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Abstract

Land degradation and soil erosion in the upper catchments of tropical lakes fringed by papy-

rus vegetation can result in a sediment load gradient from land to lakeward. Understanding

the dynamics of clonal modules (ramets and genets) and growth strategies of plants on

such a gradient in both space and time is critical for exploring a species adaptation and

processes regulating population structure and differentiation. We assessed the spatial and

temporal dynamics in clonal growth, diversity, and structure of an emergent macrophyte,

Cyperus papyrus (papyrus), in response to two contrasting sedimentation regimes by com-

bining morphological traits and genotype data using 20 microsatellite markers. A total of 636

ramets from six permanent plots (18 x 30 m) in three Ethiopian papyrus swamps, each with

discrete sedimentation regimes (high vs. low) were sampled for two years. We found that

ramets under the high sedimentation regime (HSR) were significantly clumped and denser

than the sparse and spreading ramets under the low sedimentation regime (LSR). The HSR

resulted in significantly different ramets with short culm height and girth diameter as com-

pared to the LSR. These results indicated that C. papyrus ameliorates the effect of sedimen-

tation by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). Clonal

richness, size, dominance, and clonal subrange differed significantly between sediment

regimes and studied time periods. Each swamp under HSR revealed a significantly high

clonal richness (R = 0.80) as compared to the LSR (R = 0.48). Such discrepancy in clonal

richness reflected the occurrence of initial and repeated seedling recruitment strategies as a

response to different sedimentation regimes. Overall, our spatial and short-term temporal

observations highlighted that HSR enhances clonal richness and decreases clonal sub-

range owing to repeated seedling recruitment and genets turnover.
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Introduction

Clonality is a widespread life history trait in angiosperms that maximizes plant fitness [1, 2]

and is significant for population persistence under a heterogeneous and stochastic environ-

ment [3, 4, 5]. However, the downside of persistent clonal reproduction is a complete loss of

recombination that could lead to extinction [6]. Although the reaction norm is species depen-

dent, clonal plants have developed different adaptive strategies to contrasting environmental

gradients [5, 6,7]. Shifting clonal growth strategy is an adaptive mechanism crucial for coloni-

zation, establishment, and distribution of clonal plants [6, 8, 9, 10]. The two clonal growth

strategies, guerrilla and phalanx, reveal endpoints of ramet arrangement in space [5, 11]. The

guerrilla strategy produces loosely organized spreading growth modules that enable plants to

escape adverse environmental conditions and competition [5, 11]. In contrast, the phalanx

strategy results in clumped ramets occupying suitable patches to use profuse resources [5, 12].

Under heterogeneous environments, ramets expand and produce intermingled distribution

among genets [13, 14]. Recent evidences show that the change in allele frequencies in response

to an environmental gradient acts as an indicator of the effect of selective processes that modu-

late population genetic structure [15, 16]. Similarly, the shift in clonal growth strategy and

genet frequencies may reflect how clonal plants are resilient to dynamic environmental factors

that finally lead to clonal structuring and genetic divergence. The dynamics of the ramets and

genets of clonal plants in both space and time is critical to explore species adaptation and pro-

cesses regulating population differentiation [14]. In addition to the clonal growth strategy,

clonal plants have the capacity to reproduce both sexually and vegetatively, and the balance

between these reproduction modes regulates how genets colonize space and recruitment [17].

Depending on the turnover of genets, two recruitment strategies have been known for clonal

plants [18]: (i) the ‘Initial Seedling Recruitment’ (ISR) strategy; and (ii) the ‘Repeated Seedling

Recruitment’ (RSR) strategy. Under the ISR strategy, the development of a population includes

selective elimination of genotypes, as a result the population ends up with a small number of

large and evenly aged clones. In contrast, RSR strategy enables survival of small clones of dif-

ferent age and size to coexist and leads to high genetic and clonal diversity within a population

[19]. Differential intensity between these recruitment strategies dictates clonal richness [19,

20] and contributes to patch growth, clone coexistence and evolution, and disturbance recov-

ery [18, 21]. Therefore, in examining the populations of a species occurring in different envi-

ronments, it is important to explore how each reproduction mode and recruitment strategy

contributes to genets distribution and dynamic.

Sedimentation affects plant growth and distribution in lacustrine wetlands by altering mois-

ture level, aeration, temperature and other factors of substrate-plant-microenvironment con-

ditions [22, 23]. Despite contradictory conclusions, a shift in clonal growth strategy (from

phalanx to guerrilla and vice versa) has been reported as an adaptive mechanism to sediment

burial by a few wetland and costal dune plants such as Suaeda salsa [24], Phalaris arundinacea
[25] and Carex brevicuspis [11]. Arnaud-Haond et al. [26] found no significant correlation

between sedimentation rate and plasticity of clonal traits in a seagrass but rather, with the

demographic parameter, mortality. More specifically, severe land degradation and soil erosion

in the upper catchment of tropical lakes bordered by Cyperus papyrus L. dominated vegetation

result in a sediment load gradient from land to lake ward [27]. Investigating the shift in clonal

growth strategy, exploring the genotypic diversity and structure metrics along such a sediment

gradient may shed light on the resilience of C. papyrus to sediment accretion and help to

forecast the evolutionary potential of a population [28]. A high level of genotypic diversity is

related to increased resistance [29] and resilience [30]. It is possible that the spatial variability

of sediment loads can create microenvironments that are significant for the persistence of
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multiple genotypes through seedling recruitment, and at the same time favor directional selec-

tion and increase genotypic diversity within a population [31].

