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Abstract: Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are
consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular
disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the
development and progression of cardiovascular and metabolic diseases. In our previous studies,
we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying
oxidative stress and inflammation as central players in mediating vascular function. The present
study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing
vascular consequences following exposure to aircraft noise. C57BL/6J mice were treated with the
HO-1 inducer hemin (25 mg/kg i.p.) or the NRF2 activator dimethyl fumarate (DMF, 20 mg/kg p.o.).
During therapy, the animals were exposed to noise at a maximum sound pressure level of 85 dB(A)
and a mean sound pressure level of 72 dB(A). Our data showed a marked protective effect of both
treatments on animals exposed to noise for 4 days by normalization of arterial hypertension and
vascular dysfunction in the noise-exposed groups. We observed a partial normalization of noise-
triggered oxidative stress and inflammation by hemin and DMF therapy, which was associated with
HO-1 induction. The present study identifies possible new targets for the mitigation of the adverse
health effects caused by environmental noise exposure. Since natural dietary constituents can achieve
HO-1 and NRF2 induction, these pathways represent promising targets for preventive measures.

Keywords: environmental risk factors; aircraft noise exposure; inflammation; endothelial dysfunc-
tion; oxidative stress; heme oxygenase-1; NRF2

1. Introduction

Most traditional cardiovascular risk factors such as diabetes, smoking, and hyper-
lipidemia are associated with vascular complications such as endothelial dysfunction [1].
During the last decades, it has been shown that environmental stressors such as air pollution
and excess of noise may facilitate the development of cardiovascular diseases (CVD) [2,3].
We previously identified oxidative stress and inflammation as central molecular mecha-
nisms incurring vascular dysfunction following noise exposure [4,5]. A peak sound level
of 85 db (A) and a mean sound level of 72 db (A) applied for 1, 2, and 4 days caused an
increase in systolic blood pressure and circulating stress hormones, as well as oxidative
stress and inflammation, resulting in endothelial dysfunction.
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From a clinical perspective, because cardiovascular diseases are characterized by
oxidative stress and inflammation, the actions of antioxidant enzymes could represent a
new pharmacological strategy. Heme oxygenase-1 (HO-1) catalyzes the degradation of
heme into ferrous iron (Fe2+), carbon monoxide (CO), and biliverdin, which is subsequently
converted into bilirubin [6]. The principal physiological function of these catalytic prod-
ucts is the protection from oxidative stress and inflammation [7,8]. Accordingly, in some
studies of CVD, the HO-1 activator hemin demonstrated beneficial therapeutic effects, such
as normalization of vascular reactive oxygen species levels or improvement of vascular
function [9–11]. In addition, nuclear-factor erythroid 2-related factor 2 (NRF2) regulates
the expression of some human genes that are involved in the antioxidant response and
participates in multiple homeostatic functions [12], including HO-1. It is for this reason
that NRF2 activators, including dimethyl fumarate (DMF), have been utilized in stud-
ies demonstrating improvement in antioxidant response [13–16]. Therefore, we aimed
to investigate the role of HO-1 induction or NRF2 activation in noise-induced vascular
dysfunction, arterial hypertension, oxidative stress, and inflammation using treatment
with hemin and DMF.

2. Materials and Methods
2.1. Animals

All animals were treated in accordance with the Guide for the Care and Use of Labo-
ratory Animals as adopted by the US National Institutes of Health with approval granted
by the Ethics Committee of the University Medical Center Mainz and the Landesunter-
suchungsamt Rheinland-Pfalz (Koblenz, Germany; permit numbers 23 177-07/G 18-1-084
and 23 177-07/G 15-1-094). We used male C57BL/6J mice with an age between 6 and
12 weeks purchased from Janvier. The mice were housed in a standard 12 h light/dark
cycle with free access to food and water. Mice were subjected to activator HO-1 treatment
(hemin or DMF) and noise exposure for the subsequent 4 days. The different animal
programs were conducted on different days with in-day controls and noise groups for
each experiment.

