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Comprehending how the brain functions requires an understanding of the dynamics of

neuronal assemblies. Previous work used a mean-field reduction method to determine

the collective dynamics of a large heterogeneous network of uniformly and globally

coupled theta neurons, which are a canonical formulation of Type I neurons. However,

in modeling neuronal networks, it is unreasonable to assume that the coupling strength

between every pair of neurons is identical. The goal in the present work is to analytically

examine the collective macroscopic behavior of a network of theta neurons that is

more realistic in that it includes heterogeneity in the coupling strength as well as in

neuronal excitability. We consider the occurrence of dynamical structures that give

rise to complicated dynamics via bifurcations of macroscopic collective quantities,

concentrating on two biophysically relevant cases: (1) predominantly excitable neurons

with mostly excitatory connections, and (2) predominantly spiking neurons with inhibitory

connections. We find that increasing the synaptic diversity moves these dynamical

structures to distant extremes of parameter space, leaving simple collective equilibrium

states in the physiologically relevant region. We also study the node vs. focus nature

of stable macroscopic equilibrium solutions and discuss our results in the context of

recent literature.
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1. INTRODUCTION

In 1949, Hebb (1949) proposed that cell assemblies are the true functional unit of the nervous
system. The cerebral cortex contains networks of neuronal assemblies that comprise a large number
of interacting neurons (Harris, 2005; Sporns et al., 2005). Individual neuronal assemblies organize
via transient synchronization to generate collective behavior that is critical to communication
between the neuronal assemblies themselves. Furthermore, it has been suggested that this
synchronous neural activity, as well as average spatiotemporal firing patterns that emerge from
these populations, are important coding mechanisms (Harris, 2005).

In developing an analytical understanding of the behavior of large neuronal assemblies, it is
prohibitively challenging to use realistic models of actual neurons. To make progress, it is useful
to use a canonical model that can represent the general behavior of a whole class of neurons
(Izhikevich, 2000). A model can be considered canonical for a family of models if a continuous
change of variables can transform any instance of that family into the canonical model. Such
a model is advantageous due to its universality since any behavior exhibited by the canonical
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model informs the behavior of the entire family of neurons.
In approaching the characterization of neuronal populations
specifically, the use of a canonical model is beneficial in that it
may be amenable to a complete analytical treatment.

Physiologically, excitable neurons are typically classified into
two types (Hodgkin, 1948; Izhikevich, 2007). Here, we are
concerned with Type I neurons, which represent a category
that includes cortical excitatory pyramidal neurons that generate
action potentials at an arbitrarily low rate when a sufficiently
large input stimulus is applied. Ermentrout and Kopell derived
a one-dimensional neuronal model that includes a saddle-node
bifurcation on an invariant circle, or SNIC bifurcation, and
demonstrated that it is canonical for Type I neurons near the
firing threshold (Ermentrout and Kopell, 1986). We use this
model, also termed the theta neuron, to analyze the collective
dynamics of a large population of Type I neurons.

Instead of being concerned with the exact values of all
neuronal state variables in a large network of model neurons,
we look to classify the macroscopic or collective behaviors
that describe the activity of a population as a whole. Much
early work studied such collective behaviors in terms of mean
firing rates. Famously, the Wilson–Cowan equations consider
a homogeneous population of interconnected excitatory and
inhibitory neurons (Wilson and Cowan, 1972, 1973; Coombes,
2006). But, in recent years, many authors have employed the
groundbreaking techniques of Ott and Antonsen (2008, 2009),
which yield an understanding of the collective dynamics from
the asymptotic behavior of a low-dimensional set of reduced
equations for an appropriate set of macroscopic variables.

Luke et al. (2013) used these methods to analyze a network
of globally-coupled theta neurons (see also Luke et al., 2014; So
et al., 2014). These authors analytically obtained the asymptotic
dynamics of a Kuramoto-type order parameter that quantifies the
collective network dynamics. This work was later adapted to a
spatiotemporal context by Laing (2014, 2015) and used to make a
connection between the microscopic theta neuron steady states
and the corresponding mean-field firing-rate-based model. At
about the same time, similar work was pursued independently by
Pazó and Montbrió (2014) for pulse-coupled Winfree networks.
Then, Montbrió et al. (2015) used similar analytic techniques
to describe the collective dynamics of a population of quadratic
integrate-and-fire (QIF) neurons in terms of the network firing
rate and average membrane potential. It is important to note
that the theta neuron can be transformed into a QIF neuron
by an appropriate change of variable. Montbrió et al. (2015)
went further, linking networks of these neurons by identifying
a conformal mapping between the two macroscopic variables for
the QIF network (i.e., firing rate and mean membrane potential)
and the Kuramoto order parameter for the theta neuron system.

The current work builds directly on the results of Luke
et al. (2013), which included heterogeneity in the excitability
parameter of the theta neuron in order to model this obviously
significant feature of real neuronal ensembles. However, the
neurons were assumed to be linked together with a single value
of coupling strength. In the current work, we extend this analysis
to also include synaptic diversity, modeled as heterogeneity in the
coupling strength parameter. Our aim is to determine how this

additional and realistic feature of the network model affects the
macroscopic patterns produced by the population as a whole. We
note that in Appendix E1 of Montbrió et al. (2015), this situation
was also considered for QIF networks, and we comment on the
relationship of our work to theirs in section 4.

We also take interest in the nature of equilibrium solutions
of the macroscopic network variables. Luke et al. (2013) noted
that collective stable node and stable focus solutions exist, and
that their nature can be identified by observing the collective
network response to a perturbation (see their Figure 5), since
the relaxation back to a focus solution involves oscillatory
behavior in the macroscopic variable. Recently, di Volo and
Torcini (2018) (see also Bi et al., 2020) argued that collective
oscillations in balanced spiking inhibitory networks can arise
via this mechanism when driven by appropriate fluctuations.
They showed using a model based on Montbrió et al. (2015)
that the frequency of such collective oscillations match the
relaxation dynamics around a stable focus equilibrium. Thus
we are also interested in examining how introducing synaptic
diversity affects the node vs. focus nature of macroscopic
equilibrium solutions.

2. METHODS

2.1. Microscopic Formulation
The theta neuron model is a canonical representation of a Type-1
neuron (Ermentrout, 2008) and is given by

θ̇ = (1− cosθ)+ η(1+ cosθ),

where the phase angle θ characterizes the state of the neuron.
The neuron is considered to “spike,” or produce an action
potential, when θ crosses π while increasing. We call η the
“excitability parameter” and think of it as playing the role of a
fixed input current. If η < 0, then the model has a stable and
an unstable equilibrium which we call the resting state and the
threshold, respectively. In this situation, the neuron is excitable,
as a sufficiently large external stimulus could push the phase of
the neuron across the unstable equilibrium, where upon θ would
travel around the circle, pass θ = π and spike, and then approach
the stable equilibrium from the other side. As η increases, the
stable and unstable equilibria get closer together, merge in a SNIC
bifurcation at η = 0, and disappear. For η > 0, the neuron’s
dynamics is that of a limit cycle, representing a periodically
spiking neuron.

