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Abstract: Two new peroxosolvates of drug-like compounds were synthesized and studied by a combi-
nation of X-ray crystallographic, Raman spectroscopic methods, and periodic DFT computations. The
enthalpies of H-bonds formed by hydrogen peroxide (H2O2) as a donor and an acceptor of protons
were compared with the enthalpies of analogous H-bonds formed by water (H2O) in isomorphic
(isostructural) hydrates. The enthalpies of H-bonds formed by H2O2 as a proton donor turned out
to be higher than the values of the corresponding H-bonds formed by H2O. In the case of H2O2 as
a proton acceptor in H-bonds, the ratio appeared reversed. The neutral O···H-O/O···H-N bonds
formed by the lone electron pair of the oxygen atom of water were the strongest H-bonds in the con-
sidered crystals. In the paper, it was found out that the low-frequency Raman spectra of isomorphous
crystalline hydrate and peroxosolvate of N-(5-Nitro-2-furfurylidene)-1-aminohydantoin are similar.
As for the isostructural hydrate and peroxosolvate of the salt of protonated 2-amino-nicotinic acid
and maleic acid monoanion, the Raman spectra are different.

Keywords: crystal packing; periodic DFT computations; bifurcate hydrogen bonds; low-frequency
Raman spectroscopy; hydrogen bond enthalpy

1. Introduction

In the last decade, the development of drug-like cocrystals became one of the topical
issues in pharmaceutical chemistry [1–3], owing to a possible synergetic effect of their com-
ponents [4]. The hydrogen peroxide crystalline complexes look very promising since H2O2
demonstrates a wide spectrum of antimicrobial activity [5]. Recently, the peroxosolvate
of the antifungal drug “miconazole” was synthesized and structurally characterized [6].
However, upon storage, peroxosolvates get decomposed with hydrogen peroxide leaking
away, and, therefore, they are not applicable for medical treatment. The formation of
stoichiometric H2O2 adduct with no loss of oxidizing ability upon long-term storage is one
of key challenges [7]. It is well-known that the stability of peroxosolvates is governed by
the strength and amount of hydrogen bonds formed by peroxide molecules [8,9] and the
topology of H-bonded networks within their crystals [10,11].

The conventional hydrogen bonds (H-bonds) are the main type of intermolecular in-
teraction in crystallohydrates and crystalline peroxosolvates. Water and hydrogen peroxide
are able to form a different number of H-bonds in multicomponent organic crystals. H2O
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usually forms three H-bonds: either two bonds as a proton donor and one bond as a proton
acceptor or vice versa [11–13]. H2O2 always forms two conventional H-bonds as a proton
donor and may form up to four H-bonds as a proton acceptor [14]. The proton-donor atoms
are usually formed with aromatic nitrogen, NAR [9], and the −O-N+

AR [10], −O2CR [15],
O=CR2 [16] groups. Such H-bonds are quasi-linear (the O-H···O/O-H···N angle is greater
than 160 degrees) and are of moderate strength [9,15,16]. H2O2 forms three or four H-bonds
as a proton acceptor in a few crystals [9]. These bonds are formed between lone electron
pairs of the oxygen atom of H2O2 and π-conjugated amino groups of organic coformers [9].
They are characterized by an almost linear O···H-N fragment and are relatively weak [9,16].
The H2O2 molecule forms one or two H-bonds as a proton acceptor in about half of the
peroxosolvates [14]. A significant number of these crystals contain zwitterions [17–19]. The
oxygen of the H2O2 molecule and the +H3N- group of the amino acid zwitterion often form
nonlinear H-bonds (the O···H-N+ angle is less than 140 degrees), Figure S1.