2.2. Sacrifice of Animals, Organ Removal, and Sample Preparation

Animals were terminally anesthetized by isoflurane, killed by cervical dislocation, and
dissected from the abdomen. The diaphragm and ribs were cut, and 200 µL of 1:6 heparin
was injected into the beating heart to prevent clotting. Blood was collected via syringe
and transferred into monovettes (Sarstedt, Nümbrecht, Germany) for centrifugation, and
the plasma was removed and frozen for future measurements. Afterwards, heart, kidney,
liver, aorta, and brain were carefully dissected and transferred to ice-cold Krebs-Hepes
(KH) buffer (99 mM NaCl, 4.69 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 25 mM NaHCO3,
1.03 mM K2HPO4, 20 mM Na-Hepes, 11 mM D-glucose; pH 7.35), cleaned, and portioned.
All tissue samples were stored at −80 ◦C without solutions (dry). The fresh aorta was
placed in a Petri dish with KH buffer; the vessels were carefully cleaned off adhesive
adipose and connective tissue. Subsequently, the aortas were cut into rings (3–4 mm
length) and kept on ice in KH buffer for isometric tension studies. For protein extraction,
the aortic (and other organ) tissue was transferred to KH buffer containing different
protease inhibitors (10 µg/mL aprotinin, 5 µg/mL leupeptin, and 7 µg/mL pepstatin).
For homogenization, frozen aorta or other organs were pulverized in liquid nitrogen
using a mortar and pistil, and the tissue powder was transferred to homogenization
buffer consisting of KH buffer containing 1% Triton X and phosphatase/protease inhibitor
cocktail (Sigma-Aldrich, Schnelldorf, Germany). After removal of the insoluble parts by
centrifugation, the protein concentration was determined by Bradford assay. Tissue samples
for mRNA extraction were stored separately at −80 ◦C, and workup was according to a
standard phenol extraction method, followed by RNA quality control using a NanoDrop
device (Thermo Fisher Scientific, Langenselbold, Germany).
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For cryosectioning, aorta rings of 4 mm length and small parts of frontal cortex from
the brain and parts of the heart were used. The different tissue samples were placed into
small reservoirs of aluminum and filled with 1 mL of a viscous resin Tissue-Tek® (O.C.T.,
Tissue-Tek, Sakura, Staufen, Germany). Rapid freezing of the resin and the embedded
tissue samples was initiated by placing the reservoirs in liquid nitrogen. Afterwards, the
containers were removed from the block of frozen resin. The prepared cryosamples were
stored at −80 ◦C and cut with a cryostat (CM3050S, Leica Biosystems GmbH, Nussloch,
Germany) at −25 ◦C. The resulting cryosections were 8 µm in thickness and were placed
on a microscope slide (Thermo Fisher Scientific, Langenselbold, Germany). The slides were
stored at −80 ◦C until further evaluation.

2.3. Hemin Treatment

C57BL/6J mice were randomly assigned to four groups: control (CTR), hemin-treated
(HEMIN), noise-exposed (NOISE), and hemin-treated plus noise-exposed (HEMIN + NOISE).
Noise was applied as a regimen of 4 days of successive exposure. HO-1 induction was
carried out by intraperitoneal injection (IP) of hemin (25 mg/kg [17], and stock solution
was made freshly in 25 mg/mL dimethyl sulfoxide (DMSO) and diluted 1:3 in PBS) every
2 days during aircraft noise exposure. The time schedule of all treatments is shown in
Figure 1.
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Figure 1. Scheme for treatments and noise exposure. Male C57BL/6J mice were acclimatized to blood
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DMF. Hemin was administered once every 2 days during aircraft noise exposure via intraperitoneal
injection (IP) injection (25 mg/kg). DMF was administered via daily gavage at a dose of 20 mg/kg.
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2.4. Dimethyl Fumarate Treatment

C57BL/6J mice were randomly assigned to four groups: control (CTR), DMF-treated
(DMF), noise-exposed (NOISE), and DMF-treated plus noise-exposed (DMF + NOISE).
DMF is an activator of NRF2 and an inducer of HO-1 and other protective enzymes (e.g.,
superoxide dismutases and glutathione peroxidase) and was used to examine the NRF2
signal cascade, which encompasses HO-1 response. DMF was dissolved into drinking
water at a concentration of 1.6 mg/mL for administration by gavage every day during noise
exposure at a dose of 20 mg/kg. The protocol was adopted as previously described [15,18].
The time schedule of all treatments is shown in Figure 1.