Biologically productive papyrus swamps, dominated by the keystone species paper reed

(Cyperus papyrus L) have been widely recognized for their valuable regulatory and provisional

ecosystem services [32, 33, 34, 35, 36, 37, 38, 39]. More explicitly, these swamps control sedi-

ment load into the adjoining waterbodies [40, 41, 42]. Recent quantitative studies have shown

that catchments with disturbed papyrus swamps resulted in sediment yield three times greater

than those with pristine papyrus vegetation [43, 44]. Since most of the papyrus swamps are

threatened by anthropogenic pressures [27, 37], there is an imperative need for restoration

and management measures to reduce sediment accretion in adjacent lakes and wetlands, sup-

ported by serious study of the population dynamics and adaptive response of the dominant

and keystone species, C. papyrus. The effect of sedimentation on the growth, distribution and

diversity of clonal plants in coastal ecosystems is well known [7, 45, 46]. In contrast, to our

knowledge, there is less information on the effect of sedimentation on the responsive survival

strategy, i.e. dynamics in seedling recruitment strategy, clonal growth strategy, structure and

diversity of emergent macrophytes at the temporal and spatial scales.

In this study, we combined morphological traits and genotype data using 20 novel micro-

satellite markers to assess the spatial and temporal dynamics in clonal growth, diversity and

structure of the paper reed (C. papyrus), as a response to sedimentation regimes. We hypothe-

sized that a higher level of sedimentation would lead to: (1) increased occurrence of phalanx

strategy over guerrilla strategy; (2) increased ramet density and genet size; and (3) higher geno-

typic diversity through seedling recruitment. Our findings contribute to the understanding

of population dynamics, resilience and survival strategy of clonal plants, especially of the key-

stone species C. papyrus in the context of sedimentation. It will also provide an important

guideline for designing conservation and restoration plans of C. papyrus and protection of

lakes from over-sedimentation.

Materials and methods

Species description

The paper reed, Cyperus papyrus (Cyperaceae), is a perennial rhizomatous keystone emergent

species native to Africa that occurs particularly along freshwater lakes, rivers and stream mar-

gins. In the Lake Tana region, papyrus forms monocultures and co-occurs with other emer-

gent macrophytes, such as Typha latifolia, Polygonum senegalense, Phragmites australis, Vossia
cuspidata, Echinochloa stagnina and E. pyramidalis [47]. The species occupied the center of the

lake and its basin between 16,700 and 15,100 BP following an intermittent flooding event after

draw down [48]. The species produces inter-meshed horizontal rhizomes that shield the lake

and adjacent wetlands from over-sedimentation and pollutants [40]. Reproduction is primarily

sexual via very small seeds and asexual through extension of horizontally creeping rhizomes.

In the Lake Tana basin, it flowers and fruits from June to August during the rainy season. Due

to over-exploitation and ongoing habitat conversion [27], C. papyrus is locally on the brink of

extinction. The short term threats come from direct habitat loss and damage from over-collec-

tion [49].

Study area and sampling sites

The field study was carried out in three papyrus wetlands situated in the Lake Tana basin (Fig

1), which is perched within a large dome of the Ethiopian highland. This large freshwater body

(area 3,200 km2; mean depth 9 m) along the Blue Nile River is adjoined by seasonally and per-

manently flooded wetlands and also fed by a dendritic network of rivers [50]. The climate in
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the basin is a tropical monsoon with a seasonal distribution of precipitation gauged by a shift

in the inter-tropical convergence zone. Comprehensive accounts referred to the hydrology, cli-

mate, and lake level fluctuations [43, 51, 52]. The islands, peninsulas, adjacent wetlands, and

flat depression areas are characterized by several soil types (e.g., Vertisols, Chromic Luvisols,

Eutric Luvisols, and Lithic Leptosols). Because of severe land degradation and soil erosion in

the adjoining landscape [53], alluvial sand deposition around the lake is amplified [43, 44, 54].

Fig 1. Map of Lake Tana with the papyrus swamps studied and the proportion of genets evolved temporally across

two sediment regimes. Blue represents genets only evolved in 2014, red only in 2016, and green in both years. Where

1 = HSR and 2 = LSR The map is reprinted from Chebud and Melese [57] under a CC BY license, with permission

from [John Wiley and Sons], and with the original copyright [2009] used as a shapefile.

https://doi.org/10.1371/journal.pone.0190810.g001
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Three papyrus swamps, namely Gilgel Abay, Robit, and Sebatamye, were selected by con-

sidering differences in depth, large coefficients of runoff, and sediment deposition gradients

[55] from the shore of the lake (Fig 1; Table 2). The Robit swamp has inundation-drawdown

cycles and agricultural encroachment in the surrounding landscape. Three perennial rivers

from the east Tana catchment, the Gumara, Rib, and Gelda deposit a large proportion of the

sediment load to Robit and other adjacent swamps resulting in sharp sedimentation gradients.

The papyrus swamp located on the Gilgel Abay represents the stretches of the floodplain in the

upper Blue Nile River in west Tana. The Gilgel Abay river delivers the highest amount (29%)

of sediment load into Lake Tana [56] and forms a visible delta with a clear gradient. The upper

catchment of this area is also heavily disturbed and characterized by little vegetation cover.

Unlike the Gilgel Abay and Robit swamps, the Sebatamye swamp is characterized by sediment

depositions that were exported out of the lake via the Blue Nile River. This swamp is also typi-

fied by steep slopes and rocky substratum ahead of alluvial sediment deposition along the bank

of the Blue Nile River and is upstream from the 40m Tis Isat fall.

Sampling design and sample collection

The field study was performed in 2014 and 2016. In 2013, a preliminary survey on the sediment

gradient and vegetation zonation was conducted at the beginning of the rainy season. To verify

sedimentation level and its effect on the depth of the wetland and the lake, wooden sticks of 10 m

long were placed randomly until the next dry season. At each swamp, a transect was established

landward to lakeward along the sediment gradients. Two rectangular plots, each 18 m x 30 m

separated by 500 m, were established on two distinct sediment regimes: a high sediment level

corresponded to the most shallow section (0.9 m sediment level) and a very low sediment regime

represented a relatively deeper section of the lake (< 0.2 m sediment level). To characterize the

clonal traits of papyrus, such as girth diameter, culm height, ramet density, spacer length (i.e.

space between individual stands (shoots)), and biomass, ten 3 m x 3 m quadrats were delineated

with cords in each plot. We used a Vernier caliper to measure girth diameter. Ramet density in a

plot was estimated as the mean of the number of shoots per quadrat. Above the substrate, papy-

rus plants (n = 9 per quadrat) were clipped and sorted into leaves and culm. Subsequently, these

parts were oven-dried at 70˚C for 48 hours and weighed. Absolute aboveground biomass was

determined as the sum of dried weights of leaves and culm. To monitor the temporal dynamics

of ramets and genets and to avoid resampling (DNA extractions) of the same genet in 2016, all

aerial shoots observed in 2014 within each plot were tagged using small, colored plastic strings.