The distance between the A and B atoms (R(A···B)) of the A-H···B fragment, where A
and B are O, N, F and others, plays a crucial role in geometry, dynamics, and in the energy
of the H-bond network [20,21]. The different properties of H-bonds are determined by
the R(A···B) distance, in particular, the energy/enthalpy of H-bond (EHB/∆HHB). The pro-
posed empirical schemes made it possible to estimate the EHB values from R(O···O) [22,23].
These approaches are limited to the O-H···O fragment in the solid state. More universal
approaches use the frequency shifts of the O-H stretching vibrations [24], the H···O dis-
tance [25,26] and the electron density at the bond critical point [27]. The pros and cons of
various schemes for EHB/∆HHB estimating are given elsewhere [28]. In the present study,
the ∆HHB values were evaluated using the Rozenberg equation [25]:

-∆HHB [kJ mol−1] = 0.134·R(H···O) −3.05, (1)

where the R(H···O) is the H···O distance (nm). The empirical correlation (1) gives the
∆HHB values of intermolecular H-bonds in molecular crystals in the range of 10−80 kJ/mol
with the accuracy around several kJ/mol [25]. The Equation (1) is a powerful “toolbox”
for studying crystals consisting of H-bonds of different strengths and types, including
ionic or charged fragments [25,26]. The main limitation of equation (1) is the accuracy of
experimental measurements of the position of hydrogen in H-bridge. Therefore, the use
of the neutron diffraction method is necessary. Nevertheless, the number of crystals with
H-bonds studied by this method is very limited [29]. In the present study, the exact values
of the H···O distances were computed using the periodic DFT methods [30,31].

The energy/enthalpy of H-bonds in peroxosolvates composed by H2O2 as a proton
donor is usually greater than the corresponding EHB/∆HHB of H-bonds formed by the H2O
molecule [15,32]. A systematic comparison of the EHB/∆HHB values of H-bonds formed
by H2O and H2O2 as proton acceptors has not been performed so far. In paper [13] it
is believed that the energies of moderately strong H-bonds of complexes formed by the
H2O molecule as a proton donor or a proton acceptor are approximately equal. As for
multicomponent organic crystals, this equality may not be observed, since the energies of
the H-bonds formed by H2O and H2O2 as proton acceptors are determined by the nature
of the organic molecule. Indeed, the EHB/∆HHB values of the H-bond built up by the H2O
molecule as a proton acceptor with a diglycine cyclic dipeptide are greater than the values
of the corresponding H-bond formed by H2O2 [32]. Obviously, an accurate comparison of
the energy of the H-bond formed by H2O and H2O2 as acceptors of protons in the solid state
involves the study of multicomponent organic crystals that form isomorphic (isostructural)
hydrates and peroxosolvates.

To compare the proton acceptor and proton donor properties of H2O and H2O2 in
multicomponent organic crystals, the following issues were consistently resolved in this
work.

1. The features of H-bonded networks in hydrates and isomorphic peroxosolvates of
multicomponent organic crystals were identified using the Cambridge Structural
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Database version 5.42 (September 2021) [33] and version 2016-1 of the Inorganic Crystal
Structure Database [34].

2. The H-bond enthalpy in crystalline hydrates ([2-amino-nicotinic acid+maleic acid+H2O]
(1:1:1), [N-(5-Nitro-2-furfurylidene)-1-aminohydantoin+H2O] (1:1)) and peroxosol-
vates ([2-amino-nicotinic acid+maleic acid+H2O2] (1:1:1), [N-(5-Nitro-2-furfurylidene)-
1-aminohydantoin+H2O2] (1:1)) (Scheme 1) was determined using periodic DFT calcu-
lations [30] followed by Rosenberg’s equation [23,24]. The structures of the crystalline
hydrates were studied by X-ray diffraction [35,36]. The isomorphic or isostructural
peroxosolvates were purposefully prepared for this study.
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3. The spectroscopic features of the considered crystals were studied by low-frequency
Raman spectroscopy followed by periodic DFT computations.

