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Abstract: CDPKs (Ca?*-Dependent Protein Kinases) are very important regulators in plant response to
abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains
unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated
the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference
(RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of
seedling growth. Under NaCl treatment, Na* levels in the roots of CPK12-RNAi plants increased
and were higher than levels in GL1 plants. In addition, the level of salt-elicited H,O, production
was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively,
our results suggest that CPK12 is required for plant adaptation to salt stress.
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1. Introduction

Saline soil cannot be used for agriculture and forestry production [1], and soil salinity is a major
abiotic stress for plants worldwide [2,3]. When plants suffer from salt environments, the accumulation
of sodium and chloride ions breaks the ion balance and causes secondary stress, such as oxidative
bursts [4,5].

Plants have evolved sophisticated regulatory mechanisms to avoid and acclimate to salt stress and
repair related damage, processes based on morphological, physiological, biochemical and molecular
changes [6]. Salt overly sensitive (SOS) signaling is the most important pathway for regulating plant
adaptation to salt stress [4,7]. In Arabidopsis, salt-induced increases in cytoplasmic calcium (Ca*) are
sensed by the EF-hand-type Ca?*-binding protein SOS3. Ca?* together with SOS3 activates SOS2,
a serine/threonine protein kinase. Activated SOS2 phosphorylates and stimulates the activity of SOS1,
a plasma membrane-localized Na* /H" antiporter, leading to regulation of ion homeostasis during salt
stress [8-11]. A Na*/H" exchanger, which is localized to plasma membrane, also plays an important
role in Populus euphratica, the roots of which exhibit a strong capacity to extrude Na* under salt stress;
furthermore, the protoplasts from root display enhanced Na*/H* transport activity [12]. In addition,
wheat Nax1 and Nax2 affect activity and expression levels of the SOS1-like Na* /H" exchanger in both
root cortical and stellar tissues [13].
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Salt stress increases the production of reactive oxygen species (ROS), which plays a dual role
in plants: they function as toxic byproducts of metabolism and as important signal transduction
molecules [14-16]. Peroxisomes and chloroplasts are the major organelles of ROS generation [17-19],
and plants eliminate ROS through non-enzymatic and enzymatic scavenging mechanisms [20].
Non-enzymatic antioxidants include the major cellular redox buffers glutathione and ascorbate, as well
as flavonoids, carotenoids, alkaloids, and tocopherol [21]. Enzymatic ROS scavenging pathways in
plants include superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX),
and catalase (CAT) [20]. HyO, is the end-product of SOD, which is harmful to DNA, proteins, and
lipids [20]. Halophytes can send stress signals quickly through H,O,, and have an efficient antioxidant
ability to scavenge H,O, upon completion of signaling [22]. In addition, HyO; is a signaling molecule in
the plant response to salt stress [23,24]. P. euphratica responds to salt stress with rapid H,O, production,
and exogenous H,O; application enhances the Na* /H"* exchange [25]. Pharmacological experiments
have strongly indicated that NaCl-induced Na*/H* antiport is inhibited when H,O; is absent [25],
and H,O,-regulated K* /Na* homeostasis in the salt-stressed plant is Ca?*-dependent [25]. Exogenous
H,O; causes elevated cytosolic CaZ* [25], which stimulates plasma membrane-localized Na*/H*
antiporters through the SOS signaling pathway [2,4,5]. Furthermore, H,O, mediates increased SOS1
mRNA stability in Arabidopsis and may therefore contribute to cellular Na* protection [26].

Ca?* is a conserved second messenger in plant growth and development pathways and contributes
to plant adaptations to environmental challenges [27,28]. In plants, calmodulin (CAM), calcineurin
B-like proteins (CBL), and Ca2+—dependent protein kinases (CDPKs) are important Ca?* sensors [29-33].
For CDPKSs, Arabidopsis has 34 members, rice (Oryza sativa) has 29 members, wheat (Triticum aestivum)
has 20 members, and poplar (Populus trichocarpa) has 30 members [34-37]. In recent years, CDPKs have
been characterized as playing an important function in mediating stress-signaling networks [38-40].

Genetic and biochemical evidence implicates several CDPKs in plant adaptations to environmental
stress. Arabidopsis CPK32 (Ca®*-Dependent Protein Kinase 32) phosphorylates ABF4 (ABRE Binding
Factor 4) to participate in abscisic acid (ABA) signaling [41]. CPK4 and CPK11 are important positive
regulators mediating ABA signaling pathways [42], but their homolog, CPK12, plays a negative role
in this signaling [43,44]. CPK10 interacts with HSP1, which contributes to plant drought responses
by modulating signaling through ABA and Ca?* [45]. CPK23 responds to drought and salt stresses,
and together with CPK21 constitutes a pair of critical Ca?*-dependent regulators of the guard cell
anion channel SLAC1 (Slow Anion Channel-Associated 1) in ABA signaling [46—48]. CPK3 and CPK6
positively regulate ABA signaling in stomatal movement [49-51], and CPK6 functions as a positive
regulator of methyl jasmonate signaling in guard cells [52]. CPK13 inhibits opening of the stomata
through its inhibition of guard cell-expressed KAT2 (K* transporter 2) and KAT1 (K* transporter 1)
channels [53]. The expression of CPK27 is induced by NaCl, and the cpk27-1 mutant is much more
sensitive to salt stress than wild-type plants in terms of seed germination and post-germination
seedling growth [54].