2.5. Noise Exposure

Mice were continuously exposed to noise (24 h exposure protocol) using repetitive
playbacks of a 2 h long noise pattern of 69 aircraft noise events with a duration of 43 s [4,5].
The maximum sound pressure level was 85 dB(A), and the average sound pressure level
(SPL) Leq (3) was 72 dB(A), which does not lead to hearing loss. The detailed protocol
was previously published [19]. Noise events were interrupted by random silent periods to
prevent early adaptation. During the silent periods, the mice were exposed to a background
noise level of approximately 50 dB(A). Loudness and corresponding sound pressure levels
were adjusted with a class II sound level meter (Casella CEL-246) within one of the cages
at initial setup. The SPLs during the exposure procedures were continuously recorded and
controlled daily.

2.6. Noninvasive Blood Pressure (NIBP)

Noninvasive blood pressure (NIBP) measurements were performed daily throughout
the noise exposure regimen (CODA 2, Kent Scientific, Torrington, CT, USA) [4,5]. Baseline
measurement was done 1 day before noise exposure started, and then blood pressure was
measured daily during the noise exposure regimen (see Figure 1). Animals were placed in
restrainers on a preheated plate (32 ◦C). The CODA System comprises two tail-cuffs for
the measurement of blood pressure. An occlusion cuff and a volume–pressure recording
cuff (VPR) were placed on the tail of the mice to measure volume–pressure changes in
the tail vein upon occlusion and release. Data were acquired by CODA Data Acquisition
Software. All measurements of the finally recorded NIBP values were preceded by three
training sessions to acclimate the animal to the general procedure before the measurement
that was used for the final dataset. The mean values of 10 NIBP readings were used for
each animal’s daily value.

2.7. Isometric Tension Studies

We evaluated endothelial function through isometric tension studies. This assay
records relaxation patterns of aortic ring segments (4 mm) upon subjection to vasodilators
and vasoconstrictors in chambers. The rings were preconstricted with prostaglandin F2α,
resulting in roughly 80% of the maximal KCl-induced tone. Concentration–relaxation
curves were performed in response to increasing concentrations of acetylcholine (ACh)
and nitroglycerin (GTN) as described [20,21].

2.8. Detection of Oxidative Stress and Inflammation in Cortical, Cardiac, and Aortic Tissues

Reactive oxygen species (ROS) formation was determined using dihydroethidium
(DHE, 1 µM)-dependent fluorescence microtopography in cryosections of the aorta, frontal
cortex from the brain, and the heart as described [22,23]. Cryosections were incubated
with DHE for 30 min in PBS. From each animal, three slices were stained and quantified,
yielding three pictures per animal that were averaged to produce one mean value (the data
point shown in the graphs). ImageJ was used to quantify the images. Data normalization
was first based on having slices from all groups on the same object holder (in order to
avoid differences in staining from day to day). Second, all fluorescence staining data
were normalized to the same tissue area by putting a “box” with a defined area on the
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stained tissue image as described in detail previously [24]. By this way, we ensure that the
fluorescence from each picture is normalized to a specific area.