2. Results and Discussion
2.1. Features of H-Bonded Networks in Hydrates and Isomorphic Peroxosolvates

Our statistics are based on 103 peroxosolvates, 91 of which are organic crystals’ struc-
tures [33,34]. The detailed analysis of these crystals’ structures is given in Tables S1 and S2
of Ref. [28]. After excluding structures with structurally disordered H2O2 molecules and
structures with non-alkaline metals, the number of peroxosolvates decreased to 56. Fur-
thermore, those structures were excluded in which H2O2 molecules interact directly with
the Li+, Na+, K+, NH4

+ ions or with other H2O2 molecules through H-bonds. The crystals
containing the other solvent molecules were also excluded from consideration. As a result,
the final number of analyzed peroxosolvates was 46. We concluded the following: (1)
H2O2 does not form H-bonds as a proton acceptor if the organic coformers do not have
active hydrogen atoms. Such crystals make up a significant proportion of the considered
structures (20). (2) H2O2 forms three or four H-bonds as a proton acceptor in five structures.
The oxygen atoms of H2O2 are less likely to participate in bifurcate H-bonds than the C=O
and P=O groups [20,37]. (3) In the remaining structures (21), the H2O2 molecule forms
one or two bonds as a proton acceptor. If the coformer is not a zwitterion, then H2O2 can
form the quasi-linear O···H-N bonds (Figure S2). (4) Currently, there is only one example
of the bifurcate H-bond formed by the OH group of H2O2 [38]. Refcodes of the analyzed
peroxosolvates are given in Table S2. Analysis of secondary interactions, in particular,
O···H-C bonds [39,40], is beyond the scope of this work.

The comparison of the metric and energy characteristics of H-bonds formed by the
H2O2 and H2O molecules in the solid state involves the use of isomorphic peroxosolvates
and crystalline hydrates. Notably, the number of such structures is not large. By means
of a special choice of coformers (cyclic N-oxides), isomorphic crystal hydrates and per-
oxosolvates containing only two H-bonds formed by H2O and H2O2 as a proton donor
were studied in ref. [10]. It was stated that H2O2 forms shorter H-bonds as compared to
H2O. A similar trend was previously revealed in refs. [15,32] in isomorphic crystalline
hydrates and peroxosolvates of several amino acids. These studies show that the hydrogen
peroxide molecule usually forms shorter (strong) donor H-bonds than the water molecule.
Data on the proton acceptor properties of H2O2 and H2O in the solid state are scarce. The
values of the O···H-N+ bond energy are comparable in isomorphic crystallohydrate and
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peroxosolvate of serine [15]. The O···H-N bond energy in the crystalline hydrate of the
cyclic dipeptide is much higher than that in the isomorphic peroxosolvate [32]. This issue
required an additional study, which was performed in the next section.

2.2. The H-Bond Enthalpy in the Selected Crystalline Hydrates and Peroxosolvates

Crystalline [2-amino-nicotinic acid+maleic acid+H2O] (1:1:1), denoted below as
[2AmNic+Mle+H2O], is a relevant object for the following reasons. Firstly, H2O forms
three quasi-linear H-bonds in this crystal—two as a proton donor and one as a proton
acceptor [36]. Secondly, the structure, the spectrum, and the EHB/H values of H-bond
in this crystal were characterized by X-ray analysis, terahertz Raman spectroscopy, and
periodic DFT calculations [36]. In this work, we accomplished the synthesis of peroxosol-
vate [2AmNic+Mle+H2O2] (1:1:1) (Section 3.3). The network of H-bonds formed by H2O2
in this crystal is equivalent to the network of H-bonds formed by H2O in crystalline (cf.
[2AmNic+Mle+H2O2] and [2AmNic+Mle+H2O], Figure 1). These crystals are isostructural.
Crystalline [N-(5-Nitro-2-furfurylidene)-1-aminohydantoin+H2O] (1:1) [35], denoted below
as [NFA+H2O] (Figure 2), was chosen as the second model of crystallohydrate. In this
crystal, the H2O molecule forms one quasi-linear H-bond as a proton acceptor and three
H-bonds as a proton donor, with one of the OH groups forming a bifurcate bond. Unlike
[2AmNic+Mle+H2O] crystal, in the [NFA+H2O] crystal a water molecule forms H-bonds
as a proton donor with the same neutral molecule, whereas H-bond as a proton acceptor is
formed with the H-N group of a neighboring molecule. Moreover, we obtained peroxosol-
vate [NFA+H2O2] (1:1), isomorphic to this crystalline hydrate (Figure 2). The network of
H-bonds in the synthesized [NFA+H2O2] is presented in Figure 2b.
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The theoretical values of the enthalpy of intermolecular H-bonds in the considered
crystals were evaluated using the equation (1), where the O···H distances were calculated
at the PBE-D3/6-31G** level (Table 1). In accordance with the literature data [30,31] the
relaxed values of the O···H distance in molecular crystals systematically exceed the X-ray
values by ~0.15 Å. The deviations from this parameter are due to serious differences
between the theoretical distances A···B and the experimental ones.