Overexpression of rice CPK21 enhances rice’s capacity to tolerate high salinity [55]. OsCPK12
reduces ROS levels to regulate salt tolerance [56] and plays a positive role in plant responses to
drought, osmotic stress, and dehydration [57]. In maize (Zea mays), ZmCCaMK is required for
ABA-induced antioxidant defense, and the ABA-induced activation of ZmCCaMK is required for
H,0,-dependent nitric oxide production [58]. ZmCPK4 positively regulates ABA signaling and
enhances drought stress tolerance in Arabidopsis [59], while ZmCPK11 functions upstream of ZmMPK5
and regulates ABA-induced antioxidant defense [60]. The expression of PeCPK10, a gene cloned from
P. euphratica, is induced by salt, drought and cold treatments, overexpression of PeCPK10 in Arabidopsis
improves the plant’s tolerance of freezing [61]. In grape berry, ABA stimulates ACPK1 (ABA-stimulated
calcium-dependent protein kinasel), which is potentially involved in ABA signaling [62]. Heterologous
overexpression of ACPKI1 in Arabidopsis promotes significant plant growth and enhances ABA
sensitivity in seed germination, early seedling growth, and stomatal movement, providing evidence
that ACPK1 is involved in ABA signal transduction as a positive regulator [63].
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Although the functions of CDPKs in plant response to environmental stress have been
demonstrated, the molecular biological mechanisms of CDPKs remain unclear. Previously, we reported
that Arabidopsis CPK12 negatively regulates ABA signaling [43,44]. Here, we show that CPK12 mediates
salt stress tolerance by regulating ion homeostasis and H,O, production. Down-regulation of CPK12
results in salt hypersensitivity in seedling growth and accumulation of higher levels of Na* and H,O,.
Our results show that CPK12 may modulate salt stress tolerance in Arabidopsis.

2. Results

2.1. Identification of RNA Interference (RNAi) Mutants of CPK12

We previously identified the function of Arabidopsis CPK12, generated CPK12-RNAI lines, and
observed that down-regulation of CPK12 results in ABA hypersensitivity in seed germination and
post-germination growth. CPK12 interacted with and phosphorylated and stimulated the type 2C
protein phosphatase ABI2. In addition, CPK12 together with ABI2 negatively regulates ABA signal
transduction [43]. Thus, we wondered whether CPK12 was involved in salt-stress signaling. To address
this question, we re-generated CPK12-RNAIi lines and selected four (lines R1, R4, R7, R8) as examples
for this study. Expression of CPK12 was down-regulated in these RNAI lines, and the level of CPK12
mRNA gradually decreased from line R8 to line R1, creating a gradient of CPK12 expression levels
(Figure 1). In addition, the expression of a control gene EF-1a (Elongation Factor-1a), which is not
related to salt-stress, was not affected in those CPK12-RNA:i lines (Figure 1).
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Figure 1. The expression of CPK12 (Ca’*-Dependent Protein Kinase 12) and EF-1a (Elongation Factor-1a) in
WT and CPK12-RNAi mutant. The mRNA levels (relative units, normalized relative to the mRNA level
of the wild-type GL1 taken as 100%) of CPK12 and EF-1x, estimated by qRT-PCR, in the non-transgenic
GL1 (WT) and four different transgenic CPK12-RNA!i lines (indicated by R8, R7, R4, and R1). Values are
mean =+ standard error from three independent experiments. Columns labeled with different letters
indicate significant differences at p < 0.05.

2.2. Down-Regulation of CPK12 Results in NaCl Hypersensitivity in Seedling Growth

We next examined whether CPK12 affects seedling growth under salt stress. Seeds from the
CPK12-RNAi mutant and GL1 plants were sown on medium containing various concentrations
of NaCl. The presence of 110-150 mM NaCl inhibited CPK12-RNAi mutant growth. In addition,
the cotyledons of the CPK12-RNAi mutants were chlorotic compared with GL1 seedlings (Figure 2).
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Figure 2. Down-regulation of CPK12 results in NaCl-hypersensitive seedling growth. Seeds were
planted in NaCl-free (0 mM) medium or media containing 110, 120, 130, 140, or 150 mM NaCl, and
seedling growth was investigated 10 days after stratification. Scale bars, 1 cm.