We consider a network of N theta neurons,

θ̇j = (1− cosθj)+ [ηj + Isyn,j](1+ cosθj), (1)

where j = 1, ...,N is the index of the j-th neuron. The theta
neurons are coupled together via a pulse-like synaptic current
Isyn,j given by

Isyn,j =
kj

N

N
∑

i=1

Pn(θi), (2)
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where Pn(θ) = an(1 − cosθ)n, n ∈ N, kj is the coupling strength,
and an is a normalization constant such that

∫ 2π

0
Pn(θ)dθ = 2π .

In this model, the parameters ηj, kj, and n represent biological
features. ηj determines either the degree to which neuron j is
excitable (for ηj < 0), or the frequency of regular spiking (for
ηj > 0). kj describes the strength of coupling between neuron j
and its presynaptic partners, and can be inhibitory (kj < 0) or
excitatory (kj > 0). The parameter n determines the shape of the
synaptic current. As n increases, the current pulse becomes more
sharply peaked. Throughout most of this paper, we set n = 2, but
we also consider n = 9 as noted.

To quantify the macroscopic collective behavior of
the network, we use the usual Kuramoto complex order
parameter z(t):

z(t) =
1

N

N
∑

j=1

eiθj .

This is the centroid of the phase distribution. Perfect phase
synchrony corresponds to |z| = 1, and partial phase synchrony
to 0 < |z| < 1. Note, however, that because the angular speed of
a spiking theta neuron is not uniform in θ , a population of such
neurons exhibits a degree of phase synchrony with |z| 6= 0 when
completely uncoupled.

Since neurons in real biological networks exhibit a range
of intrinsic excitabilities, the parameter ηj is typically different
for each neuron. New in this work, we also allow for diversity
in the coupling strengths kj. We model this by drawing these
parameters at random from two independent Cauchy–Lorentz
distribution functions gη(η) and gk(k) given by

gη(η) =
1

π

1η

(η − η0)2 + 12
η

, gk(k) =
1

π

1k

(k− k0)2 + 12
k

, (3)

where η0 and k0 are the centers of the distributions, and 1η

and 1k are their half-widths at half-maximum. The latter two
parameters describe the degree of heterogeneity in the excitability
parameter and the coupling strength, respectively. This particular
choice of distribution function permits analytical solutions.
Because the distribution has infinite support, the infinitely large
networks include both positive and negative η’s and k’s, meaning
that the network contains a mixture of excitable and spiking
neurons as well as inhibitory and excitatory connections. The
ratios of these depend on the values of η0 and k0, i.e., where the
distributions are centered.

2.2. Mean Field Reduction
We adopt a mean-field continuum description of our network
(Kuramoto, 1975, 1984) by considering the limit N → ∞ such
that the network is described by a probability density function
F(θ , η, k, t), where F(θ , η, k, t)dθdηdk gives the probability at
time t of finding an oscillator with phase in [θ , θ + dθ] and
parameters in [η, η + dη] and [k, k + dk]. The total number

of neurons is conserved and we assume that the marginal
probability distribution functions gη(η) and gk(k) are both time-
independent and independent of each other. Thus, F satisfies the
continuity equation,

∂F

∂t
+

∂

∂θ
(Fvθ ) = 0, (4)

where vθ represents the velocity of a neuron and is given by the
continuum version of the single neuron equation,

vθ = (1− cosθ)+

[

η + kan

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0
F(θ ′, η′, k′, t)

(1− cosθ ′)ndη′dk′dθ ′
]

(1+ cosθ). (5)

We also define the order parameter z(t) in the continuum limit,

z(t) ≡

∫ 2π

0
dθ

∫ ∞

−∞

dη

∫ ∞

−∞

dkF(θ , η, k, t)eiθ . (6)

This describes the collective behavior of the infinite network.
Ott and Antonsen showed that in the continuum limit,

the macroscopic behavior of Kuramoto-type populations of
globally coupled and heterogeneous phase oscillators displays
low-dimensional dynamics (Ott and Antonsen, 2008, 2009).
They adopted the ansatz that the probability density function
describing the network can be written as a Fourier expansion
in the phase variable whose coefficients are powers of a single
complex function. Using the continuity equation and a self-
consistency argument, they derived an equation that this complex
function must satisfy. Ultimately, with appropriate choices of
gη and gk (such as Equation 3), this procedure leads to a
low-dimensional ordinary differential equation (ODE) whose
asymptotic dynamics coincides with that of the order parameter
z(t) of the infinite discrete network. Thus, the asymptotic
collective dynamics of the infinite discrete network can be
obtained by solving that low-dimensional ODE instead of the
infinitely many coupled ODEs of the discrete network (i.e.,
Equation 1), or the partial differential equation that describes
the network in the continuum description (i.e., Equation 4).
Later, Marvel et al. (2009) showed that the Ott-Antonsen (OA)
approach applies more generally to other oscillator-type systems
for which the velocity field vθ can be written in “sinusoidally
coupled form,” i.e., vθ = feiθ + h+ f ∗e−iθ , where the dependence
on the individual oscillator’s phase occurs only through the first
harmonics eiθ and e−iθ .

These methods were applied to a globally-coupled population
of theta neurons with heterogeneity in the excitability parameter,
which can be written in the sinusoidally-coupled form described
above, by Luke et al. (2013). The result was a two-dimensional
(i.e., complex) ordinary differential equation for z(t) which
identifies the asymptotic collective dynamics of the infinite
discrete network. The equation admits three possible asymptotic
states: equilibrium solutions with either real (node) or complex-
conjugate (focus) eigenvalues, and limit cycles. The authors
confirmed by numerical simulation that the reduced model
accurately captures the collective behavior of discrete networks
of 10, 000 neurons.
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Note that there is considerable discussion in the literature
regarding the interesting question of the marginal stability of the
OA manifold and its relation to earlier work. See, for example,
Pikovsky and Rosenblum (2015), Mirollo (2012), Watanabe and
Strogatz (1994), Watanabe and Strogatz (1993), and Goldobin
and Dolmatova (2019), and for networks with parameter-
dependent oscillators, such as our theta neuron network, see
Pietras and Daffertshofer, 2016.

In the following, we follow the approach in Luke et al.
(2013), but include heterogeneity in the coupling strength k as
in Equation (3). We comment on the relationship between our
results and those in Appendix E1 of Montbrió et al. (2015) in
section 4.