Table 1. Distances between the atoms involved in the formation of intermolecular H-bonds in
[2AmNic+Mle+H2O], [2AmNic+Mle+H2O2], [NFA+H2O] and [NFA+H2O2]; R(O···N), R(O···O),
and R(H···O) obtained using periodic DFT computations (PBE-D3/6-31G**) and the ∆HHB values
evaluated using Equation (1).

Fragment 1 R(O···N)/R(O···O) 2, Å R(H···O), Å ∆HHB, kJ/mol

[2AmNic+Mle+H2O] (1:1:1)
O12 . . . H21-N2 2.804 (2.816) 1.777 (1.928) 26.0
O11 . . . H11-N1 2.816 (2.816) 1.770 (1.905) 26.4
O12 . . . H31-O3 2.701 (2.717) 1.707 (1.860) 29.4
O13 . . . H32-O3 2.765 (2.771) 1.783 (1.900) 25.8

O3 . . . H1-O1 2.536 (2.567) 1.484 (1.641) 45.1
[2AmNic+Mle+H2O2] (1:1:1)

O12 . . . H21-N2 2.846 (2.831) 1.810 (1.955) 24.6
O11 . . . H11-N1 2.849 (2.735) 1.805 (1.803) 24.8
O12 . . . H31-O31 2.658 (2.636) 1.648 (1.759) 32.8
O13 . . . H32-O32 2.774 (2.698) 1.841 (1.767) 23.3

O31 . . . H1-O1 2.726 (2.646) 1.738 (1.769) 27.9
[NFA+H2O]

N4-H4 . . . O6 2.689 (2.763) 1.653 (1.782) 32.5
O6-H7 . . . O4 2.834 (2.961) 1.938 (2.015) 20.0
O6-H8 . . . O1 3.080 (3.148) 2.338 (2.245) 11.3
O6-H8 . . . O3 2.966 (3.172) 2.100 (2.392) 15.6

[NFA+H2O2]
N4-H4 . . . O6 2.807 (2.905) 1.822 (2.098) 24.1
O6’-H7 . . . O4 2.735 (2.737) 1.786 (1.894) 25.6
O6-H8 . . . O1 3.175 (3.128) 2.496 (2.477) 9.2
O6-H8 . . . O3 2.871 (2.907) 1.935 (2.144) 20.1

1 the atomic numbering is given in Figures 1 and 2; 2 experimental values are given in parentheses.

To estimate the error in determining the ∆HHB parameter caused by a significant
deviation of the theoretical R(H···O) values from the experimental ones, the R(H···O)
values were computed at the B3LYP/6-31G** level (Tables S2 and S3). The ∆HHB values
calculated at the B3LYP/6-31G** level agree nicely with those obtained using the PBE-D3/6-
31G** level (cf. Table 1 with Tables S2 and S3). In accordance with the literature [41,42], the
PBE-D3 calculations slightly overestimate the H-bonded energy compared to the B3LYP
calculations.

The enthalpies of H-bonds formed by H2O2 as a proton donor turned out to be higher
or comparable with the values of the corresponding H-bonds formed by H2O [15,32,43]. In
the case of H-bonds formed by H2O2 and H2O as a proton acceptor, the picture is reversed.
In accordance with the literature data [32], the enthalpy of H-bonds formed by H2O as a
proton acceptor is systematically higher than the analogous values of H-bonds formed by
H2O2.