CPK12-RNAi mutants exhibited the same post-germination seedling growth status as GL1 plants
in the free of NaCl medium; however, compared with GL1 plants, NaCl suppressed root growth
of CPK12-RNAi mutants more strongly, the reduction in the growth of salt-stressed CPK12-RNAi
seedlings was more pronounced than for GL1 seedling (Figure 3). Taken together, these results suggest
that CPK12 is involved in salt-stress tolerance in Arabidopsis.
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Figure 3. Down-regulation of CPK12 results in NaCl-hypersensitive root growth. (A) Seeds were
planted in NaCl-free (0 mM) medium or media containing 110, 120, 130, 140, 150, or mM NaCl,
and root growth was detected 10 days after stratification. Scale bars, 0.5 cm. (B) Root lengths are
mean = standard error from three independent experiments. Thirty plants were measured for each
genotype in each treatment. The mean values of root lengths are labeled with letters in the same group
to denote significant differences (p < 0.05).
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2.3. Salt Stress Induced the Ca®* Elevation in Root Tissue

We examined the Ca* level in the CPK12-RNAi plants and wild type plants GL1 after salt stress
using the Ca®* specific probe, Rhod-2 AM. In the absence of salt treatment, the relative fluorescence
intensity was not significantly different between GL1 and CPK12-RNAIi plants, except the R1 line,
probably due to the lowest expression of CPK12 in R1 line. Under salt treatment, as expected, the Ca?*
levels in the roots of CPK12-RNAIi plants and GL1 increased (Figure 4).
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Figure 4. Ca®* levels within roots of GL1 and CPK12-RNAi plants. (A) Seven-day-old seedlings
were transferred to MS medium supplemented with (100 mM) or without NaCl (0 mM) for 12 h,
then stained with the CaZ*-specific fluorescent probe Rhod-2 AM for 1 h at room temperature.
Orange-red fluorescence within cells was detected at the apical region of roots under a Leica confocal
microscope. Representative confocal images show cytosolic Ca?* content in plant roots. Scale bars,
100 um. (B) The relative fluorescence intensity (£SD) represents the mean of 10 independent seedlings.
The mean values of Ca?* fluorescence are labeled with letters in the same group to denote significant
differences (p < 0.05).
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2.4. Down-Regulation of CPK12 Leads to Na* Accumulation in Root Tissue

To investigate the cause of the observed hypersensitivity of CPK12-RNAi mutants to salt stress,
sodium accumulation in root cells was examined using the sodium-specific dye CoroNa-Green. Under
no salt stress, CoroNa-Green fluorescence was almost undetectable in the root cells of CPK12-RNAi
and wild-type plants because of low Na* content in root cells. Under NaCl treatment, Na* levels in
the roots of CPK12-RNAI plants increased and were higher than levels in GL1 plants (Figure 5).
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Figure 5. Na* levels in root cells of wild-type (WT) GL1 and CPK12-RNAI plants under salt stress.
(A) Seven-day-old seedlings were transferred to MS medium supplemented with (120 mM, 150 mM) or
without NaCl (0 mM) for 12 h, then seedlings were treated with CoroNa-Green AM (green fluorescence,
sodium-specific) for 1 h. Green fluorescence in root cells was observed at the apical region of roots
using a Leica confocal microscope. Typical images show Na* content in plant roots. Scale bars, 100 pm.

(B) The mean relative fluorescence values marked with letters in the same group represent significant
differences (p < 0.05).

To determine whether CPK12 contributed to the regulation of ion homeostasis, NMT
(Non-invasive Micro-test Technique) was used to record root Na* fluxes in the CPK12-RNAi plants
and GL1 plants under a long-term NaCl treatment (0, 110, 120, 130 mM; 7 d). In the absence of salt
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stress, Na* efflux in the apical region of roots was not significant between CPK12-RNAi plants and
wild type GL1 plants. However, long-term salt treatment caused a rise in Na* efflux in GL1 plants
and CPK12-RNAi mutants, but this was more pronounced in GL1 plants than in CPK12-RNAI plants
(Figure 6). These observations indicate that CPK12 participates in salt-stress tolerance by regulating
ion balance in root tissue.
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Figure 6. Na* flux in GL1 and CPK12-RNAI plants. Seeds were germinated for one week in a vertical
direction on MS agar medium containing 0, 110, 120, 130 mM NaCl. Continuous NMT recording were
applied at the meristem region of the root tips. Each column is the mean of six independent seedlings;
bars show the standard error of the mean. Columns marked with letters in the same group indicate
significant differences at p < 0.05.

2.5. Down-Regulation of CPK12 Results in HyO, Burst and Accumulation

ROS accumulates when plants are exposed to salt stress, so we investigated H,O, levels
in CPK12-RNAi plants using a HyO,-specific fluorescent probe, HyDCE-DA. In the NaCl shock
condition, the levels of HyO, in CPK12-RNAi plants were higher than GL1 plants (Figure 7). The salt
stress-induced H,O, accumulation in Arabidopsis was also detected after 12 h or 24 h treatment;
compared with GL1 plants, the level of H,O, in CPK12-RNAi plants was significantly higher after
exposure to high NaCl concentrations (Figure 7).