2.9. Detection of Bilirubin by HPLC Method Plasma

A modified HPLC-based method to quantify bilirubin levels was used [25]. Plasma
(200–300 µL) was diluted 1:1 with acetonitrile (Honeywell, Germany) and centrifuged at
20,000× g for 10 min at 4 ◦C, and 200 µL of clear supernatant was transferred to a glass vial
and put into the HPLC autosampler together with the bilirubin standards (Sigma-Aldrich).
Standards of 5 µM bilirubin in H2O/acetonitrile (1:1) were used with a total volume of
200 µL. The HPLC system comprised a control unit, two pumps, a mixer, detectors, a
degasser, an autosampler (AS-2057 plus) from Jasco Series 2000 (Groß-Umstadt, Germany),
and a UV–VIS detector (UV-2077 Plus). The column (C18-Nucleosil 100 − 3 (125 × 4))
was purchased from Macherey-Nagel, Düren, Germany. The high-pressure gradient was
based on the mobile phases 90% acetonitrile and 5 mM citrate buffer, pH 2.2. The gradient
conditions were as follows: minute 00:00, 50% A: 50% B; minute 10:00–18:00, 0% A: 100%
B; minute 19:00–20:00, 50% A: 50% B. The flow was set to 1 mL/min, and bilirubin was
detected by its absorption at 450 nm at a retention time of 15 min and 45 s.

2.10. Western Blotting and Dot Blot Analysis

Protein samples were analyzed by Western blot analysis for heme oxygenase-1 (HO-1,
mouse monoclonal, 1:10,000, Abcam, Cambridge, MA, USA) and polyclonal rabbit β-actin
(1:2500, Sigma-Aldrich) for normalization of loading and transfer. Additionally, we used
the following antibodies for dot blot analysis of blood plasma: interleukin-6 (IL-6, rabbit
polyclonal, 1:1000, Abcam, Cambridge, MA, USA), 3-nitrotyrosine (3-NT, rabbit polyclonal,
1:1000, Millipore, Burlington, USA), and 4-hydroxynonenal (4-HNE, goat polyclonal, 1:1000,
Sigma-Aldrich). Goat anti-mouse and goat anti-rabbit peroxidase-coupled secondary
antibodies (1:10,000, Vector Laboratories, CA, USA) were used for the detection of positive
bands along with enhanced chemiluminescence (ECL) development [26]. Equal loading
of protein samples in dot blot analysis was ensured by Bradford-based determination of
protein concentration and loading of 25 µg of heart or plasma protein to the nitrocellulose
membrane in each well.

2.11. Quantitative Reverse Transcription Real-Time PCR (qRT-PCR)

An amount of 125 ng of total RNA from heart tissue was subjected to quantitative re-
verse transcription real-time PCR (qRT-PCR) analysis using a QuantiTect Probe RT-PCR kit
(Qiagen) as described previously [27]. TaqMan® Gene Expression assays (tested probe and
primer sets “off-the-shelf”) for TATA box-binding protein (TBP, Mm_00446973_m1) were
used as an endogenous housekeeping gene, to which all other mRNA expressions were
normalized. Probes were used as template for subsequent qRT-PCR analysis using specific
primers listed below targeting eNOS (Mm_00435204_m1), HO-1 (Mm_00516004_m1), IL-6
(Mm00446190_m1), and cluster of differentiation 68 (CD68, Mm_00839636_m1). In combina-
tion with the Taqman Mastermix (buffer, nucleotide, Taq polymerase, reverse transcriptase),
this allows “one-step” qRT-PCR. The quantification of relative mRNA expression levels
was based on the comparative ∆∆Ct method. The expression of all target gene mRNAs in
the different treatment groups was expressed relative to that of control (∆∆Ct).