As it follows from the data (Table 1), the value of the enthalpy of the bifurcate H-bond
formed by the OH group is significantly higher than the enthalpy of the ordinary H-bond
formed by another OH group of H2O or H2O2.

2.3. Low-Frequency Raman Spectra of the Considered Crystals

Low-frequency Raman spectroscopy is widely used in the investigation of organic
materials [44]. A special attention is paid to intermolecular interactions [45–47], in particular,
H-bonds [48]. We showed that B3LYP and PBE-D3 with fixed cell parameters provide
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a reasonable description of the low-frequency Raman spectra of the multicomponent
molecular crystals [26,49]. In this work, the Raman spectra of the considered crystals were
investigated in the 10–2000 cm−1 frequency region for two purposes (Figure 3). Firstly, to
identify possible differences in the low-frequency Raman spectra of crystallohydrates and
isomorphous peroxolvates. Secondly, to find out how well the periodic DFT computations
with the 6-31G** basis set reproduce the Raman spectra of the considered crystals in the
mid-frequency range.
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Figure 3. The experimental low-frequency Raman spectra of the [NFA+H2O] and [NFA+H2O2]
complexes (a); the [2AmNic+Mle+H2O] and [2AmNic+Mle+H2O2] complexes (b).

Crystalline [NFA+H2O] is isomorphic to crystalline [NFA+H2O2] (Table 2). Their
experimental low-frequency spectra are very similar (Figure 3a). The situation is different
for crystalline [2AmNic+Mle+H2O] and crystalline [2AmNic+Mle+H2O2] (Figure 3b). This
result can be explained by the fact that the latter crystals have a similar network of H-bonds,
but their crystal structure is different (Table 2 and data from refs [35,36]).

Table 2. Crystal data and refinement details of the [2AmNic+Mle+H2O2] and [NFA+H2O2] structures.

[2AmNic+Mle+H2O2] [NFA+H2O2]

Empirical formula C10H12N2O8 C8H8N4O7
Fw 288.22 272.18

color, habit colorless, prism light-yellow, prism
crystal size (mm) 0.25 × 0.20 × 0.15 0.25 × 0.15 × 0.10

crystal system monoclinic orthorhombic
space group P21/n Pbca

a (Å) 9.5451(4) 13.0154(7)
b (Å) 11.7871(4) 9.4659(7)
c (Å) 11.0780(4) 17.9512(10)

β (deg) 105.089(1) 90
V (Å3) 1203.40(8) 2211.6(2)

Z 4 8
Dc (g·cm−3) 1.591 1.635

µ (mm−1) 0.140 0.146
F(000) 600 1120

θ range (deg) 2.51 to 29.00 2.27 to 28.00
refl collcd 11941 19769

indep reflns/Rint 3189/0.0219 2671/0.0650
reflns I > 2σ(I) 2742 1995
No of param 229 205
GooF on F2 1.047 1.025

R1 (I > 2σ(I)) 0.0345 0.0371
wR2(all data) 0.0954 0.0882

largest diff peak/hole (e·Å−3) 0.368/−0.191 0.250/−0.244
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The PBE-D3/6-31G** and B3LYP/6-31G**calculations describe the low-frequency
Raman spectra of crystalline [NFA+H2O2] (Figure 4). The computed wavenumbers of the
most bands are bathochromically shifted, which is a common occurrence for harmonic
frequencies of molecular crystals calculated using all-electronic Gaussian-type orbital
bases [50]. The most intense band (~30 cm−1) is characterized by the essential displacements
of the oxygen atoms of H2O2 and the librations (rotations) of the five-member rings of
NFA. The atomic displacements of the H2O2 molecule are negligible in the band around
80 cm−1 (c.f. Figure 4b,c). The low-frequency Raman spectra of crystalline [NFA+H2O]
are compared with the theoretical ones in Figure S3. Such as in the case of the isomorphic
peroxosolvate, the intense band of the water molecule vibrations did not occur in the low
region (Figure S4a,b). Therefore, low-frequency Raman spectroscopy seems to be hardly
applicable to distinguish between the crystalline hydrates of NFA. Similar results were
obtained for [2AmNic+Mle+H2O2] and [2AmNic+Mle+H2O]. In these crystals, no intense
Raman band was observed, which could be assigned to vibrations of H2O2 (Figure 5b,c) or
H2O (Figure S6a,b).
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Figure 4. The experimental (black line) and calculated (PBE-D3—red sticks and B3LYP—blue sticks)
low-frequency Raman spectra of the [NFA+H2O2] crystal (a). The height of the bars is proportional
to the relative Raman intensity of corresponding transition. The schematic representation of the atom
displacements of the two Raman intense vibrations (PBE-D3/6-31G**) at 30 cm−1 (b) and 80 cm−1 (c).