A wr RS RI R4 RI B
0 mM 40r == wr
> = R8 -
3 = R7
. c 30k R4
Shmﬂ(l% II I’ II II E % - :
& | w2 et
| S 2 20t . é:::
12h 3T = 0
i =
6~ 10fb .ab_ a Eé:::
= : E%:::
24 h | g =7 EZ&:
1 Control Shock 12h 24 h

Figure 7. Accumulation of H,O, in the root tips of GL1 and CPK12-RNAi plants exposed to salt stress.
(A) After germinating seven days, the Arabidopsis seedlings were transferred to MS medium containing
0 or 100 mM NaCl for 10 min, 12 h, or 24 h. These seedlings were incubated with HyDCF-DA for 5 min.
The green fluorescence within cells at the apical region of roots was detected using a Leica confocal
microscope. Scale bars, 100 um. (B) The relative fluorescence intensity (+SD) represents the mean of 10
Arabidopsis seedlings. The mean values of HyO, fluorescence are labeled with letters in the same group
to denote significant differences (p < 0.05).
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We measured the activities of antioxidant enzymes, such as SOD, CAT, and APX, in GL1 and
CPK12-RNAi plants. In the absence of salt treatment, the activities of SOD and CAT were not
significantly different between GL1 and CPK12-RNAIi plants, but the activity of APX in CPK12-RNAi
plants was lower than GL1. Under salt stress conditions, the activity of SOD in GL1 was higher than
CPK12-RNAI plants, but CAT and APX were lower in CPKI12-RNAi plants, when compared with GL1
(Figure 8). Taken together, these data imply that CPK12 is involved in the elimination of HyO, under
salt stress.
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Figure 8. Effect of NaCl on activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate
peroxidase (APX) in wild-type (GL1) and CPK12-RNAi lines. Seven-day-old seedlings were transferred
to MS medium supplemented with or without 100 mM NacCl for 10 d. The activities of antioxidant
enzymes were analyzed. Each column shows the mean of three replicated experiments and bars
represent the standard error of the mean. Columns labeled with letters in the same group denote
significant difference at p < 0.05.

2.6. Down-Regulation of CPK12 Suppressed Cell Viability in Arabidopsis Roots

Previous studies showed that a high level of NaCl could reduce viability and increase programmed
cell death in plants [64-67]. Cell viability was assayed with fluorescein diacetate (FDA) to determine
whether salt stress could induce cell death in CPK12-RNAi plants. FDA staining showed an effect
of salt treatment on cell viability in the elongation zone of roots. Wild-type GL1 and CPK12-RNAi
plants grown in control conditions (NaCl-free Murashige-Skoog (MS) medium) showed clear FDA
fluorescence with the cytoplasm of root cells, features indicating that the cells were viable. However,
in salt-stressed CPK12-RNAIi plants, the FDA fluorescence was undetectable in a number of root
cells, and the fluorescence intensity was reduced (Figure 9). Compared to wild-type GL1 plants,
the CPK12-RNAI plants exhibited lower cell viability during the period of salt stress.
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Figure 9. Effect of salt stress on cell viability in wild-type (GL1) and CPK12-RNAI lines. (A) Seven-day-
old seedlings were transferred to MS medium supplemented with or without 100 mM NaCl for 12 h.
Cell viability was assayed with fluorescein diacetate (FDA, green) stain. Representative images of
apical region of roots are shown. Scale bars, 100 pm. (B) The fluorescence intensity (+SD) represents
the mean of 10 independent seedlings. The mean values of FDA fluorescence are labeled with letters in
the same group to denote significant differences (p < 0.05).
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2.7. Down-Regulation of CPK12 Alters the Expression of Some Salt-Responsive Genes

We tested the expression of the following salt-related genes in the GL1 and CPK12-RNAi plants:
SOS1, SOS2, and SOS3 [4,7-11], AHA1 and AHA2 [68], PER1 [69,70], SOD, CAT, and APX. In the
absence of salt treatment, the expression of AHAI was not significantly difference between wild-type
GL1 plants and CPK12-RNAIi plants, but the expression of SOS1, SOS2, SOS3 AHA2, and PER1 was
down-regulated in CPK12-RNAI plants (Figure 10). Under salt stress, down-regulation of CPK12
did not affect expression of AHA2 and PER1, but significantly reduced expression of SOS1 in R8, R7,
and R4 plants, SOS2 in R7, R4, and R1 plants, AHA1 in R8, R7, R4, and R1 plants (Figure 10). In the
absence of salt treatment, the expression of SOD and CAT was down-regulated in CPK12-RNAi plants,
and APX was down-regulated in R8, R7, and R4 plants. Under salt stress, the expression of APX
was down-regulated in R1. It is interesting that the expression of SOD, CAT, and APX was nearly
undetectable in R§ and R7 plants, whether under salt or no-salt stress (Figure 10).
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Figure 10. Changes in CPK12 expression alter expression of a subset of genes involved in salt stress
responses. The mRNA levels in the seedling of wild-type GL1, CPK12-RNAi mutants were determined
by gRT-PCR. One-week-old seedlings were transferred to MS medium with and without the addition
of 100 mM NaCl for ten days. The expression of salt stress responsive genes was analyzed. The gene
expression levels were normalized relative to the value of the GL1 plants. Each value is the mean of the
three independent determinations; columns labeled with letters in the same group indicate significant
differences (p < 0.05).