2.3. Bifurcation Analysis Methods
In addition to constructing standard one-dimensional
bifurcation diagrams, we employ the following less-common
approach to bifurcation analysis (Luke et al., 2013). With
z(t) = x(t) + iy(t) and fixed values of n and 1k, we think of the
conditions for an equilibrium solution (xe, ye),

ẋ(t) = f (n,1k; xe, ye, η0,1η, k0) = 0

ẏ(t) = g(n,1k; xe, ye, η0,1η, k0) = 0, (7)

as being two constraints on the five independent variables xe,
ye, η0, 1η, and k0. A saddle-node bifurcation occurs when one
of the eigenvalues of the Jacobian J of the equations of motion
(Equations 7) is zero. Thus, it is sufficient to require

det[J(xe, ye, η0,1η, k0)] = 0. (8)

With this equation, we have three constraints on five variables,
thus defining two-dimensional surfaces. We manipulate these
equations to find expressions for η0, 1η , and k0, each in terms of
xe and ye. This then allows us to parametrically plot the saddle-
node bifurcation surfaces in the three-dimensional parameter
space (η0,1η, k0) by scanning over (xe, ye). In other words, we
construct plots of two-dimensional surfaces in the parameter
space (η0,1η, k0) such that points on these surfaces correspond
to parameter values at which an (unspecified) equilibrium
undergoes a saddle-node bifurcation.

Since our reduced system is two-dimensional, surfaces of
Hopf bifurcations can be obtained in the same way by replacing
Equation (8) with

tr[J(xe, ye, η0,1η, k0,1k)] = 0 (9)

subject to

det[J(xe, ye, η0,1η , k0,1k)] > 0. (10)

Finally, surfaces corresponding to node-focus (NF) transitions
can be obtained, for two-dimensional systems, using
the condition

tr[J]2 − 4det[J] = 0. (11)

In the following, we examine how the saddle-node, Hopf, and
node-focus transition surfaces evolve as 1k changes.

2.4. Computational Methods
One-dimensional bifurcation diagrams of the reduced equations
were calculated using XPPAUT (Ermentrout, 2002), and three-
dimensional diagrams were generated with custom-made code
using the ParametricPlot3D function in Mathematica Version
12.0 (Wolfram Research, 2019). In addition, simulations of the
discrete network were carried out to confirm the validity of our
results, but are not reported here.

3. RESULTS

3.1. The Reduced System
To derive the reduced dynamical system for our network, we
follow the methods of Ott and Antonsen (2008, 2009), Marvel
et al. (2009), and Luke et al. (2013), but include heterogeneity in
the coupling strength according to Equation (3). We sketch the
procedure here.

We first write the velocity equation in sinusoidally coupled
form, vθ = feiθ + h+ f ∗e−iθ , with

f = −
1

2
[(1− η)− kH(z, n)]

h = (1+ η + kH(z, n)),

(12)

where H(z, n) is the rescaled synaptic current (Luke et al., 2013)

H(z, n) = an(A0 +

n
∑

q=1

Aq(z
q + z∗q))

Aq =

n
∑

j,m=0

δj−2m,qQjm

Qjm =
(−1)j−2mn!

2jm!(n− j)!(j−m)!
.

Next we adopt the OA ansatz that the solution to the continuity
equation, F, can be written as a Fourier series,

F(θ , η, k, t) =
g(η, k)

2π







1+

∞
∑

q=1

(

α∗(η, k, t)qeiqθ + α(η, k, t)qe−iqθ
)







,

(13)
where g(η, k) = gη(η) ∗ gk(k) is the joint probability distribution
for the two independent random variables. At this point, the
complex function α(η, k, t) is yet to be determined. This manifold
is invariant if and only if |α(η, k, t)| < 1 and α satisfies

α̇ = i(fα2 + hα + f ∗). (14)

Substituting Equation (13) into Equation (6) [which defines the
order parameter z(t)] then gives

z(t) =

∫ ∞

−∞

∫ ∞

−∞

α(η, k, t)g(η, k)dηdk,

which can be evaluated using analytic continuation and the
residue theorem, resulting in

z(t) = α(η0 + i1η, k0 + i1k, t). (15)
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FIGURE 1 | Case 1: One-dimensional bifurcation diagrams showing y = Im(z) vs. the parameter k0, which is the center of the coupling strength distribution. The

panels show the diagrams for increasing values of 1k , the width of the coupling strength distribution. Stable (unstable) equilibria are represented by solid (dotted) lines,

and are nodes or foci as indicated. Open diamonds are node-focus transitions. For 1k = 0.0, two saddle-node bifurcations are seen (solid black circles). These merge

and disappear as 1k increases, but the node-focus transitions remain. The other parameters are η0 = −0.3, 1η = 0.08, and n = 2.

Substituting Equations (12) for f and h into Equation (14),
combining with Equation (15), and evaluating at the residue, the
reduced dynamical system is obtained:

ż = −i
(z − 1)2

2
+

(z + 1)2

2

[

−
(

1η + 1kH(z, n)
)

+i
(

η0 + k0H(z, n)
)]

. (16)

This result is similar to the result in Luke et al. (2013), but
the incorporation of heterogeneity in the parameter k adds the
relatively simple extra term that involves 1k. We numerically
verified that predictions obtained with Equation (16) match
the asymptotic collective behavior exhibited by a large discrete
network of theta neurons. In fact, we find that the predictions
from the reduced system are quite valid for networks with as few
as 10, 000 neurons (see also Luke et al., 2013). Note that we only
consider solutions to Equation (16) with |z| ≤ 1.

3.2. The Effects of Synaptic Diversity
As the title suggests, our main result is that increasing the
synaptic diversity by increasing the parameter 1k, which is the
width of the coupling strength distribution given in Equation (3),
reduces the complexity of the collective dynamics of the network.
We illustrate this result by using Equation (16) to construct
series of one-dimensional bifurcation diagrams with increasing
1k. We then provide a more comprehensive perspective by using
sequences of three-dimensional bifurcation diagrams.

Luke et al. (2013) argued that typically, interesting dynamics
happen—by which we mean the occurrence of bifurcations of
macroscopic quantities—when there is a competition between
the intrinsic dynamics of individual neurons and the synaptic
input. Thus, we concentrate attention on two generic cases. In
our Case 1, we consider the situation in which most neurons are
excitable (η0 < 0) and are coupled by mostly excitatory synapses
(k0 > 0). Case 2 considers predominantly spiking neurons (η0 >

0) with mostly inhibitory coupling (k0 < 0). We keep n = 2 until
the end, where we check the effects of setting n = 9.