To examine the pattern and dynamics of clonal diversity and structure, a total of 322 and

314 ramets shoots (40 to 60 per plot) were collected in 2014 and 2016, respectively. In order to

minimize sampling of duplicates, individuals were sampled at an interval of three meters. The

location of each sampling plot was recorded using a handheld GPS (Garmin 45XL, USA). Sam-

ples were dried with silica gel pending DNA extraction.

DNA extraction and microsatellite generation

Since our preliminary test using 11 microsatellite primers [58] showed low polymorphism

in C. papyrus populations of the Ethiopian highlands, additional polymorphic markers were

required for an in-depth study of population connectivity, clonality, and seedling recruitment.

To do so, genomic DNA was extracted from lyophilized green umbel rays (20 mg) of C. papy-
rus collected from Lake Tana (Ethiopia, 11˚37.336’ N, 37˚20.542’) using the E.Z.N.A. SP plant

DNA Mini Kit (Omega Bio-tek). The quantity of the DNA was determined by NanoDrop One

Spectrophotometer (Thermo Scientific). Also, the quality of the DNA was evaluated following

library DNA QC criteria. Twenty-five ng of DNA was subjected to Illumina sequencing on a
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HiSeq, 100 bp paired-end library (Macrogen, Seoul, Republic of Korea). A total of 43.83 mil-

lion reads of at least 80 bp, without a tag and adapter, were generated in FASTQ format, and

we converted the FASTQ files into FASTA files using NET Bio.1.1 (https://bio.codeplex.com).

Both unassembled reads and contigs were applied to identify microsatellites and design prim-

ers using QDD2 v.2 [59] integrated with Primer3 [60]. After discarding the loci that showed

compound SSR stretches, 5,510 target microsatellites displayed at least five pure repeats, a size

of 100 bp PCR product and lowest penalty values. Subsequently, 70 primer pairs were selected

for synthesis (Sigma Aldrich, Germany) and tested for amplification on eight papyrus samples.

Primer testing and multiplexing

Simplex PCRs were conducted in a total volume of 20 μL per reaction and contained: 0.2 mM

of each dNTP (Promega), 2 mM MgCl2, 0.5 μM of each forward and reverse primer (Sigma),

0.1 mM BSA, 1 U Taq DNA polymerase (Promega), and 3 μl (25 ng) template DNA. The PCRs

were carried on a Bio-Rad Thermal Cycler using the profile of initial denaturation at 95˚C for

3 min, followed by 35 cycles of 95˚C for 0.4 min, annealing at 54˚C for 1 min, extension at

72˚C for 2 min and a final extension at 72˚C for 5 min. To separate the PCR products we used

capillary electrophoresis (QIAxcel1 Advanced System). The QX alignment marker of 15 bp/

1600 bp (1.5 μl) and the QX size marker of 25 bp to 500 bp (5 μl) were employed. Fragments

or allele size were visualized and established with QIAxcel1 Screen gel software that provides

both electropherogram and gel images of DNA separation. Out of the 70 microsatellite loci

tested, 30 produced scorable amplified products. A final subset of nine novel loci that appeared

polymorphic and heterozygous, were fluorescently labeled (forward primers, Life Technolo-

gies, USA) and multiplexed in two sets, including the eleven primers developed by Triest et al.

[58] using Multiplex Manager [61].

Multiplex PCRs were carried out for 420 samples from the three swamps within the Lake

Tana basin in a 12.5 μL mix containing 6.25 μL 1x QIAGEN Master Mix (Valencia, USA),

2.5 μL of RNase free water, 2.5 μL of 25 ng DNA, and 1.25 μL of primers mix (see Triest et al.

[58] for the reaction profile). The PCR products were resolved using ABI 3730xl Genetic Ana-

lyzer and fragment sizes were determined with an internal size standard GeneScan500 LIZ in

Macrogen (Seoul, Republic of Korea). Allele sizes for each microsatellite locus per individual

were scored with GeneMarker v2.4.1 (SoftGenetics, USA).

Data analysis

GenAlEx v. 6.5 [62] was employed to compute the number of alleles (NA), expected (HE) and

observed (HO) heterozygosity, and to assess departure from the Hardy–Weinberg equilibrium

(HWE) at locus level. We also analyzed inbreeding coefficient (FIS) and linkage disequilibrium

(LD) among the 20 microsatellite loci implemented in FSTAT version 2.9.3.2 [63]. The test

for presence of null alleles, large allele dropout, and genotyping errors was done with MICRO-

CHECKER version 2.2.3 [64].

Clonal diversity was measured by different parameters using GENCLONE 2.0 [65]. Clonal

richness (R) was estimated from the number of distinct multilocus genotypes (MLGs) (G) and

the number of ramets (N) [66]. To estimate a comparable R across populations, we standard-

ized the number of sample units collected (N) by the proportion of sample units collected at

the site with higher density (Dmax):

Ns ¼
N

Dmax
ð1Þ
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We also applied the Pareto distribution index (β) as a proxy for clonal diversity [67] and the

dispersion of ramets among genets. Spatial clone architecture and clonal structure were esti-

mated among the six sampling plots (two plots per site) in three swamps by calculating the

aggregation index (Ac) at plot level and clonal dominance index (Dc) for each genet using

GENCLONE under 10, 000 permutations. Ac was computed as:

Ac ¼
ðPsg � PspÞ

Psp
ð2Þ

where Psg is the mean likelihood of clonal identity of all sample unit pairs, and Psp is the aver-

age probability of clonal identity among pairwise nearest neighbors. To determine the degree

of intermingling among genets, Dcwas computed for each genet as:

Dc ¼
ðNR � 1Þ

ðNT � 1Þ
ð3Þ

where NR is the genet size (i.e. genet size is the number of ramets per genet) and NT is the total

number of ramets sampled within the genet range[68]. A Dc index of one points out that the

spatial range of a genet is occupied fully by ramets of the identical genet. Only genets signifying

more than two ramets were accounted for the calculation of Dc. Despite the edge effect was

minimized by sampling across the center of a plot, we tested for its effect on dispersion of dis-

tinct or rare MLGs that overvalue clonal diversity following Arnaud-Haond et al. [67]. To esti-

mate the minimum spatial extent of the largest clone in each plot, we determined the clonal

subrange (CR) which corresponds to the maximum distance between two identical MLGs

belonging to the same clone in meters. In other words, it is measured as the distance for which

the probability of clonal identity becomes null [69]. Temporal and spatial differences in clonal

growth, genotypic diversity, and structure measures were analyzed with a non-parametric

Mann–Whitney U-test using SPSS XII (SPSS, Chicago). Spearman’s correlation coefficients

were used to examine relationships between estimates of genotypic diversity, structure, and

clonal growth traits. Furthermore a linear regression was carried out to assess the relationship

between spacer length and ramet density.

Results

Characteristics of the isolated microsatellites

The 20 microsatellite loci were highly variable, having 3 (Cypap 62) to 12 (Cypap 23) alleles

per locus over 282 ramets yielding 141 individuals (three populations) with distinct multilocus

genotypes (MLGs) (Table 1). Levels of expected and observed heterozygosities per locus varied

from 0.41 to 0.86 and from 0.25 to 0.87, respectively (Table 1). There was no evidence for large

allele dropout or genotyping error. Putative null alleles were detected at only one locus (Cypap

28) in one population, with a very low frequency because of excess homozygotes (P< 0.05).

The microsatellite loci developed and multiplexed showed a wide range of inbreeding coeffi-

cient (FIS) of -0.046 (Cypap 10) to 0.611 (Cypap 15). The within-population tests revealed that

there was no significant departure from the HWE (P< 0.001) nor LD between loci in the pop-

ulations and thus, further analyses of clonal diversity and structures were carried out using

these 20 loci.

Clonal growth metrics

All clonal growth metrics (culm height, ramet density, girth diameter, spacer length, and bio-

mass) of C. papyruswere significantly different between the high sedimentation regime (HSR)
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and low sedimentation regimes (LSR) (Table 2). Mean culm height and girth diameter were

about twice higher in the LSR compared with the HSR which contained dense ramets with

short culms. Ramet density also varied by almost three orders of magnitude (Table 2), between

the sedimentation regimes. The maximum density of C. papyrus ramets was 57.6m -2 at Robit

Table 1. Genetic diversity measures and characteristics of twenty microsatellite loci from C. papyrus genets (Total N = 141, per population = 47) of three popula-

tions of Lake Tana (Ethiopia).

Loci Primer sequences (5’-3’) Repeat motif Accession No. Tan Allele size AT AE HO HE FIS
(HWE)