3. Discussion

3.1. CPK12 Is Involved in Salt Stress Tolerance in Plants

In this investigation, Arabidopsis CPK12 was identified and characterized as a regulatory
component involved in salt tolerance in terms of seedling growth. Previously we reported that CPK12
negatively regulates ABA signal transduction [43,44]. These results together imply an important
function of CPK12 in regulating plant salt stress tolerance. Of note, although the expression of
some salt-related genes were down-regulated in CPK12-RNAi plants without salt stress treatment
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(except AHA1), down-regulated CPK12 did not influence post-germination seedling growth, and the
expression of a control gene EF-1« that is not related to salt-stress, indicating that CPK12 is involved
in salt stress signal transduction, but is not related to seedling development. Previously we reported
that CPK27’s function in salt stress tolerance [54], although CPK12 and CPK27 had similar functions.
Our results suggest that the function of CPK12 may not be redundant for CPK27, because independent
down-regulation of CPK12 or CPK27 can change the responses of Arabidopsis seedlings to salt stress.
Current evidence suggests that CDPKs regulate plant tolerance to abiotic stress through ABA and Ca?*
pathways. For example, CPK10 regulates plants response to drought stress through ABA- and Ca?*-
mediated stomatal movements [45]; CPK4 and CPK11 are positive regulators in Ca?*-mediated ABA
signaling [42]. Thus, CPK12 and other CDPK members constitute a complicated regulation network,
which functions in plant adaptation to salt and drought stresses.

3.2. CPK12 Regulates Na* Balance in Salt-Stressed Plants

The ability to retain ion balance is very important for plant survival in saline environments [1,5,71].
Here, under salt stress, wild-type plants GL1 and CPK12-RNAi absorbed and accumulated Na* in roots;
when compared with GL1, Na* accumulation was significantly higher in the roots of CPK12-RNAi
plants, and net Na* efflux was reduced in CPK12-RNAi roots compared to GL1 plants. There are
many CDPKs that can interact and regulate the activity of ion transporters. Under drought stress,
AtCPK23 phosphorylates the guard cell anion channel SLAC1, which is collaborated with activation
of the potassium-release channel GORK to regulate stomatal movement [47]. AtCPK3 and AtCPK6
are specifically expressed in guard-cell, regulate guard cell S-type anion channels and contribute
to stomatal movement [49]. AtCPK13 phosphorylates two inward K* channels, KAT1 and KAT2,
to restrict the stomatal aperture, and AtCPK3 phosphorylates and activates a two pore K* channel
TPK1 [53,72]. Thus, like other CDPK members, it is speculated that CPK12 may regulate Na* balance
in salt-stressed Arabidopsis seedlings. Compared with previous studies wherein some CDPKs were
localized in guard cells to regulate stomatal aperture, our results give a new insight and show that
CPK12 may function in root systems to regulate ion balance. CDPKs therefore constitute a network,
which at the whole-plants level in roots and shoots, uses interaction and phosphorylation to regulate
ion transporters or channels to improve plant tolerance to drought or salt stress over the short term.

3.3. CPK12 Regqulates ROS Homeostasis in Salt-Stressed Plants

ROS, such as the superoxide anion, accumulates in stressed plants. Plasma membrane NADPH
oxidases generate superoxide anions, which are transformed into H,O, by superoxide dismutase [20].
In this study, compared with GL1 plants, CPK12-RNAi plants accumulated more H,O, in roots,
irrespective of the duration of NaCl treatment. Without salt-stress, compared with GL1, the expression
of CAT gene was down-regulated in CPK12-RNAI plants, but the activity of CAT was not reduced,
and the level of HyO, was not significantly different between GL1 and CPK12-RNAi plants.
Furthermore, under salt stress treatment, the activity of SOD was higher in CPK12-RNAi plants
than GL1, but the activity of CAT was lower in CPK12-RNAi plants than GL1. The enhanced activity
of SOD in CPK12-RNAI plants results in HyO, production, but the reduced activity of CAT lead to
H,0; accumulation; these results suggest that down-regulated CPK12 cannot scavenge NaCl-induced
H;,0O; bursts. Previous studies showed that down-regulated expression of CDPKs, which are related
to antioxidases, may cause the accumulation of HyO,. Arabidopsis cpk27-1 mutants accumulate more
H,0; in roots [54]. Potato StCDPK4 and StCDPKS5 regulate the production of ROS [73]. In rice,
OsCPK12-OX plants accumulate less H,O, under conditions of high salinity, and this accumulation is
more pronounced in oscpk12 mutants and OsCPK12 RNAI plants [56]. Similarly, excess HyO, leads to
oxidative damage and growth inhibition in CPK12-RNAi plants under salinity conditions. In contrast,
Arabidopsis cpkb cpk6 cpk11 cpk4 quadruple mutants harbor decreased ROS content, suggesting that these
CDPKs regulate ROS production potentially by phosphorylating the NADPH oxidase RBOHB [74].
Therefore, CDPKSs play key roles in regulating ROS production and accumulation in plants [75].
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3.4. CPK12 Functions with Potential Substrates in Salt Stress Signaling