2.12. Statistical Analysis

Results are expressed as means ± SEM. We applied two-way ANOVA (with Tukey’s
correction for comparison of multiple means) for comparisons of all parameters as the
experimental setup contained two variables per group (noise exposure and drug treatment).
We used Prism for Windows, version 8.1, GraphPad Software Inc., for statistical analyses.
p-Values < 0.05 were considered statistically significant, and symbols of significance are
explained in the figure legends.
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3. Results
3.1. Effects of Aircraft Noise, Hemin, and DMF on HO-1 Expression and Its Subproduct Bilirubin

The mRNA expression of HO-1 in cardiac tissue was increased in all treatment groups
by trend, whereas the most significantly upregulated HO-1 mRNA levels were observed
in the HEMIN + NOISE and DMF + NOISE as compared with control mice (Figure 2A).
A similar pattern was found in protein expression measurements of HO-1 in heart tissue
(Figure 2B) and in HEMIN + NOISE, DMF, and DMF + NOISE groups also in liver tissue
(not shown). A trend of increased renal HO-1 protein expression was observed in DMF
and DMF + NOISE treatment groups (not shown). Additionally, DMF mice had the highest
plasma bilirubin concentrations, with significance against the control and NOISE-only
group (Figure 2C). Bilirubin levels in plasma of HEMIN and HEMIN + NOISE mice were
elevated by trend.

Figure 2. Induction of HO-1 and activation of NRF2 by treatments with hemin or DMF. (A) mRNA
expression of Hmox1 in cardiac tissue was measured via quantitative RT-PCR. (B) HO-1 protein
expression was measured in heart tissue (representative Western blots below the densitometry).
(C) Quantification and representative chromatograms of bilirubin levels in plasma as measured by
HPLC analysis of bilirubin formation and expressed as changes to untreated control. Data points
from (A) are measurements from 6–13 individual animals, (B) represents 9–18 individual samples
(each pooled from 2 to 4 mice), and (C) represents 5–15 individual samples; * represents p < 0.05 vs.
untreated control; + represents p < 0.05 vs. + Noise.
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3.2. Effects of Aircraft Noise and HO-1 Inducer and NRF2 Activator on Blood Pressure

To evaluate the effects of the two inducers of HO-1 and NRF2 (hemin and DMF,
respectively) on the pathogenesis and progression of hypertension, we exposed mice
to aircraft noise over 4 days. Using the CODA System, we measured blood pressure
noninvasively. At time point 0, all groups had comparable blood pressure. Noise caused a
significantly increased systolic and diastolic blood pressure after 1 day of exposure, which
persisted until the final day of the exposure regimen. However, treated mice exposed to
noise did not differ significantly from control groups. The systolic as well as diastolic blood
pressure of NOISE-only controls was 15–25 mm HG above those of unexposed controls
and HEMIN + NOISE and DMF + NOISE groups. The normalizing effect was stable and
was observed over the course of the 4-day treatment period (Figure 3).

Figure 3. Blood pressure in mice treated with inducer of HO-1 and activator of NRF2 and exposed
to noise. (A,E) The time courses of systolic blood pressure over the span of the hemin and DMF
treatments. (C,G) The respective time courses of diastolic blood pressure over the treatment periods.
(B,D,F,H) Systolic and diastolic arterial blood pressure measured on the final day of the treatments.
Data points are measurements from individual samples; n = 8–10. * represents p < 0.05 vs. untreated
control; + represents p < 0.05 vs. + Noise.
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3.3. Vascular Function Is Protected by Induction of HO-1 and Activation of NRF2

Our group previously published that noise induces endothelial dysfunction [4], re-
flective in a significant attenuation of ACh-induced relaxation of mouse aorta, but not in
endothelium-independent vasodilation using GTN. Induction of antioxidant enzymes with
both hemin and DMF positively affected vasodilatation with a difference of +9% and +17%
maximal endothelium-dependent relaxation against NOISE-only controls (Figure 4). Pre-
constriction to KCl and prostaglandin F2α (PGF2α) was slightly but significantly increased
in the HEMIN and HEMIN + NOISE groups.

Figure 4. Vascular function in mice treated with inducer of HO-1 and activator of NRF2 and exposed to noise. (A,B) Potas-
sium chloride (KCl, 80 mM)- or prostaglandin F2α (PGF2α, 3 µM)-induced vasoconstriction. (C,D) Endothelium-dependent
(ACh) and independent (GTN) relaxation of thoracic aortic rings was measured by isometric tension method. (E) Quantifi-
cation of maximum relaxation of all groups. Data points are measurements from individual samples, n = 7–16; * represents
p < 0.05 vs. untreated control; + represents p < 0.05 vs. + Noise.