Cypap22++ F: PET-TGGAACTTACAAGCCATACAGATTC
R: CACGGTCAAATGTCTACCAGC

(AAG)14 KT873448 57 90–115 7 4.7 0.504 0.439 -0.148ns

Cypap23++ F: NED-TGTCCTAATGTTGTTGAATGCTT
R: TTGAACAGATTGGAAGTTTCTTT

(AG)9 KT873449 57 98–135 12 7.6 0.871 0.591 -0.476ns

Cypap27++ F: VIC-CATGGCTCCCGTGTTAACTT
R: CAAGTATGACTCCAAGCATTTCT

(AT)8 KT873450 57 82–124 6 4.3 0.393 0.762 0.491ns

Cypap28++ F: 6FAM-ACTCACCCACACAGTCACACT
R:TACCAGTGTCGCATCTGCAT

(ACG)9 KT873451 57 100–120 6 4.6 0.431 0.782 0.478��null

Cypap34+ F: VIC-TCATATCACTATATCAGTCTATCAGGG
R: GACACAGGCACACCCAGAA

(AAAGG)8 KT873452 57 90–118 10 6.3 0.508 0.834 0.446ns

Cypap38+ F: 6FAM-AAGGTAATCAATCTGGTCTGCTG
R: CCACTTCTCTTTCTCCTCTCTCAA

(AG)11 KT873453 57 90–112 9 6.6 0.474 0.447 -0.062ns

Cypap52+ F: 6FAM-CCAAACCCCAACAGAGCAAA
R: ACTTCGGGTGGGATCAAACT

(CCA)9 KT873455 57 218–246 8 5.9 0.419 0.820 0.594ns

Cypap56++ F: 6FAM-GGGGACAATGGCAAAGCTAC
R: TGAACTCTGAAAGACTGAAACCA

(GA)15 KT873456 57 230–260 6 4.6 0.326 0.768 0.592ns

Cypap62++ F: PET-GAGAGAGGCACCTGACCTAGC
R: TGGTATCATTGTCCATGTTTGC

(AG)5 KT873454 57 130–140 3 2.4 0.247 0.552 0.573ns

Cypap4+ F:6FAM-AACAAGTTCATTAGTCATGGAGTG
R: TGTTCTCTTGTGGCTCCTGA

(TG) 10 KC460659 57 138–169 10 7.0 0.494 0.856 0.371ns

Cypap14+ F:6FAM-CATGCACATGCTTTTGATGA
R: TGTTCATTGATCGTGCCTTT

(GT)n KC460665 57 186–200 5 4.5 0.384 0.776 0.559ns

Cypap10+ F: VIC-GACAGCGGCTTGTTTTAAGG
R: TCTCTGCCTTTCACACACTCA

(GT)7 KC460662 57 143–159 5 3.3 0.565 0.529 -0.046ns

Cypap13F+ F: NED-CTGTGGCATGGCATCAAAT
R: AAGCACAGGGGTTATGGTTG

(GT)9(AAT)4 KC460664 57 151–160 4 2.4 0.290 0.575 0.393ns

Cypap13S+ F: NED-CTGTGGCATGGCATCAAAT
R: AAGCACAGGGGTTATGGTTG

(GT)9 (AAT)4 KC460664 57 163–175 4 3.4 0.409 0.699 0.258 ns

Cypap5+ F: NED-TGAGTTAATTGGGCCTCCAC
R: ATCTGACGCGACTTGTTCCT

(CT)13 KC460660 57 219–248 7 3.1 0.326 0.666 0.583ns

Cypap3+ F: PET-AAAAGGATTCGATCTGTCACG
R: AAGGGGAAACTTGGTCCTGT

(CT)14(GTGTAA)2 KC460658 57 154–217 5 3.3 0.408 0.684 0.561ns

Cypap7++ F: 6FAM-GAAGCCAGAGGGAAAGTGTG
R: CAAAGCAAACCAGCTCCTGT

(GT)6GC(GT)6(GA)9 KC460661 57 172–188 7 4.6 0.429 0.783 0.453ns

Cypap12++ F: VIC-TGATTTCCTCGCAGCCTAGA
R:AGACCCACAACCCACAAAAA

(TC)8 KC460663 57 176–182 5 4.1 0.418 0.750 0.452ns

Cypap15++ F: NED-CGGAGAACATGTCCTAAATGC
R: GGAAAGCAGAGAGCATAGCC

(CT)7(CA)6 KC460666 57 164–182 6 3.7 0.409 0.718 0.611ns

Cypap1++ F: PET-AAGCAGCAAATGAGACAACAA
R: TGTTGGTTGGTTGGTGAAAA

(CAGA)10 KC460657 57 173–217 11 7.3 0.466 0.857 0.583ns

Mean _ _ _ _ _ 6.8 4.7 0.438 0.694 0.335

Tan annealing temperature, AT total number of alleles, AE effective number of alleles,HO observed heterozygosity, HE expected heterozygosity, FIS inbreeding coefficient

with associated tests of deviation from Hardy-Weinberg equilibrium (HWE, ns = not significant,

�� significant at 0.01 level), F hex-labelled forward primer, R reverse primer,
+ locus in multiplex-1,
++ locus in multiplex-2,
null null alleles, shaded primers developed by Triest et al. [58] and non shaded, new primers.

https://doi.org/10.1371/journal.pone.0190810.t001
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swamp. Clumped ramets of HSR populations produced shorter spacer lengths over spreading

ramets than did those in the LSR (Table 2), reflecting HSR favors phalanx strategy than the

LSR that promotes the guerrilla strategy. Papyrus under an HSR demonstrated significant tem-

poral difference in ramet density and spacer length (S1 Fig).

Dynamics of ramets and genotypes composition

Permutation tests for genotypic resolution revealed an exponential increase with the number of

loci and then an asymptotic trend subsequent to the addition of locus (S2 Fig). We identified a

total of 408 distinct MLGs across the 636 ramets (N = 301 for 2014 and N = 335 for 2016). The

likelihood of encountering identical MLGs twice because of random sexual recombination

events was very low (Psex < 0.01, Table 3). Frequency distribution of allelic distances between

Table 2. Clonal growth traits of C. papyrus across sedimentation regimes.

Swamp Plot Latitude (N) Longitude (E) Altitude (m) Sediment regime Ramet

density (m-2)

Culm

height (cm)

Girth

diameter (cm)

Spacer

length (cm)

Biomass

(gm-2)

Robit 1 11˚44’24.51” 37˚25’22.42” 1788 High 57.6 (1.85) 307.9 (11.2) 7.4 (0.54) 48.4 (2.66) 5749.9 (93.1)

2 11˚44’16.13” 37˚25’18.00” 1788 Low 17.0 (1.19) 463.5 (10.9) 16.2 (1.04) 64.3 (1.75) 4609.1 (96.1)

Sebatamye 1 11˚30’57.02” 37˚30’36.22” 1691 High 41.0 (1.93) 240.7 (14.5) 6.8 (0.34) 55.5 (1.79) 5127.6 (108)

2 11˚30’57.63” 37˚30’35.54” 1690 Low 11.8 (1.02) 366.5 (5.03) 13.6 (1.01) 73.7 (1.31) 3491.0 (71.6)

Gilgel Abay 1 11˚52’00.22” 37˚06’51.82” 1788 High 44.0 (2.75) 326.2 (7.84) 5.3 (0.39) 53.0 (1.98) 9073.5 (241)

2 11˚51’43.88” 37˚06’41.17” 1788 Low 15.0 (1.02) 381.3 (6.73) 15.3 (15.5) 66.6 (1.52) 4199.6 (75.6)

Mean HSR _ _ _ _ 47.5a 291.6a 6.5a 52.3a 6650.3a

Mean LSR _ _ _ _ 14.6b 403.8b 15.0b 68.2b 4099.9b

The significance level is based on T-test for two samples, d.f = 1 and P < 0.05). Different letters indicate significant difference between sedimentation regimes. Values in

the bracket show standard error of the mean based on n = 50 (five plants per quadrat for total of 10 quadrats per swamp).

https://doi.org/10.1371/journal.pone.0190810.t002

Table 3. Clonal diversity and structure measures of C. papyrus ramets sampled in three papyrus swamps in Lake Tana under two sedimentation regimes during

2014 and 2016.