In recent years, many substrates of CDPKs were identified. The transcription factor ABF4 is a
substrate of CPK4/11 in Arabidopsis [42]. CPK12 can phosphorylate type-2C protein phosphatase
ABI2 [43]. HSP1 interacts with CPK10 [45], SLAC1 is an interacting partner of CPK21 and
CPK23 [47], and CPK13 specifically phosphorylates KAT2 and KAT1 [53]. In nutrient signaling,
CPK10, CPK30, and CPK32 could potentially phosphorylate and activate all NLPs and possibly other
transcription factors with overlapping or distinct target genes to support transcriptional, metabolic,
and system-wide nutrient-growth regulations [76]. Potato CDPK5 phosphorylates the N-terminal
region of plasma membrane RBOH (respiratory burst oxidase homolog) protein and participates
in RBOHB-mediated ROS bursts, conferring resistance to near-obligate pathogens but increasing
susceptibility to necrotrophic pathogens [77]. In this work, CPK12 was involved in plant adaptation to
salt stress by regulating Na* and H,O, homeostasis. These results indicate that CPK12 may interact
with and phosphorylate several salt stress-related proteins as potential substrates in its regulatory
function. To deeply demonstrate the regulatory mechanism of CPK12, the downstream components
of CPK12 need to be identified, and their relationship with the whole complex CDPK regulation
network need to be elucidated. Although the functions of CDPKs are widely identified in recent
years, the complete CDPK signal transduction pathway is still not clearly illustrated, as the CDPK
transduction network is very complex. Future progress is likely to identify sensors, channels, and
other regulators involved in generating complex Ca?* signatures in plant responses to hormones and
environmental cues.

4. Materials and Methods

4.1. Plant Materials, Constructs, and Arabidopsis Transformation

Arabidopsis thaliana GL1 (Col-5) was used in this work for generating the CPK12-RNAi plants.
A specific 242-bp fragment of CPK12 (At5g23580) corresponding to the region of nt 6 to 247 was
amplified with forward primer 5-ACGCGTCGACGAACAAACCAAGAACCAGATGGGTT-3' and
reverse primer 5-CCGCTCGAGCGTTGGGGTATTCAGACAAGTGATG-3'. This fragment was
inserted into the pSK-int vector, which was digested with the Xhol and Sall. The same fragment,
amplified with forward primer 5-AACTGCAGGAACAAACCAAGAACCAGATGGGTT-3' and
reverse primer 5'-GGACTAGTCGTTGGGGTATTCAGACAAGTGATG-3/, was inserted into the
pSK-int carrying the previous fragment. The entire RNAi cassette linked with actin 11 intron was
excised from pSK-int vector, and inserted into the Sacl Apal digested vector pSUPER1300(+) [78].
The construct was introduced into Agrobacterium tumefaciens GV3101 and transformed into GL1 by
the floral dip method [79]. Transgenic plants were grown on MS agar plates containing hygromycin
(50 ng/mL) to screen for positive seedlings. The homozygous T3 seeds of the transgenic plants were used
for further analysis. Plants were grown in a growth chamber at 20-21 °C on MS medium at about 80 pumoL
photons m~2-s~1, or in compost soil at about 120 umoL photons m~2:s~! over a 16-h photoperiod.