In the three crystals studied, the theoretical spectrum is in good agreement with the
experimental one (Figure 4a, Figures S3 and S5). To harmonize the agreement between
the experimental and theoretical Raman spectra of crystalline [2AmNic+Mle+H2O2] in the
low-frequency region, a scaling factor of 0.9 was used (Figure 5a). Possible reasons for
using a scaling factor for a single crystal are as follows. Scaling factors were developed
for isolated molecules simpler than molecular crystals [51]. The low-frequency Raman-
active vibrations in molecular crystals are mainly associated with the librational motions
(Figure 1 in [52]). An additional reason for the difference between the calculated and
experimental frequencies in the region below 200 cm−1 may be crystal packing effects.
In the case of the studied isomorphic crystals, this error is the same for [NFA+H2O] and
[NFA+H2O2]. Crystals of 2-amino-nicotinic acid have different symmetry groups (Table 2),
and the error in the calculation of the wavenumbers of low-frequency vibrations differs for
[2AmNic+Mle+H2O] and [2AmNic+Mle+H2O2].
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Figure 5. The experimental (black line) and calculated (PBE-D3—red sticks and B3LYP—blue sticks)
low-frequency Raman spectra of the [2AmNic+Mle+H2O2] crystal (a). The theoretical values of
wavenumbers are scaled by 0.9. The height of the bars is proportional to the relative Raman intensity
of the corresponding transition. The schematic representation of the atom displacements of the two
Raman intense vibrations (PBE-D3/6-31G**) at 44 cm−1 (b) and 94 cm−1 (c).

The O–O stretching vibration of H2O2 is located at 870 cm−1 in crystalline peroxo-
solvates [53,54]. To check the stability of the considered peroxosolvates after laser exci-
tation during Raman measurements, the obtained spectra were investigated in the fre-
quency range of 850–950 cm−1 and compared with the results of periodic DFT calculations
(Figures S7 and S8). The experimental spectra of crystalline [NFA+H2O2] and crystalline
[2AmNic+Mle+H2O2] do have Raman active bands around 880–890 cm−1. The calcu-
lated vibration at 910 cm−1 in both theoretical spectra corresponds to the O–O stretching
vibration of H2O2.

3. Materials and Methods
3.1. Compounds and Solvents

Anhydrous NFA (CAS no. 67-20-9) with purity of 98% was purchased from Sigma-
Aldrich (St. Louis, MO, USA) and used without additional purification. The 2-aminonicotinic
acid (5345-47-1, 98%) was purchased from Sigma-Aldrich, and the maleic acid (110-16-7,
98%) was bought from Merck KGaA (Darmstadt, Germany).

The salt hydrate [2AmNic+Mle+H2O] (1:1:1) was obtained according to the method
described in the work by Surov et al. [36]. A stoichiometric mixture of 2AmNic and Mle
was suspended in water to form a slurry and stirred on a magnetic stirrer overnight.

96% hydrogen peroxide. Danger of explosion! 100 mL of laboratory reagent grade 60%
H2O2 (Fisher Scientific, Loughborough, UK) was concentrated to approximately 25 mL
with an exhaustively cleaned rotary evaporator without the use of any vacuum grease
(temperature exactly 50 ◦C and pressure 8 mbar). The concentration of the residual solution
was examined by refractometry (nD = 1.403 at 20◦) [55].