3.2.1. One-Dimensional Bifurcation Diagrams
We begin by considering Case 1 (excitable neurons with
excitatory coupling). Figure 1 (left) shows a bifurcation diagram

of y = Im(z) vs. the parameter k0 for 1k = 0, i.e., no
diversity in the coupling strength between neurons. The solid
lines represent stable equilibria. Equilibria on the lower branch
are nodes, and most of the upper branch are foci. The dotted
line indicates unstable equilibria, and the solid circles are saddle-
node bifurcations. The stable node that emerges from the upper
saddle-node bifurcation almost immediately transitions into a
stable focus at the location marked with an open diamond (NF).
(Observe also that there is another node-focus transition near
k0 = 0.0.) Thus, throughout this range of k0, the collective
dynamics of the network is attracted to an equilibrium state.
Interestingly, however, there is an interval of k0 for which
different equilibrium states coexist.

The middle and right panels of Figure 1 show the same
diagram but for 1k = 0.1 and 0.2, respectively. We see
the saddle-node points merge and disappear, thus removing
the interval of multistability from these diagrams (with other
parameters fixed). In this sense, introducing synaptic diversity
removes an interesting dynamical feature from the network’s
behavior. Below we examine if this is true more globally. Note,
however, that the node-focus transition points remain.

Figure 2 illustrates the more complicated situation that arises
in Case 2 (spiking neurons with inhibitory coupling). Here, the
upper left panel shows the one-dimensional bifurcation diagram
of x = Re(z) vs. η0 for 1k = 0 (no coupling strength
diversity). We see a structure of lines representing stable and
unstable equilibria (nodes and foci as indicated) with saddle-
node bifurcations and a node-focus transition, which is very
similar to that in Figure 1. In addition, however, there is a
supercritical Hopf bifurcation depicted by the open circle, along
with the limit cycle that emerges from it as η0 decreases. This
attracting limit cycle indicates that the network can exhibit
collective time-dependent behavior with a degree of phase
synchrony that oscillates in time. In the diagram, the red lines
are the maximum and minimum values of x on this limit cycle.
At its largest extent, the limit cycle collides with an unstable
equilibrium in a homoclinic bifurcation. Note also that there is
again an interval of multistability. In this case, the lower stable
equilibrium (node) coexists with either the limit cycle or the
upper equilibrium (focus), depending on η0.
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FIGURE 2 | Case 2: One-dimensional bifurcation diagrams showing x = Re(z) vs. the parameter η0. The panels show the diagram for increasing values of 1k , the

width of the coupling strength distribution. Stable (unstable) equilibria are represented by solid (dotted) black lines, and are nodes or foci as indicated. Open diamonds

are node-focus transitions. The maximal and minimal values of x on stable limit cycles are represented by the red lines. Solid black circles are saddle-node

bifurcations, and open circles are Hopf bifurcations. As 1k increases, the various bifurcations merge and disappear, but the node-focus transition remains. The other

parameters are k0 = −9.0, 1η = 0.5, and n = 2.

The subsequent panels show the same diagram but for
increasing values of the coupling strength diversity parameter1k

as indicated. Again, we see that the various bifurcation points
approach each other as1k increases. An interesting phenomenon
is how the homoclinic point approaches the upper saddle-node
bifurcation. By 1k = 1.3, it has disappeared, and a new Hopf
bifurcation is seen on the upper branch (this sequence of events
indicates that we are near a Bagdanov–Takens point, where the
saddle-node, homoclinic, and left Hopf bifurcation coincide).

The limit cycle now forms a loop linking the two Hopf points—
see the magnified view in the inset.

As before, we observe that all these complexities merge
and annihilate as 1k increases further. The two Hopf
points coalesce, eliminating the limit cycle and the unstable
equilibrium sandwiched between them. Subsequently the two
remaining saddle-node points merge and disappear. Thus
we see again that introducing synaptic diversity diminishes
the dynamical repertoire of the network (at least when
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FIGURE 3 | Case 1: Plots of the saddle-node surface (top) and the node-focus surface (bottom) for 1k = 0.0 (left), 0.1 (middle), and 0.2 (right), with n = 2. The black

lines correspond to η0 = −0.3 and 1η = 0.08, and show the path traversed along k0 in the bifurcation diagrams shown in Figure 1. Equilibria along the lines are

labeled node or focus; see the discussion in the text. In the upper sequence, a hidden node-focus transition (open diamond) emerges in the right panel.

holding other parameters fixed). But, as before, the node-focus
transition persists.

3.2.2. Three-Dimensional Bifurcation Diagrams
A reasonable question is whether or not this
“decomplexification” by increasing synaptic diversity is
something that happens locally in a particular region of
parameter space, or if it is a more global phenomenon. We
address this by showing three-dimensional bifurcation diagrams
that incorporate the structures shown in Figures 1 and 2.

For example, the upper panels in Figure 3 show a more
general view of Case 1. The top left panel shows a locus of saddle-
node points embedded in the (η0,1η, k0) parameter space for
1k = 0. This appears as a V-shaped folded sheet with a sharp
crease. The black line corresponds to η0 = −0.3 and 1η =

0.08 and is the path traversed along k0 in the one-dimensional
bifurcation diagram shown in Figure 1 (left). Node and focus
equilibria along the black line are as indicated. This black line can
be seen to intersect the saddle-node surfaces in two points; these
are the same two saddle-node points shown in Figure 1 (left). The
remaining upper panels of Figure 3match those of Figure 1, and
one can see that by increasing1k, the saddle-node surface moves
to the left (i.e, toward more negative η0 and smaller 1η). In so
doing, the creased fold in the surface approaches the fixed black
line and then moves beyond it, so that the intersection points

merge and then disappear. In the right panel, there is no longer
any intersection.

Recall that in Figure 1, a node-focus point occurs very close
to the upper saddle-node bifurcation. In the perspectives shown
in the upper left and middle panels of Figure 3, this point is not
visible, but it emerges in the right panel for 1k = 0.2.

The lower panels in Figure 3 show the node-focus surface for
the same situation, but rotated to better show the folded shape.
The diamonds show where the black line intersects this surface,
and are the same diamonds that mark the NF transitions on the
black lines in the upper panels. Within the region of parameter
space shown, one generally finds a single attracting focus above
(higher k0) the NF surface, and an attracting node within the fold.
However, multistability can occur.

For Case 2, a similar sequence of events can be seen in
the upper three panels of Figure 4. These show the saddle-
node surfaces corresponding to the 1k = 0.0, 1.3, and 1.7
panels of Figure 2. Here, the black line is fixed at k0 = −0.9
and 1η = 0.5, representing the path traversed along η0 in
the one-dimensional bifurcation diagrams of Figure 2. Again
we see a folded and creased saddle-node surface that migrates
toward the unphysical negative 1η region with increasing
1k until it no longer intersects the black line. Note that in
the right panel, the view has been rotated to show the lack
of intersection.
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FIGURE 4 | Case 2: Plots of the saddle-node surface (top), the node-focus surface (middle), and the Hopf surface (bottom) for 1k = 0.0 (left), 1.3 (middle), and 1.7

(right), with n = 2. The black line corresponds to k0 = −9.0 and 1η = 0.5, and is the path traversed along η0 in the bifurcation diagrams shown in Figure 2. Open

diamonds are node-focus transitions. The views in the upper and middle right panels have been rotated for clarity. In particular, the black line does not intersect the SN

surface for 1k = 1.7. The view in the lower panels is also rotated to better show the structure.