Swamp Plot Sediment regime Year Clonal diversity descriptors Clonal structure

N G Psex. max R D E β NR DC Ac Ee CR
Robit 1 High 2014 60 48 9.11 x 10−19 0.79 0.99 0.92 3.58 12 0.186 0.194� 0.031ns 11

2016 60 52 4.13 x 10−15 0.86 0.99 0.79 2.95 8 0.119 0.146� 0.023ns 9.2

2 Low 2014 60 22 6.42 x 10−6 0.36 0.97 0.88 2.08 38 0.627 0.319� 0.043ns 25

2016 39 19 6.86x 10−17 0.47 0.96 0.83 2.04 20 0.500 0.385� 0.110ns 27

Sebatamye 1 High 2014 60 39 4.12 x 10−16 0.64 0.98 0.96 2.61 21 0.339 0.358� 0.141 10.1

2016 60 53 1.64 x 10−20 0.88 0.97 0.79 3.12 7 0.102 0.129� 0.061ns 9.1

2 Low 2014 41 21 4.75 x 10−17 0.50 0.99 0.82 ǂ 20 0.475 0.141� 0.015ns 18

2016 50 24 1.5 x 10−7 0.47 0.96 0.7 1.77 36 0.714 0.209� 0.014ns 37

Gilgel Abay 1 High 2014 60 35 9.8 x 10−17 0.58 0.98 0.96 2.87 25 0.407 0.390� 0.289ns 14.6

2016 60 47 3.03 x 10−20 0.78 0.99 0.94 3.317 13 0.203 0.277� 0.039ns 10.4

2 Low 2014 41 28 4.6 x 10−17 0.67 0.98 0.92 2.32 13 0.300 0.304� 0.161ns 17

2016 45 20 5.13 x 10−9 0.43 0.99 0.91 3.33 25 0.545 0.101� 0.053ns 22

Mean HSR 60 45.7a _ 0.76a 0.98a 0.89a 3.07a 14.3a 0.226a 0.249a 0.01a 10.6a

Mean LSR 46 22.3b _ 0.48b 0.97a 0.84a 2.31b 25.3b 0.527b 0.243a 0.07a 24.3b

N: number of ramets, G: number of MLGs, NR: clone size (m2), R: clonal richness. D and E: Simpson index and its equitability index. β: slope of Pareto distribution, DC:

clonal dominance, AC: aggregation index, Ee: edge effect,
ǂ:multilocus genotypes reached maximum and CR: clonal subrange. All measures of clonal structure were obtained after 1000 permutations, ns, not significant and

�P < 0.05. Different letters indicate significant difference between sedimentation regimes collated for the three swamps (P < 0.05).

https://doi.org/10.1371/journal.pone.0190810.t003
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MLGs confirmed that MLGs diverged neither as a result of scoring error nor from somatic

mutation (S3 Fig). The number of individuals with distinct MLGs across sedimentation regimes

ranged widely among the swamps studied (HSR: 39–53; LSR: 19–39; Table 3) and differed sig-

nificantly between years (Mann–Whitney test: U = 55.5; P< 0.05). In general, clone composi-

tion differed between sedimentation regimes and demonstrated temporal dynamics within each

papyrus swamp (Fig 1). Ramets belonging to each genet were distributed in a leptokurtic pattern

(Fig 2). The majority of clones (particularly in LSR) were designated by more than two C. papy-
rus ramets, and eight clones were found in more than one sedimentation regime and swamp.

Clonal diversity metrics

Clonal richness (R), after being standardized for different sample sizes, ranged from 0.36

(Robit, 2014) to 0.67 (Gilgel Abay, 2014) and from 0.58 (Gilgel Abay, 2014) to 0.88 (Sebatamye,

2016) for LSR and HSR, respectively (Table 3). On the overall data set, mean R of 2014 and

2016 were significantly different (Mann–Whitney test: U = 45.3; P< 0.05). We also found R
to be significantly different between sedimentation regimes (Mann–Whitney test: U = 65;

P< 0.05). Simpson’s diversity (D) and evenness (E) indices were steady when compared across

swamps and sampling periods (Table 3). The Pareto descriptor (β) of clonal diversity estimate

showed significant spatial heterogeneity of genets distribution resulting different clone sizes in

response to sedimentation (HSR: mean β = 3.07; LSR: mean β = 2.31). Similarly, Pareto distri-

bution showed a temporal variability (mean 2014 β = 2.19 and mean 2016 β = 2.75). The lowest

β was observed in the Sebatamye swamp plot 2 (β = 1.77) in 2016.

Clonal structure changes in space and time

Clonal dominance (Dc) spanned from 0.10 (Sebatamye 2016, HSR) to 0.5 (Robit 2016, LSR)

(Table 3), indicating that the majority of clones were intermingled. The difference in mean

Fig 2. Frequency distribution of genets (genet size) for populations of C. papyrus across papyrus swamps in Lake

Tana basin, Ethiopia for 2014 and 2016 pooled over two contrasting sedimentation regimes.

https://doi.org/10.1371/journal.pone.0190810.g002
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Dc in the two sedimentation regimes was significant (Mann–Whitney test: U = 52; P < 0.05).

Clone size was unevenly distributed among genotypes and the largest clone size (NR = 38)

was detected in Robit swamp under LSR in 2014 (Table 3). With the presumption that geno-

types are randomly distributed in space, permutation analysis revealed significant aggrega-

tion of ramets within genets of each papyrus swamp plot (range Ac = 0.1–0.4). However,

the mean Ac was neither significantly different between sedimentation regimes (Mann–

Whitney test: U = 44.1; P > 0.05; Table 3) nor between years (Mann–Whitney test: U = 47;

P > 0.05). The test for the maximum spatial linear limits (clonal subrange, CR), where the

chance of two identical MLGs of the same clone becomes null, varied from 9.1 m to 37 m.

Plots with a high number of distinct genotypes and clonal richness were found to have a min-

imum clonal subrange (Table 3). There was no evidence of evidence of a significant edge

effect detected within plots in either sedimentation regime or sampling year, except in Seba-

tamye during 2014. The edge effect did not have a sheer influence on the genotype distribu-

tion as observed.