3.2. Cocrystal Preparation

[2AmNic+Mle] and [NFA] were being dried in a treating oven for 5 h (80 ◦C, 100 mbar).
50 mg of unsolvated [2AmNic+Mle] or [NFA] were put into 2 mL vial and 1 mL of 96%
hydrogen peroxide was added. The vials were tightly capped. The starting materials were
dissolved by an intensive shaking of the vials at 50 ◦C. The obtained transparent solutions
were stored in the freezer for one week at −23 ◦C. In both cases, high quality crystals (with
dimensions up to 0.5 mm) were obtained. Afterwards, the surplus mother liquids were
immediately removed from the cold vials using Pasteur pipets.
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3.3. Single Crystal X-ray Diffraction

The diffraction intensities for [2AmNic+Mle+H2O2] and [NFA+H2O2] were collected
on a Bruker D8 Venture machine (Bruker AXS, Karlsruhe, Germany) using graphite
monochromatized MoKα radiation (λ = 0.71073 Å) at 100 and 150 K, respectively. The
absorption corrections based on measurements of equivalent reflections were applied [56].
The structures were solved by direct methods and refined by full matrix least-squares on F2

with anisotropic thermal parameters for all non-hydrogen atoms [57]. All hydrogen atoms
were found from difference Fourier synthesis and refined isotropically. The experimental
details are listed in Table 2.

The crystallographic data for [2AmNic+Mle+H2O2] and [NFA+H2O2] were deposited
with the Cambridge Crystallographic Data Centre as supplementary publications under
the CCDC numbers 2115827 and 2115828, respectively.

3.4. Raman Spectroscopy

The Raman measurements in the spectral range of 10−2000 cm−1 were conducted
using a Raman microscope (inVia, Renishaw plc, Spectroscopy Product Division, Old Town
Wotton-Under-Edge, Gloucestershire, UK) with the 50× objective lens (Leica DM 2500 M,
NA = 0.75, Leica Mikrosysteme Vertrieb gmbH Mikroskopie und HistologieErnst-Leitz-
Strasse 17-37, Wetzlar, Germany). The measurements in the spectral range of 10−200 cm−1

were made with a NExT monochromator, whereas in the spectral range 200−2000 cm−1

they were made with an edge-filter. The excitation wavelength was 633 nm, being provided
by a He-Ne laser (RL633, Renishaw) with the maximum power of 17 mW. The acquisition
time and number of accumulations were adjusted to maximize the signal-to-noise ratio with
the minimal sample degradation. All the spectra for the powder samples were measured
at several points and then averaged to reduce the anisotropy effect on the Raman spectra
and to increase the single-to-noise ratio. The background from the Raman spectra was
subtracted by the cubic spline interpolation method. All the spectra were divided by the
number of accumulations and acquisition time.

3.5. Periodic (Solid-State) DFT Computations

The Kohn–Sham methods with periodic boundary conditions (periodic DFT) provide
a grounded trade-off between the accuracy and the rate of calculations of experimentally
observed properties of multi-component organic crystals [58–60]. The computations with
all-electron Gaussian-type localized orbital basis 6-31G** were conducted using the CRYS-
TAL17 package [61]. B3LYP [62,63] and PBE [64] were employed. The London dispersion
interactions were taken into account by introducing the D3 correction with Becke-Jones
damping (PBE-D3) developed by Grimme et al. [65]. The space groups and the unit cell pa-
rameters of the crystals obtained from the X-ray diffraction experiment were fixed and the
structural relaxations were limited to the positional parameters of the atoms (AtomOnly).
Further details of the periodic DFT calculations are given in the Supporting Information.