The middle panels show the node-focus surface. As 1k

increases, the surface lowers and twists, but remains present. The
larger structure, of which we only see limited portions here, is
difficult to discern from these images. Below we examine a more
comprehensive view.

The lower panels of Figure 4 show the corresponding Hopf
surfaces. The view has been rotated to give an easier-to-
understand perspective. In the left panel, this surface resembles a
high-heeled shoe, and we see a single intersection with the black
line. This intersection point is the sameHopf bifurcation denoted
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FIGURE 5 | Magnified view of the Hopf surface shown in the lower middle

panel of Figure 4, for 1k = 1.3, showing two intersections.

with the open circle in Figure 2 for 1k = 0. As 1k increases, the
“shoe” migrates into the unphysical negative-1η region, leaving
the black line without intersections. Note that the NF transition
point, hidden behind the surface in the left panel, emerges in the
middle and right panels.

Recall that for 1k = 1.3, we saw the interesting structure
with the two Hopf bifurcation points in Figure 2. This case
corresponds to the lower middle panel of Figure 4. Since it
is hard to see, we present in Figure 5 a magnification of the
region where the black line intersects the surface. We see that
the Hopf surface has a gentle curl at the edge such that as
the surface migrates away, the approaching curl gives rise to a
second intersection point before the surface goes away entirely.
In fact, the lower edge of the Hopf surface seen here is a line of
Bagdanov–Takens bifurcations.

To complete the story, we show in Figures 6, 7, and 9 views of
the saddle-node, Hopf, and node-focus surfaces with the ranges
of η0, k0, and 1k greatly expanded. For visual clarity, we did not
expand the 1η range, but our conclusions still hold. Recall also
that 1η is the half-width at half-maximum of the distribution gη
in Equation (3). Therefore, negative values of this parameter are
not considered.

In Figure 6, we see that the saddle-node surfaces are actually
two V-shaped sharply-creased sheets corresponding our two
cases. One surface occurs in the negative-η0/positive-k0 region,
matching Case 1 (excitable neurons coupled with excitation), and
the other occurs in the positive-η0/negative-k0 region, matching
Case 2 (spiking neurons coupled with inhibition). Note also
that the edges of the creased folds bend away toward ±η0 as
1η increases. As 1k increases, the two folded sheets migrate
away from each other until essentially nothing is left within the
view shown.

In contrast, we see in Figure 7 that there is only one
Hopf surface. It resides entirely within the Case 2 region
(positive-η0/negative-k0). There is no corresponding Hopf
surface in the Case 1 region (negative-η0/positive-k0).

The gray curved line in the top-left panel of Figure 7 is
the boundary between the subcritical and supercritical Hopf
bifurcations. The supercritical versions occur on the side with
larger values of η0. In all the other panels, only supercritical
bifurcations are found. The black lines correspond to paths used
to calculate the one-dimensional bifurcation diagrams shown in
Figure 8. This latter figure shows the periodic orbits that emerge
from the Hopf bifurcations. On the left we see a subcritical
bifurcation, where the dotted blue line denotes an unstable
periodic orbit. Note that as this unstable orbit grows with
increasing k0, it collides with a stable periodic orbit (red line)
at a saddle-node-of-periodic-orbits bifurcation (triangle). From
this point, the stable orbit grows with decreasing k0 until it
collides with the lower unstable equilibrium and disappears in
a homoclinic bifurcation. The right panel shows a supercritical
Hopf bifurcation, with a stable periodic orbit (red) emerging
and growing with decreasing k0 until it too disappears in a
homoclinic bifurcation.

Returning to themore comprehensive view of Figure 7, we see
that as 1k increases, the surface disappears into the unphysical
negative 1η region. Thus, increasing the synaptic diversity also
removes the Hopf bifurcation structure such that by 1k = 3.0,
essentially nothing is left within the view shown. Interestingly, we
find that subcritical Hopf bifurcations only occur for small values
of 1k, i.e., little synaptic strength diversity. For example, the
subcritical Hopf bifurcation shown in Figure 8 (left) for1k = 0.0
remains subcritical as1k increases to 0.114, where it merges with
the saddle-node-of-periodic-orbits bifurcation at a Bautin point.
Increasing 1k further, the bifurcation becomes supercritical, and
goes on to follow a scenario similar to that shown in Figure 2,
until it disappears at 1k = 0.864.

Finally, we show the node-focus transition surfaces as 1k

increases in Figure 9. The structure looks complicated for 1k =

0.0, but its overall shape becomes clear as 1k increases and its
various components separate. The surfaces occur in two pieces.
There is a folded-over sheet in the Case 1 region of excitable
neurons (η0 < 0) with excitation (k0 > 0), and another sheet
that covers the entire η0-1η region shown and which, for 1k =

0.0, dips sharply down toward negative k0 in the Case 2 region
(η0 > 0 and k0 < 0; spiking neurons with inhibition). As 1k

increases, two things happen: the folded sheet in the Case 1 region
migrates away toward the negative-η0 direction, and the other
sheet flattens out (i.e., occurs within a more restricted range of k0
within the view shown).

To understand the nature of the equilibrium solutions that
correspond to this region of parameter space, we identified and
followed the equilibria along the black lines seen in the upper
right panel of Figure 9. Generally, for parameters corresponding
to the region above (meaning higher values of k0) the surfaces
shown, there exists a single stable focus equilibrium (recall that
we restrict attention to solutions with |z| ≤ 1). For the line
with positive η0, the NF surface is crossed only once as k0
decreases, and below it we find a stable node. For the line with
negative η0, there are three surface crossings as k0 decreases. We
observe the following sequence of equilibria: Stable focus, stable
node (within the folded upper surface), stable focus (between
the folded surface and the lower sheet), and stable node (below
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FIGURE 6 | The saddle-node surfaces disappear from view as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right).

the lower sheet). The same scenarios were observed along lines
shifted to1η = 0.5, and for the different values of1k of the other
panels (not shown). Note, however, that in some cases saddle-
node bifurcations create other coexisting equilibria—compare
Figure 6—so it is not entirely clear from Figure 9 alone which
equilibrium transitions as the NF surface is crossed. (One may
resolve this issue with one-dimensional bifurcation diagrams
such as those in Figures 1 and 2.) However, as we have seen, the
other bifurcation surfaces leave this region of parameter space as
1k increases, and the situation becomes simpler.

