consequences of Zn deficiency are rel-
evant for all age groups. However, in a large number of subjects
older than 65 years, co-morbidities may exist. Thus, the associ-
ation of the age-related decline of serum Zn with the high sus-
ceptibility of the elderly for severe COVID-19 is hard to
estimate. Instead, we would like to point out that although this
article’s focus is Zn, a deficiency in other nutritional elements
could also worsen COVID-19 prognosis(3,254,255). Especially,
the elderly suffer not only from Zn deficiency but often from
inadequate nutrition. Thus, their nutritional status should gener-
ally be checked regularly. It was estimated that the prevalence of
inappropriate nutrition risk in Europe is 8·5 % in the community
setting, 17·5 % in residential care and 28 % in hospitalisation for
individuals ≥65 years(256). The evidence of the relationship
between inappropriate nutrition, immunosenescence and the
higher morbidity and mortality from COVID-19 in elderly
patients was recently discussed(3,254). Those articles may be con-
sulted in regard to options especially for supporting the aged
population in addition to Zn supplementation. The articles pro-
vide an elaboration on the impact of malnutrition on the immune
system specifically of older subjects including cell-mediated
immunity, cytokine production and phagocytic function(3,6,7,254).

However, we believe that Zn supplementation of groups at
risk of Zn deficiency and especially in case of the elderly can sig-
nificantly reduce the severity of infectious diseases such as
COVID-19, especially when combined with a generally opti-
mised and nutritious diet, and physical exercise(6,7,254).

Next step: clinical trials

Based on the available literature, this article suggests a multitude of
mechanisms as to how pre-existing Zn deficiency poses a risk of
higher susceptibility to SARS-CoV-2 infections and a more severe
progression of disease. To test this hypothesis, clinical studies are
necessary and some are already registered(257) (online
Supplementary Table S1). Moreover, first clinical data support the
hypothesis that serum Zn levels are decreased in COVID-19 patients
and that disease severity and mortality might be inversely correlated
with serum Zn concentration(10,258). A decreased serum Zn level
might perhaps be expected in COVID-19 patients due to the strong
inflammatory response. Indeed, in serum samples from thirty-five
patients with COVID-19, Zn levels were below those from healthy
controls(10). Furthermore, in a study of pregnant women,
COVID-19 was associated with lower serum Zn levels and serum
Zn was negatively correlated with inflammatory markers(259).
Thus, subjects starting out with an inherent Zn deficiency might
be expected to be less well prepared for a COVID-19-induced
decrease in serum Zn. In this regard, serum samples from non-sur-
vivors of COVID-19, taken at various time points, showed that the
majority were below the threshold categorised as Zn-deficient.
Thiswas also noted for half of the surviving patients. The same study
also found a Se deficiency in the majority of patients. The levels of
SelenoproteinPandZn in relation to theageof the subjectwere iden-
tified as reliable prognostic indicators for COVID-19 survival(10).
Analysis and correction of Se and Zn status were recommended.
Another study also found that a significant number of COVID-19

patientswereZndeficient. Here, Zn-deficient patients revealedmore
complications, a prolonged hospital stay and higher mortality(258).
Low Zn levels in COVID-19 patients at clinical admission were asso-
ciated with poor disease outcomes(198). Finally, in Sakai City Medical
Center (Osaka, Japan), most severely ill patients with COVID-19
showedZn deficiency. Regarding those patients, critical illness could
bepredictedby serumZnvalues. The authors thus suggest serumZn
levels as a predictive factor for a critical illness of COVID-19(260).
Additional studies on correlating serum Zn levels with disease
severity are ongoing(261).

The data we present strongly suggest that individuals with
severe pre-existing Zn deficiency should be included in potential
risk groups for COVID-19. We also suggest that prophylactic Zn
supplementation, addressing mild pre-existing Zn deficiency,
would be more promising than using Zn for the treatment of
active disease. In several registered studies, Zn supplementation
of groups with high risk of close contact with SARS-CoV-2,
including medical or military personnel, is being investigated.
Finally, the use of Zn supplementation alone or in combination
with other treatment strategies is being tested in clinical studies.
First data on the benefits of Zn supplementation as monitored by
improved disease status in four confirmed cases of COVID-19
which were supplemented with up to 200 mg of elemental Zn
per d were recently published(262). However, only a minimal
effect of Zn on the survival of Zn treated (100mg elemental
Zn per day) v. untreated COVID-19 patients was found by
others(263). Supplementation studies using Zn together with
the ionophore chloroquine have so far produced contradictory
results(264–268).

Combining the Zn-related data from descriptive, preventive
and treatment studies will be necessary to increase our knowl-
edge of the importance of Zn homoeostasis during COVID-19
infections and for developing optimal Zn-based supplementa-
tion strategies.

Conclusion

Zn is not without reason called an ‘essential’ trace element.
Although its single actions on the various cells of the human
body might be small and the symptoms of mild to moderate
Zn deficiency are rather subtle, the pre-existing lack of Zn in
combination with a pathogen such as SARS-CoV-2 can be detri-
mental and life threatening. Unfortunately, the current data for
COVID-19 patients do not allow to distinguish, whether the
low serum Zn levels repeatedly found are elicited by virus-
induced inflammation, or are reflecting a pre-existing Zn defi-
ciency which cause a more severe disease. Irrespective of this
ambiguity, it is quite obvious that groups at risk of Zn deficiency
may also be at risk of severe progression of COVID-19, in which
the literature on the effects of Zn deficiency, summarised in this
article, emphasises. Still, this hypothesis needs to be tested
experimentally in clinical studies, some of which are currently
in progress. At present, the hypothesis is only supported by data
derived largely from animal and cell culture models of Zn
deficiency.

This article underlines the various ways as to how a vicious
circle of pre-existing, low-grade Zn deficiency and mild
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pathogen-induced symptoms, followed by increased loss of Zn
from the body and the switch to more severe symptoms and seri-
ous complications, can be generated. Especially since Zn and its
deficiency can have a wide variety of individually very different
effects, the consequences of pre-existing Zn deficiency in com-
bination with a pathogen like SARS-CoV-2 that causes so many
different symptoms and complications by itself are almost impos-
sible to predict. However, as a conclusion, it can be assumed that
Zn deficiency represents a risk for severe progression of SARS-
CoV-2-induced disease and a high mortality therefrom. As Zn
supplementation is cost-effective and can be regarded as safe,
it is highly recommended to supplement individuals who are
at risk of Zn deficiency. Finally, we would like to add that more
attention should be paid to monitoring nutritional status, since
minerals and trace elements are inevitably associated with an
efficient immune response. Collaborations between the wide
range of clinical and research expertise from the nutritional field
along with those involved in intensive care treatment, forming a
COVID-19 Nutrition Network is desirable.
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