4. Conclusions

According to the structural databases, there are 103 peroxosolvates, 91 of which are
organic crystals. After excluding crystals with structurally disordered H2O2 molecules,
crystals in which H2O2 molecules directly interact with the Li+, Na+, K+, NH4

+ ions or
with other H2O2 molecules, the number of analyzed peroxosolvates decreased to 38. In
these crystals, H2O2 interacts with the surrounding organic molecules through H-bonds.
We concluded the following: (i) H2O2 does not form classical H-bonds as a proton acceptor
if the organic coformers do not have active hydrogen atoms. Such crystals make up a
significant proportion of the considered crystals (43%). (ii) H2O2 forms three or four H-
bonds as a proton acceptor in five crystals. The oxygen atoms of H2O2 are less likely to
participate in bifurcate H-bonds than the C=O and P=O groups. (iii) In the remaining 46%
of crystals, the H2O2 molecule forms one or two bonds as a proton acceptor. (iv) Currently,
there are only a few examples of a bifurcate H-bond formed by the OH group of H2O2.
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These findings allow suggesting that suitable H-bond acceptors in the coformer molecule
are crucial for peroxosolvate formation, while the presence of strong H-bond donors is not
mandatory.

In accord with the literature [15,16], the enthalpies of H-bonds formed by H2O2 as a
proton donor turned out to be higher than the values of the corresponding H-bonds formed
by H2O in the considered crystals. The enthalpy of the bifurcate H-bond formed by the OH
group is significantly higher than the enthalpy of the ordinary H-bond formed by another
OH group of H2O or H2O2. The proton acceptor properties of H2O are stronger than those
of H2O2. The neutral O···H-O/O···H-N bonds formed by the lone electron pair of the
oxygen atom of water turned out to be the strongest H-bonds in the considered crystals.

The bands in the low-frequency Raman spectra of the considered crystals, character-
ized exclusively by the vibrations of the atoms of H2O2 or water molecules, were not traced.
Some Raman intense bands below 50 cm−1 are characterized by the essential displacements
of the oxygen atoms of H2O2 or H2O. The displacement of the H2O2 molecule is negligible
in the lattice vibrations [54] located in the 50–150 frequency region.

Supplementary Materials: The following are available online, Figure S1: The fragment of crystalline
L-Serine hydrogen peroxide solvate (CCDC 726697) [17], Figure S2: The fragment of crystalline
5,5′-dinitro-2H,2′H-3,3′-bi-1,2,4-triazole hydrogen peroxide solvate (CCDC 1874657) [66], Table S1:
Refcodes of the analyzed peroxosolates, Figure S3: Low-frequency Raman spectrum of crystalline
[NFA+H2O]. Experiment vs. PBE-D3/6-31G** computations, Figure S4: Schematic representation of
atom displacements of the two Raman intense vibrations (PBE-D3/6-31G**) of crystalline [NFA+H2O]
around 16 cm−1 (a); and 64 cm−1 (b). Figure S5: Low-frequency Raman spectrum of crystalline
[2AmNic+Mle+H2O]. Experiment vs. B3LYP/6-31G** computations, Figure S6: Schematic represen-
tation of atom displacements of the two Raman intense vibrations (B3LYP/6-31G**) of crystalline
[2AmNic+Mle+H2O] around 50 cm−1 (a); and 72 cm−1 (b), Figure S7: Raman spectrum of crystalline
[NFA+H2O2] in the 850–950 frequency region. Experiment vs. PBE-D3 computations, Figure S8:
Raman spectrum of crystalline [2AmNic+Mle+H2O2] in the 850–950 frequency region. Experiment
vs. PBE-D3 computations, Section S1: Details of the periodic DFT calculations, Table S2: Distances
between the atoms involved in the formation of intermolecular H-bonds in [2AmNic+Mle+H2O]
(1:1:1) and [2AmNic+Mle+H2O2] (1:1:1), R(O···N), R(O···O), and R(H···O) obtained using periodic
DFT computations (B3LYP/6-31G**) and the ∆HHB values evaluated using Equation (1), Table S3:
Distances between the atoms involved in the formation of intermolecular H-bonds in [NFA+H2O]
and [NFA+H2O2], R(O···N), R(O···O), and R(H···O) obtained using periodic DFT computations
(B3LYP/6-31G**) and the ∆HHB values, evaluated using Equation (1).
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