It is interesting to compare our two cases in this context. In
the Case 1 region, the folded sheet introduces more node-focus
transitions. And as the synaptic diversity1k increases, this folded
surface moves away toward negative η0, thus leading to reduced
complexity within the view shown. However, the lower sheet
persists, and covers the entire η0-1η plane. It shifts to be within
a more restricted interval of k0 (i.e., it flattens), but it remains.

Finally, we consider the effect of changing n = 2 to n =

9 in Equation (2), which results in a much narrower synaptic
pulse. Figure 10 shows (top to bottom) the saddle-node, Hopf,
and node-focus surfaces for increasing values of 1k (right to
left). In general, the surfaces are very similar to those shown
in Figures 6, 7, and 9. The most obvious difference is in the
Hopf surface for 1k = 0.0. Comparing this panel to the upper
right panel in Figure 7, we see that the downward spike seen
for n = 2 opens up, becomes wider, and moves toward more
negative values of k0 for n = 9. A more subtle observation is
that the migration of the surfaces in all the panels seems to occur
slightly slower with respect to 1k. By this we mean that for equal
surface migration, the n = 9 case may require a slightly higher
value of 1k than for the n = 2 case. Overall, however, we see
qualitative agreement with our results for n = 2. Specifically, our
observation that increasing the synaptic strength diversity causes
the various surfaces to migrate toward regions of the parameter
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FIGURE 7 | The Hopf surfaces disappear from view as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right). The gray

line on the surface in the top left panel marks the boundary between sub- and super-critical Hopf bifurcations, and the black lines correspond to paths taken to create

the one-dimensional bifurcation diagrams shown in Figure 8. Super-critical bifurcations occur on the side with larger η0, and in all the other panels.

space with larger and/or non-physical values of the parameters is
consistent with the n = 9 results shown in Figure 10.

4. DISCUSSION

We constructed a large network of theta neurons that included
diversity in the excitability parameters as well as connections
with diversity in their coupling strengths. Our aim was to
examine the effects of adding this synaptic diversity. Extending
previous work in Luke et al. (2013), we applied the OA reduction
technique to derive a surprisingly simple ordinary differential
equation that we used to identify the asymptotic behavior of
the order parameter, which quantifies the macroscopic collective
behavior of the network. Setting the synaptic diversity to zero,

we constructed one-dimensional bifurcation diagrams and found
dynamical structures that underlie the repertoire of collective
behaviors that the network exhibits: equilibrium states—both
nodes and foci—corresponding to states of partial synchrony
of the network, limit-cycle states of temporally-evolving partial
synchrony, saddle-node, Hopf, and homoclinic bifurcations,
node-focus transitions, and different versions of multistability
(Luke et al., 2013). We then increased the synaptic diversity and
found that these rich dynamical structures migrated away toward
unphysical and/or extreme regions of parameter space, except for
one portion of the node-focus transition surface.

It is interesting to note that Ott and Antonsen’s analysis
revealed how the potentially high-dimensional behavior of a
population of phase oscillators collapses onto a low-dimensional
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FIGURE 8 | One-dimensional bifurcation diagrams showing x = Re(z) vs. k0 illustrating subcritical (left) and supercritical (right) Hopf bifurcations (open circles). The

insets are magnifications. These diagrams correspond to paths along the black lines in the top left panel of Figure 7. Here, black solid (dotted) lines are stable

(unstable) equilibria, red (dotted blue) lines indicate stable (unstable) limit cycles, solid circles are saddle-node bifurcations, and triangles are

saddle-node-of-periodic-orbits bifurcations. The other parameters are 1k = 0.0, n = 2, 1η = 0.4, and η0 = 6.0 (left) and 11.0 (right).

“OA manifold” defined by their ansatz (Equation 13) (Ott
and Antonsen, 2008). But this does not happen in networks
of identical phase oscillators. In fact, the OA manifold is
only attracting when the oscillator population is heterogeneous
(Ott and Antonsen, 2009; see also Pietras and Daffertshofer,
2016, which addresses this issue for systems such as our theta
neuron network). Indeed, it becomes more attracting with
increasing parameter heterogeneity. Accordingly, we found that
incorporating an additional dimension of diversity into our
network resulted in even simpler behavior than we already had.

Our sequences of one- and three-dimensional bifurcation
diagrams allow us to interpret this somewhat abstract description
of the complexity collapse within the more concrete context of
our specific network, and draw inferences in biophysical terms.
Dynamical complexity arises from macroscopic bifurcations,
which require the right mix of parameters such that different
dynamical tendencies compete against each other (Luke et al.,
2013). We grossly categorized these into two cases: Case 1
corresponds to predominantly resting but excitable neurons
connected mostly by excitation, and Case 2 corresponds to
predominantly spiking neurons connected mostly by inhibition
(the qualifying adjectives are necessary because the Cauchy–
Lorentz distribution has infinite support). These scenarios have
been studied for decades; for a small sampling, see, e.g.,
(VanVreeswijk et al., 1994; Hansel et al., 1995; Brunel andHakim,
2008), and some recent works (Devalle et al., 2017; di Volo and
Torcini, 2018; Bi et al., 2020) that have investigated mechanisms
for the emergence of collective oscillations in Case 2, as we
discuss below. Note that our two cases suffice: parameter space
regions corresponding to other mixtures of parameters were less
interesting in that they did not contain bifurcations.

With 1k = 0, we see from the first panels in Figures 1,
2, and 6 that saddle-node bifurcations, unstable equilibria, and
multistability between different equilibria occur in both Cases 1
and 2. In addition, the region inside the V-shape of the folded
saddle-node surfaces, where multistability occurs, is wider if 1η

is smaller, meaning that in both cases, a narrower distribution

of neuronal excitability favors multistability. Most importantly,
adding diversity by increasing 1k causes the two saddle-node
surfaces to move away from each other, deeper into their own
regions. That is, the Case 1 surface moves toward negative η0 and
positive k0, and the Case 2 surface moves toward positive η0 and
negative k0. In both cases, they also move toward the unphysical
region of negative 1η . This migration is quite significant: within
the parameter space shown in Figure 6 (i.e., η0 ∈ [−30, 30], k0 ∈
[−40, 40],1η ∈ [0, 3]), only a tiny sliver of the Case 2 saddle-
node surface remains for 1k = 3.0. This suggests that the Case 1
surface moves away more quickly with respect to 1k. Indeed, for
1k = 6.0, to see only small slivers of both surfaces requires the
much larger and asymmetric parameter space region defined by
η0 ∈ [−200, 100], k0 ∈ [−60, 120], and 1η ∈ [0, 3] (not shown).
All this means that with substantial synaptic diversity, complexity
in the sense of finding saddle-node bifurcations requires very
carefully tuned parameters at extreme values.