Association between clonal growth traits and diversity

We tested the relationship of clonal growth traits with clonal structure and with diversity

(Table 4). Ramet density corresponded to a decrease in girth diameter (r = -0.60; P< 0.05),

spacer length (r = -1.00; P< 0.01; Fig 3), culm height (r = -0.60; P< 0.05), clonal dominance

(r = -0.71; P< 0.05) and clonal subrange (r = -0.72; P< 0.01) but to an increase in clonal

richness (r = 0.65; P < 0.05) and aboveground biomass (r = 0.94; P < 0.01). Mean clone size

was significantly negatively correlated with clonal richness (r = -0.91; P< 0.01; Table 4) and

number of distinct genotypes (r = -0.68; P< 0.05) and positively with Dc (r = 0.92; P < 0.01),

indicating that with an increase in of few, large dominant clones, there is a decrease in clonal

richness.

Table 4. Relationship between clonal growth, diversity and structure parameters for papyrus populations data collated for two sediment regimes in two years

(Spearman’s correlation coefficient).

Ramet

density

Girth

diameter

Culm

height

Spacer

length

Biomass G R D E β NR DC AC CR

Ramet density

Girth

diameter

-0.600�

Culm height -0.600� 0.829��

Spacer length -1.000�� 0.600� 0.600�

Biomass 0.943�� -0.714�� -0.543 -0.943��

G 0.735�� -0.735�� -0.862�� -0.735�� 0.664�

R 0.651� -0.651� -0.793�� -0.651� 0.566 0.904��

D 0.348 -0.326 -0.289 -0.348 0.289 0.249 0.331

E 0.362 -0.384 -0.128 -0.362 0.512 0.063 0.028 0.3

β 0.678� -0.452 -0.466 -0.678� 0.636� 0.559 0.501 0.543 0.362

NR -0.512 0.355 0.554 0.512 -0.384 -0.682� -0.907�� -0.356 0.131 -0.446

DC -0.707� 0.594� 0.735�� 0.707� -0.622� -0.860�� -0.970�� -0.407 -0.12 -0.580� 0.924��

AC 0.155 -0.028 0.212 -0.155 0.297 -0.182 -0.242 -0.462 0.531 -0.336 0.38 0.238

CR -0.722�� 0.729�� 0.857�� 0.722�� -0.673� -0.879�� -0.877�� -0.45 -0.23 -0.578� 0.732�� 0.914�� 0.203

�� significant at 0.01 level and

� significant at 0.05 levels

https://doi.org/10.1371/journal.pone.0190810.t004
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Discussion

In this study, combining clonal traits and genetic data, we found a trade-off between phalanx

strategy and guerrilla strategy under contrasting sedimentation regimes. Higher levels of sedi-

mentation led to an increase in ramet density, enhanced phalanx strategy and favored higher

clonal diversity which can be ascribed to seedling recruitment. Other wetland plant species

showed the existence of a guerrilla strategy role to escape from several factors exists [7, 11, 70],

but none of these studies addressed the point that this strategy also becomes reflected at levels

of clonal diversity and structure at spatiotemporal scales. We discuss each of these findings

with respect to the hypotheses set and conclude by highlighting the implications for restoration

and conservation activities.

In line with our first hypothesis, clonal growth traits of C. papyrus varied significantly

between sedimentation regimes where phalanx strategy was more prevalent in HSR and guer-

rilla strategy in LSR. C. papyrus overcomes the adverse effect of HSR through production of

denser ramets at the cost of a short culm height and smaller girth diameter, reflecting a consol-

idation strategy (phalanx) to exploit available resources created by sediment dynamics. Pro-

duction of short and dense ramets with heterogeneous genets points to compensatory growth

[71] in HSR. The mechanisms of compensatory growth in response to sediment and sand

burial differ in plants [72, 73]. In contrast, in accordance with long spacers, longer culm height

and relatively larger girth diameter, ramets under LSR showed a higher intermingling pattern

which might reflect the foraging strategy [74], and corresponds to a guerrilla-type architecture.

A shift from phalanx to guerrilla growth strategy has been confirmed as a principal strategy to

escape from low to high sediment burial in C. brevicuspis [11], competition due to neighbour

density in Elymus lanceolatus [7], sand burial in dune shrubHedysarum laeve [75], sand accre-

tion and nutrient availability in costal Sporobolus virginicus [76] and under conditions of dif-

ferent nutrient supplies in Leymus secalinus [70]. Our results from papyrus under natural

Fig 3. Relationship between spacer length and ramet density of C. papyrus populations in two sedimentation

regimes pooled over 2014 and 2016 (n = 18 per quadrates of each plots). R2 = 57.7; P< 0.05 for LSR and R2 = 42;

P< 0.05 for HSR.

https://doi.org/10.1371/journal.pone.0190810.g003
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conditions revealed a trade-off in clonal growth strategy from LSR to HSR that was the oppo-

site of reports based on glasshouse and pot experiments [11, 70]. Clonal plants thus may have

developed diverse clonal growth traits that underpin their adaptive strategies [7, 24, 25].

The clonal structure and diversity of C. papyrus revealed temporal and spatial fluctuation

of genets. Those sites that experienced high sedimentation dynamics were more genotypically

diverse in terms of clonal richness, Pareto distribution index and number of distinct geno-

types, than were sites in LSR. The significant clonal subrange, Dc and the occurrence of few

genets spatially restricted to either HSR or LSR reflect clonal sorting. The size and spatial dis-

tribution of genets determine demographic and sorting patterns, and have been found to be a

function of trade-offs between clonal growth and sexual reproduction [77]. Like various mea-

sures of clonal growth (high ramet density, long spacer length and short culm) on C. papyrus
genets under HSR, low Dc, CR and clone size related to a phalanx-type architecture. In addi-

tion, a skewed clone size distribution of C. papyrus implies dynamics in demographic pro-

cesses at different stages as a response to sedimentation, which has also been reported for

populations of the clonal seagrass, Cymodocea nodosa [69]. The latter only accounted for a dif-

ference at ramet level and genet level analysis associated with the reproductive modes, and did

not include factors that could drive the demographic patterns in each population: yet historical

contingencies during colonization are critical to understand factors driving genet distribution.