'S ‘S

4.2. gqRT-PCR Analysis

To assay the gene expression in the transgenic plants, quantitative real-time PCR analysis
was performed with the RNA samples isolated from 10-day-old seedlings. For CPK12, qRT-PCR
amplification was performed with forward primer 5-CGAAACCCTCAAAGAAATAA-3' and reverse
primer 5'-TGGTGTCCTCGTACGCACTCTC-3'. The primers specific for salt-related genes were:
forward 5-CACAAACATTTACCGAAAACCA-3' and reverse 5-CAAATTTGCAAAGCTCATATCG-3'
for AHAT (At2g18960); forward 5'-TGACTGATCTTCGATCCTCTCA-3 and reverse 5'-GAGAATGT
GCATGTGCCAAA-3' for AHA2 (At4g30190); forward 5'-CGTGCCCTTCATATTGTTGG-3' and reverse
5'-GACGCCATCAACAACGAGTC-3' for PER1 (At1g48130); forward 5-GTGAAGCAATCAAGC
GGAAA-3' and reverse 5-TGCGAAGAAGGCGTAGAACA-3' for SOS1 (At2g01980); forward
5-GCGAACTCAATGGGTTTTAAGT-3 and reverse 5'-CTTACGTCTACCATGAAAAGCG-3' for SOS2
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(At5g35410); forward 5-CCGGTCCATGAAAAAGTCAAAT-3' and reverse 5'-CTCTTTCAATTCTT
CTCGCTCG-3' for SOS3 (At5g24270); forward 5'-AGGAAACATCACTGTTGGAGAT-3’ and reverse
5-GAGTTTGGTCCAGTAAGAGGAA-3' for SOD (At1g08830); forward 5-AGGATCAAACTTT
GAGGGGTAG-3' and reverse 5'-CTTGTGGTTCCTGGAATCTACT-3’ for CAT (At1g20620); forward
5-GATGTCTTTGCTAAGCAGATGG-3' and reverse 5-GAGTTGTCGAAGATTAGAGGGT-3' for APX
(At1g07890); forward 5-CACCACTGGAGGTTTTGAGG-3' and reverse 5-TGGAGTATTTGGGG
GTGGT-3' for EF-1a (At5g60390). Amplification of ACTIN2/8 (forward primer 5'-GGTAACATTGTG
CTCAGTGGTGG-3, reverse primer 5'-AACGACCTTAATCTTCATGCTGC-3') gene was used as an
internal control.

4.3. Phenotype Identification

For the seedling growth experiment, seeds were germinated after stratification on MS medium
supplemented with various concentrations of NaCl. Seedling growth was examined 10 days
after stratification.

4.4. Measurement of Cytosolic Ca’* Concentrations

For cytosolic Ca?* concentration analysis, the Ca®*-specific fluorescent probe Rhod-2 AM
(Invitrogen, Carlsbad, CA, USA) was used to measure the concentration of CaZ* as previously
described [80]. Briefly, CPK12-RNAi mutants and GL1 seedlings were treated with MS liquid solution
supplemented with or without 100 mM NaCl for 12 h. Then, control and salinized plants roots
were 2 pM Rhod-2 AM (prepared in MS liquid solution, pH 5.8) incubated in the dark for 1 h at
room temperature. Then, the Arabidopsis plants were washed four to five times with distilled water.
The image of Ca?* fluorescence in the probe-loaded roots was measured with a Leica SP5 confocal
microscope (Leica. Microsystems GmbH, Wetzlar, Germany), with emission at 570-590 nm and
excitation at 543 nm [80].

4.5. Detection of Cytosolic Na* Concentrations

Root cellular Na* levels were detected with Na*-specific fluorescent probe, CoroNa™ Green,
AM (Invitrogen, Carlsbad, CA, USA). Seedlings of wild-type GL1 and CPK12-RNAi mutants were
treated with 0, 120, or 150 mM NaCl in MS liquid solution for 12 h. Then, control and salinized
seedlings were incubated with CoroNa in the dark for 1 h, and washed 3—4 times with distilled
water subsequently. Na™ fluorescence was observed with a Leica SP5 confocal microscope (excitation:
488 nm; emission: 510-530 nm, Microsystems GmbH, Wetzlar, Germany) [25,80,81]. Image] software
(Version 1.48, National Institutes of Health, Bethesda, MD, USA) was used to quantify relative
fluorescence intensity. It is worth noting that there are several commercial Na* specific probes;
for example, SBFI, Sodium Green, CoroNa etc., Sodium Green displays a modest fluorescence increase
in response to Na* binding [82,83], while CoroNa is more suitable for detecting Na* in a wider range
of concentrations; and the selectivity of CoroNa is 4 times higher to Na* than to K* binding [82], but
CoroNa is not suitable for the detection of relatively low Na* changes in cells [83]. In this work, after
NaCl treatment, the roots absorbed and accumulated high levels of Na*, and Na* efflux was inhibited.
Our previous studies showed that CoroNa is suitable for detecting Na™ level after NaCl treatment in
tobacco, Arabidopsis, and Glycyrrhiza uralensis [84-86]; thus, we selected CoroNa Green to detect the
cytosolic Na* level in this work.