Similarly, we see in Figure 7 that Hopf bifurcations occur only
in Case 2, i.e., with predominantly spiking neurons (η0 > 0)
and inhibitory synapses (k0 < 0), as is generally well-known
(Van Vreeswijk et al., 1994; Hansel et al., 1995; Ermentrout,
1996; Brunel and Hakim, 2008; Devalle et al., 2017). We also
find that Hopf bifurcations occur preferentially for more uniform
networks (1η small). In our theta neuron network, the vast
majority of these are of the super-critical variety, but sub-
critical bifurcations do occur in a small region of parameter
space corresponding to weakly active neurons (small η0) and
little synaptic diversity (small 1k). And again, we see that with
increasing synaptic diversity, the Hopf surface moves away such
that this bifurcation requires more removed (η0 ≫ 0) and
narrower (1η & 0) distributions of the excitability parameter,
as well as stronger inhibitory coupling (k0 ≪ 0).

Hopf bifurcations are currently of particular interest as
they give rise to periodic orbits that are thought to underlie
the emergence of fast gamma oscillations in inhibitory QIF
networks, as has been recently investigated (Devalle et al., 2017;
Bi et al., 2020). Interestingly, Bi et al. (2020) considered QIF
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FIGURE 9 | The node-focus surfaces as 1k increases. n = 2 and 1k = 0.0 (top left), 1.0 (top right), 2.0 (lower left), and 3.0 (lower right). Along the black lines in

the upper right panels, we find a stable focus for k0 above the surfaces, and a stable node below; see the discussion in the text.

networks with diversity in the synaptic strengths but not in the
neurons’ excitabilities, and found both sub- and supercritical
Hopf bifurcations. In contrast, Devalle et al. (2017) considered
QIF networks with diversity in the neurons’ excitabilities but
not in the synaptic strengths, and found only super-critical Hopf
bifurcations. Recalling the equivalence between the QIF neuron
and the theta neuron, it is interesting that in our theta neuron
network, which includes both kinds of diversity, we find both
kinds of Hopf bifurcations. However, as noted above, the sub-
critical ones occur only in a small region of parameter space and
with little synaptic diversity. Also interestingly, none of the works
cited above report the termination of a limit cycle via homoclinic
bifurcation, as we do.

But there is another important difference between the
QIF models cited above and our theta neuron network that
complicates the question: the synaptic connections are modeled
differently. Montbrió et al. (2015) and di Volo and Torcini

(2018) used delta-function pulses and included excitability but
not synaptic diversity, and did not find Hopf bifurcations1.
Bi et al. (2020) included exponentially-decaying post-synaptic
currents with a non-zero time constant τ . They found both
sub- and super-critical Hopf bifurcations. Devalle et al. (2017)
included excitability but not synaptic diversity, and found that
supercritical Hopf bifurcations only occur with τ within a finite
range greater than zero, and that sub-critical Hopf bifurcations
do not occur at all. In contrast to these works, we included
both excitability and synaptic diversity, and we modeled our
synapse by the pulse in Equation (2) with n = 2 (or 9).
Since this is a wide pulse, we effectively have a non-zero
synaptic time constant, but note that unlike (Devalle et al.,
2017; Bi et al., 2020), we do not have an additional equation

1Montbrió et al. (2015) included synaptic diversity in their Appendix E1, but did

not consider inhibitory coupling, necessary for Hopf bifurcations.
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FIGURE 10 | The surfaces for n = 9, for which the synaptic pulse (Equation 2) is much narrower. (Top) The saddle-node surfaces for 1k = 0.0, 1.0, 2.0. (Middle) The

Hopf surfaces for 1k = 0.0, 1.0, 2.0. (Bottom) The node-focus surfaces for 1k = 0.0, 3.0, 5.0 (values chosen for visual clarity).

governing our synaptic dynamics. Thus our network is different
from any of the ones considered above. We found both sub-
and super-critical Hopf bifurcations, but our subcritical ones
required low excitability diversity (i.e., small 1η). All of this
might suggest that in addition to the requirement for a non-
zero synaptic time constant, diversity in excitability might favor
the occurrence of supercritical Hopf bifurcations, and synaptic
diversity might favor subcritical Hopf bifurcations. But this is not
clear, since in our case, the subcritical variety only occurred with

small amounts of synaptic diversity. Furthermore, O’Keeffe and
Strogatz (2016) studied a mixed system of excitable and active
oscillators analogous to our theta neurons, and compared the
effects of using a broad pulse vs. a delta-function pulse for the
coupling. They found only subcritical Hopf bifurcations for the
broad pulse coupling, and only supercritical Hopf bifurcations
for the delta-function coupling.

It would be interesting to examine the limit n → ∞, for
which our pulse approaches a delta function. Given the results
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in Devalle et al. (2017), we might expect the Hopf bifurcation
surface to disappear in this limit. Our results for the Hopf surface
with n = 9 (a narrower pulse), shown in the middle row of
Figure 10, perhaps hints at this. Compared to the n = 2 case,
the Hopf surface for 1k = 0.0 has shifted toward more negative
values of k0 (stronger inhibitory coupling), especially for small
1η (narrower excitability distributions). Interestingly, however,
no such overall shift appears to occur for the saddle-node or
node-focus surfaces. In any case, a more complete study would
certainly be needed before drawing any confident conclusions.

di Volo and Torcini (2018) and Bi et al. (2020) identified
another mechanism that may give rise to slow gamma
oscillations, namely fluctuation-driven oscillations that circulate
around a stable focus. Since this mechanism does not work
with a node, this is relevant to our study of the node-focus
transition. This transition is not a true bifurcation in that it
does not involve changes in either the existence or stability of a
solution. Nevertheless, we identified the corresponding surfaces
in parameter space, and observed that, as the synaptic diversity is
increased, they behave both similarly and differently as compared
to surfaces of the true bifurcations discussed above. We found
(Figure 9) that in the parameter space corresponding to our
Case 1, there are essentially three NF surfaces that are crossed
as k0 changes—a folded upper surface with two intersections
and a lower surface—thus introducing complexity in the possible
network behavior. However, the upper (higher k0) folded sheet
migrates away toward extreme values of negative-η0 as synaptic
diversity increases. In contrast, the increased synaptic diversity
does not cause the lower NF surface, which occurs for negative
k0, to migrate away. It persists. For Case 2, only this lower NF
surface occurs. Furthermore, as 1k increases and the saddle-
node and Hopf surfaces move away, we find that the central
parameter space rather neatly splits into a region for which
a stable focus equilibrium exists for k0 larger than a critical
value (which depends increasingly weakly on η0 and 1η), and
a stable node exists for k0 more negative than this critical value.
This suggests that for non-extreme, physiologically “reasonable”
parameter sets and sufficiently large fluctuations, the occurrence
of fluctuation-driven collective network oscillations in networks
of theta neurons with significant diversity in the connection
weights depends quite simply on the value of the center of the
connection weight distribution.