A high Dc and low contemporary ramet density in LSR might also be attributed to the influ-

ence of asymmetrical competition between clones of different sizes, which amplifies loss of

genets and decrease in genotypic diversity [78]. Under a relatively stable sediment regime

(LSR), the founder effect of a few dominant clones may have shaped clonal structure through

selection of superior clones and clonal integration [28, 79, 80]. According to the "general-pur-

pose hypothesis", persistence and resilience are common features of large clones [79, 81]. How-

ever, overall, our results on papyrus do not support this hypothesis, because of the significant

genet turnover and high clonal richness observed in sites with HSR.

Despite the fact that our data are limited to two sampling periods, the change in clonal

composition, richness and growth strategies suggests the potential of an “allee effect”. Such a

phenomenon has also been proposed for stand establishment of the clonal macrophyte, Phrag-
mites australis [82]. The capacity of a species to colonize, establish and maintain its population

in a dynamic environment is a function of dispersal potential. Individuals with identical MLGs

distributed across the swamps studied have supported long-distance clonal dispersal within

the same lake, as reported for spatially isolated C. papyrus populations [83], and selective

advantages that could facilitate the clonal spread [84]. While the latter is more prominent

within the same swamp area it may be less likely to occur in Lake Tana across such geographi-

cally distant swamps (68 km apart).

Papyrus populations revealed a wide range of clonal richness, from low (with very few gen-

ets) to high (with many genets) levels across LSR to HSR, respectively. This discrepancy in

the number of genets explicitly highlights how the relative contribution of sexual and asexual

reproductive modes dictates distribution and recruitment patterns of genets [17] in response

to sedimentation. Initial seedling recruitment (ISR) and repeated seedling recruitment (RSR)

are the two contrasting dynamic life history traits governing the growth of clonal plants [18].

Our results are in full agreement with a previous study that has provided evidence for seedling

recruitment differences in C. papyrus populations along drawdown and inundated regimes at

Lake Naivasha, Kenya [85]. High genet turnover ensuring an increased number of new genets

in plots under HSR did reflect the central role of sexual reproduction and a RSR strategy.

Despite high ramet density in these plots, sediment dynamics open windows for seedling

recruitment and induce chaotic distribution of genets. Microsites created during these sedi-

ment dynamics influence the earliest stage of seedling emergence [86]. In contrast, the
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establishment of a few but dominant clones, coupled with maximum CR and longer spacer

length in LSR revealed that an ISR model of C. papyruswas in place. In such a relatively stable

regime, the presence of a cohort of a few large genets would show differential spatial spread

(longer spacer length) and intragenet competition at the early stage of colonization [19]. Gen-

erally, our results showed that high sedimentation shifts the balance between seedling recruit-

ment strategies (from ISR to RSR) and between the reproductive modes (from asexual to

sexual). This, allows us a glimpse of the ultimate effect of environmental factors in driving

microevolutionary forces [16] by influencing seedling establishment, and illuminates the com-

parative significance of reproduction modes [87, 88].

The resilience of wetlands and their keystone clonal plants have been reported as chal-

lenging, due to the spatial dynamics of genets that can be decoupled to allow contraction and

expansion in response to biotic and abiotic factors [89]. However, our findings have twofold

implications for resilience through habitat protection and restoration of C. papyrus popula-

tions. Severe land degradation in the upper catchments of the Lake Tana basin, for instance,

is a far-reaching problem that led to lake over-sedimentation [27, 44]. However, with the

premise that papyrus also controls sediment loads and provides socio-ecological services [32,

34, 38, 42], revegetation of sedimentation-prone sites using this species would lessen over-

sedimentation and promote restoration in a broader context. To do this, selection of individ-

uals of genets (genotypes) that withstand sediment dynamics and temporally persist (such

as those noted in HSR), and sites potentially suitable for creating stepping stones between

threatened populations [90], have to be the priority for mitigation of over-sedimentation

along a lake margin. For sustenance of the studied papyrus swamps, preventive measures

have to counteract anthropogenic pressures encompassing sand-mining and drainage of

swamps for agricultural purposes [27]: these have negative impacts on the substrate, affecting

for clonal growth and the recruitment of new genets. Our findings suggest that wetland

conservation and restoration of keystone clonal plants should consider the spatiotemporal

dynamics of ramets and genets that shape the level of genotypic diversity and determine the

shift in clonal growth strategies for both short-term responses and long-term evolutionary

potential.

In summary, we observed that the paper reed (C. papyrus) was able to adapt to sediment

regimes by shifting clonal growth strategy from guerrilla (in LSR) to phalanx (in HSR). The

threshold level of sedimentation that limits seedling recruitment and clonal dynamics has not

been established for C. papyrus, but our spatial and temporal observations highlight that HSR

enhances clonal richness owing to RSR and genets turnover. HSR creates a heterogeneous

microenvironment that can be occupied by coexisting multiple genotypes, and this could have

implications for population dynamics and resilience in the long term. Finally, restoration and

conservation of papyrus wetlands from over-sedimentation, using clonal plants, should also

incorporate information about spatiotemporal dynamics in clonal growth strategy, and in

clonal diversity and structure.

Supporting information

S1 Fig. Clonal growth characteristics; ramet density (i) and spacer length (ii) of Cyperus
papyrus under HSR and LSR observed for 2014 and 2016. The values (mean ± SE) recorded

for 18 quadrates within each plot collated over the three swamps. Different letters indicate sig-

nificant difference between years within a sedimentation regime and �� significant difference

between sedimentation regime regardless of years (P < 0.05).

(TIF)
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S2 Fig. Maximum number of distinct genotypes that adequately reached the number of

markers used, thereby allowing the accurate estimation of clonal diversity of C. papyrus.

(TIF)

S3 Fig. Frequency distribution of the pairwise number of alleles differences between MLGs

for sample of C. papyrus.

(TIF)

S1 Table. Genotypic data of C. papyrus from three papyrus swamps in Lake Tana under

two sedimentation regimes over two years.

(XLS)

S1 Protocol. Table: Multiplex PCR protocol for C. papyrus.

(XLS)

S1 Text. Copyright pemission granted to use the figure as shapefile.
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