4.6. Net Fluxes Measurements of Na*

Net Na* flux was measured using the NMT technique (NMT-YG-100, Younger, Ambherst,
Massachusetts, USA) as described previously [12,80]. One-week-old seedling grown on MS medium
containing 0, 110, 120, 130 mM NaCl was washed 4-5 times with ddH,O and transferred to the
measuring chamber containing 10-15 mL measuring solution, which included 0.1 mM NaCl, 0.5 mM
KCl, 0.1 mM CaCl,, 0.1 mM MgCl,, and 2.5% sucrose, pH 5.8. After the roots were immobilized to
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the bottom of the chamber, Na flux measurements were started at 200-300 um from the root apex.
The Na* flux was continuously recorded for 17-20 min. The Na* flux was detected by shifting the
ion-selective microelectrode between two sites close the roots over a preset length (30 pm for intact
roots in this experiment) at a frequency in the range of 0.3-0.5 Hz. The electrode was stepped from
one site to another in a predesigned sampling routine, while the sample was also scanned with a
3-D microstepper motor manipulator (CMC-4). Pre-pulled and salinized glass micropipettes (4-5 pm
aperture, XYPG120-2; Xuyue Sci. and Tech. Co., Ltd., Beijing, China) were processed with a backfilling
solution (Na: 250 mM NaCl) to a length of approximately 1 cm from the tip, then front-filled with
about 10 um columns of selective liquid ion-exchange cocktails (Na: Fluka 71178). An Ag/AgCl
wire electrode holder (XYEHO1-1; Xuyue Sci. and Tech. Co., Ltd., Beijing, China) was used to make
electrical contact with the electrolyte solution. The reference electrode was DRIREF-2 (World Precision
Instruments, www.wpiinc.com). Ion-selective electrodes were calibrated prior to flux measurements
(The concentration of Na* was usually 0.1 mM in the measuring buffer for root samples). Na* flux was
calculated by Fick’s law of diffuseon: | = —D(dc/dx), where | represents the Na* flux in the x direction,
dc/dx is the Na*-concentration gradient, and D is the Na'* diffusion constant.

4.7. H,O, Production with Root Cells

A specific fluorescent probe, 2/,7'-dichlorodihydrofluorescein diacetate (H,DCF-DA; Molecular
Probes) was used for HyO; detection in the roots of GL1 plants and CPK12-RNAi plants. Shock and
short-term responses of H,O, to NaCl exposure were examined in this study.

Seven-day-old seedlings (GL1 and CPK12-RNAi) grown on MS medium were exposed to 0 or
100 mM NaCl for 10 min, 12 h, and 24 h and then incubated with 10 uM HyDCF-DA (prepared in liquid
MS medium, pH 5.7) for 5 min at room temperature in the dark. The HDCF-DA-loaded seedlings
were washed 3—4 times with liquid MS solution. DCF-specific fluorescence was examined under
a Leica SP5 confocal microscope (Leica Microsystem GmbH, Wetzlar, Germany), with excitation at
488 nm and emission at 510-530 nm. Relative H,DCF-DA fluorescence intensities in root cells were
measured with Image]J 1.48 (National Institutes of Health, Bethesda, MD, USA).

4.8. Activity Analyses of Antioxidant Enzymes

For the detection of antioxidant enzyme activities, after salt treatment for ten days, the Arabidopsis
seedling (0.2 g) was ground to a fine powder in liquid nitrogen, and then 2 mL ice-cold 50 mM
potassium phosphate buffer (pH 7.0) was added. After centrifugation at 12,000 g for 20 min,
the supernatant was used to detect the enzymatic activities of the antioxidant enzymes SOD, CAT,
and APX. The activities of antioxidant enzymes were determined using commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). SOD activity was measured using the Superoxide
Dismutase WST-1 Assay Kit, which, based on the xanthine/xanthine oxidase method, depended on the
production of O?~ anions. CAT activity was measured by analyzing the yellowish complex produced
by the reaction between H,O, and ammonium molybdate and calculating CAT activity by measuring
OD value at 405 nm. APX activity was estimated based on the reaction of ASA with H,O; to oxidize
ASA to MDASA; APX activity was calculated by measuring the reduced OD value at 290 nm. Activities
of SOD and CAT are expressed as units per milligrams of protein (U/mg protein). The activity of APX
is expressed as (U/g protein).

4.9. Cell Viability Analyses

Seven-day-old seedlings (GL1 and CPK12-RNAi) grown on MS medium were exposed to 0 or
100 mM NaCl for 12 h, and cell viability was measured by staining seedlings with FDA (Invitrogen,
Carlsbad, CA, USA). The confocal parameters were set as described in previous studies: the excitation
wavelength was 488 nm, and the emission wavelengths were 505 to 525 nm. Relative FDA fluorescence
intensities in root cells were measured with Image] 1.48 (National Institutes of Health, Bethesda,
MD, USA).
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4.10. Data Analysis

All experimental data were analyzed with SPSS version 17.0 software (IBM China Company Ltd.,
Beijing, China) for statistical evaluations. Statistical analysis were performed using one-way ANOVA.
Differences were considered significant at p < 0.05, unless otherwise stated.
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Abbreviations

ABA Abscisic Acid

APX Ascorbate Peroxidase

CAT Catalase

CDPK Ca”*-Dependent Protein Kinases

FDA Fluorescein Diacetate

H,DCF-DA  2/,7'-Dichlorodihydrofluorescein Diacetate
HSP Heat Shock Protein

MS Murashige-Skoog Medium

NADPH Nicotinamide Adenine Dinucleotide Phosphate
NLP NIN-Like Protein

NMT Non-Invasive Micro-Test Technique

qRT-PCR Quantitative Reverse Transcription PCR
RBOHB Respiratory Burst Oxidase Homolog Protein B
ROS Reactive Oxygen Species

SOD Superoxide Dismutase

SOS Salt overly sensitive
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