It is important to note that in Appendix E1 of Montbrió
et al. (2015), the authors considered the same issue—the effect of
introducing synaptic diversity—that we examine here. There are
some differences in our formulations of the problem, however.
We constructed our network using theta neurons, and they
used quadratic integrate-and-fire neurons. This is not a major
difference because, as was noted previously, these systems are
related by a change of variable. Furthermore, we both used
independent Cauchy–Lorentz distributions for the excitability
parameters and synaptic strengths (i.e, Equation 3). A more
important difference lies in the synaptic models. Montbrió et al.
(2015) used delta function pulses, whereas we use the continuous
pulse of Equation (2) with n = 2 (or 9), which is wide
with respect to the state of the pre-synaptic neuron and is
always “on” (see also O’Keeffe and Strogatz, 2016, which used

a similar pulse). Also different are the macroscopic variables
used to describe the collective network dynamics: We used the
Kuramoto order parameter, and Montbrió et al. (2015) used the
more directly interpretable quantities of firing rate and mean
membrane potential. But we both found that the macroscopic
equations, when extended to the case with heterogeneous
coupling strengths, simply involves a single additional term
proportional to the width of the coupling strength distribution.

Montbrió et al. (2015) reported their results in their Figure
9, which shows a family of saddle-node bifurcation curves
parameterized by Ŵ/11/2 on a two-dimensional plot of their
rescaled parameters J̄/11/2 vs. η̄/1, where J̄ and η̄ are the center
values of their current and synaptic weight distributions, and
1 and Ŵ are their widths, respectively. The saddle-node curves
identify regions of bistability, and these are seen to shift toward
lower values of η̄/1 and higher values of J̄/11/2 as Ŵ/11/2

increases. We note that their graph is restricted to what is the
equivalent of our Case 1: mostly excitable neurons with mostly
excitatory connections (η̄/1 < 0 and J̄/11/2 > 0).

We see qualitatively equivalent behavior in our formulation:
a careful study of appropriate slices of the surfaces shown in
the upper panels of our Figure 3 reveals that our results are
consistent with those already published in Figure 9 of Montbrió
et al. (2015). However, we do not rescale our parameters as
they do, and this allows us to observe that the saddle-node
surfaces move toward extreme values of ±η0 and ±k0, and into
the unphysical negative-1η region, as we increase the synaptic
strength diversity 1k. We believe that it is appropriate to assume
that the parameters η0, k0, and 1η have a somewhat restricted
range of “reasonable” values. In this sense, our main result
can be taken to mean that with increasing synaptic diversity,
parameter values that correspond to interesting bifurcations of
macroscopic variables move toward extreme and “unreasonable”
regions of parameter space, and in this sense, are not likely to be
encountered under “reasonable” circumstances. This conclusion
is not evident in Figure 9 of Montbrió et al. (2015).

Furthermore, we adopt a more comprehensive view of the
parameter space as compared to Montbrió et al. (2015) that
includes our Case 2, i.e., networks of spiking neurons (η0 >

0) coupled by inhibition (k0 < 0), as well as the rest of
the parameter space. In addition, we also consider saddle-node
and Hopf bifurcations as well as the node-focus transition. See
Figures 6, 7, and 9, respectively. It is interesting to note that the
occurrence of saddle-node bifurcations are essentially restricted
to Cases 1 and 2, andHopf bifurcations just to Case 2, whereas the
“off-diagonal” regions do not contain any bifurcation structures.
We also observed that for small values of 1k, a folded surface
of node-focus transitions occurs within the “reasonable” Case 1
region of parameter space, thus adding an additional measure
of complexity which shifts away to “unreasonable” regions as
1k increases.

In a biological sense, a rich dynamical structure represents
the means by which the firing patterns of neural assemblies
in the brain can be dynamic and change states in response
to external stimuli. Such differences in macroscopic patterns
have been shown to strongly correlate with the function of
different brain regions (Shinomoto et al., 2009). At the same
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time, our findings are consistent with an in vitro study of
how intrinsic heterogeneity in the phase response curve (PRC)
characteristics of olfactory bulb mitral cells limits correlation-
induced synchronous neural oscillations (Burton et al., 2012).
See also the theoretical analysis of Pazó et al. (2019), which
finds that beyond a critical level of PRC heterogeneity,
the incoherent state—a simple equilibrium—is always stable.
These works, and our observations reported here, suggest that
evolution tunes the diversity of neuronal populations to achieve
an appropriate balance between dynamical complexity and
simplicity, depending on function.

Several avenues for future work suggest themselves. First,
the assumption of global coupling may or may not be
realistic, depending on the level of description that is desired.
Interestingly, however, our network formulation includes a kind
of sparsely-connected network in the case k0 = 0, in which
the majority of synaptic connections are very weak, regardless
of the chosen spread 1k. This observation was used explicitly
in di Volo and Torcini (2018) to relate collective oscillations
in a network with a Cauchy–Lorentz distribution of in-degrees
to the occurrence of a collective stable focus in the analogous
globally-coupled network of Montbrió et al. (2015). In our work,
we find in Figures 6, 7, and 9 that the k0 = 0 plane is the
very boundary between the regions of interesting and simple
dynamical structures. Second, our formulation allows a study
of the role of the synaptic sharpness parameter n, particularly
with respect to the occurrence of Hopf bifurcations, as described
above. Third, it would be interesting to examine in greater
depth the consequences of the different synapse models used
in our work and in the various QIF networks cited above.
Fourth, we assumed that the probability distributions gη and
gk were independent, largely for mathematical convenience.
However, fast-spiking neurons are typically inhibitory, and
regularly-spiking neurons are typically excitatory, suggesting
that it would be interesting to analyze our network with a
more complicated joint probability distribution g(η, k). Fifth,
Pazó and Montbrió (2014) applied the OA technique to study
pulse-coupled oscillators described by phase response curves, an
approach that makes it possible to study the role of synaptic
diversity in networks of Type II neurons (Pazó et al., 2019). Sixth,
previous work has shown that in populations of coupled excitable
systems subjected to an external periodic driving and/or noise,
a resonance effect can occur for an optimal degree of oscillator
diversity (Tessone et al., 2006, 2007). Thus, extending our

autonomous network to include these kinds of external inputs
might yield interesting insights about the interplay between
this resonance effect and our observation that diversity leads
to simpler dynamics. Finally, it would be interesting to allow
the coupling strength between particular neurons to evolve
dynamically based on activity, and to study the conditions on the
synaptic plasticity rule that lead to simple or complex dynamical
structures for the network’s behavior.

Understanding the brain requires studying models of
neuronal network dynamics with a balance between accurate
biological description and analytical tractability. Real biological
networks are typically studied by recording from several neurons
and studying correlations (Gerstein and Kirkland, 2001). On the

other hand, mathematical studies such as ours give a quantitative
understanding of the dynamical and behavioral repertoire of
what these networks can do, and suggest what to look for in
the laboratory.
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