3.4. Induction of HO-1 and Activation of NRF2 Maintains Inflammatory Parameters at
Basal Levels

Inflammation is a well-characterized parameter of hypertension, and accordingly, we
observed upregulation in several inflammatory parameters in plasma and heart tissue.
Significant decreases due to both treatments were present for interleukin-6 (IL-6) protein ex-
pression in plasma (Figure 5A). In addition, a similar pattern was found in gene expression
measurements of IL-6 in heart tissue (Figure 5B). CD68 showed decreases in expression
between NOISE-only controls and hemin treatment and showed a stable trend of decrease
between the DMF + NOISE group and NOISE-only controls (Figure 5C).
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Figure 5. Markers of inflammation show an attenuation in the presence of both treatments. (A,B) Densitometry and repre-
sentative dot blot of IL-6-positive proteins in plasma as well as IL-6 mRNA by quantitative RT-PCR in the heart. (C) mRNA
expression of CD68 in cardiac tissue was measured via quantitative RT-PCR. Data points from (A) are measurements from
8–18 individual animals, and (B,C) represent 4–8 individual samples (each pooled from two mice). * represents p < 0.05 vs.
untreated controls; + represents p < 0.05 vs. + Noise; $ represents p < 0.05 vs. DMF.

3.5. Effects of Aircraft Noise and Induction of HO-1 and Activation of NRF2 on ROS Production
in Aortic, Cardiac, and Cerebral Tissues

ROS levels were elevated in NOISE-only controls in aortic, cerebral, and cortical
tissues, as evidenced by DHE staining of cryosections. ROS levels were decreased in
the HEMIN + NOISE and DMF + NOISE groups, at least by trend (Figure 6A–C). We
previously established NOX2 as an important source of reactive oxygen species (ROS) in
our model of noise exposure [4]. In accordance with this previous observation, we found
increased markers of oxidative stress upon noise exposure that were improved by both
treatments, at least by trend. In the heart, the NOISE-only group showed a significant
increase in nitro-oxidative stress as measured by 3-nitrotyrosine (3-NT)-positive proteins,
which was mitigated by treatment with hemin or DMF (Figure 7A). Renal levels of nitrated
proteins were also increased by trend in the NOISE-only group, and this trend was not
observed in HEMIN + NOISE and DMF + NOISE groups (not shown). In plasma, the
NOISE-only group showed a significant increase in lipid peroxidation as measured by 4-
hydroxynonenal (4-HNE)-positive proteins, which was mitigated by trend upon treatment
with the drugs (Figure 7B). Noise exposure also caused a significant increase in eNOS
mRNA expression, which was prevented by hemin treatment and partially mitigated in
the DMF groups (Figure 7C). Upregulation of eNOS by noise may indicate uncoupling
of the enzyme and counter-regulatory increase in its expression in a “rescue” attempt, a
phenomenon that was previously described [4].
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Figure 6. Vascular reactive oxygen species (ROS) formation is decreased by HO-1/NRF2 inducer or activator in noise-
exposed mice. (A–C) Dihydroethidium stainings of aortic, cardiac, and cortical cryosections and their representative
photomicrographs show ROS formation as red fluorescence and autofluorescence from aortic laminae as green. A, adventitia;
E, endothelium; M, media. Scale bars indicate 100 µm, and a magnification of 20× was used. Data points from (A–C) are
measurements from 6–14 individual animals; * represents p < 0.05 vs. untreated controls; + represents p < 0.05 vs. + Noise.
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Figure 7. Oxidative stress and sources of ROS are decreased by HO-1/NRF2 inducer or activator in noise-exposed mice.
(A,B) Densitometry and representative dot blots of 3-NT-positive proteins in heart tissue and 4-HNE-positive proteins in
plasma. eNOS mRNA via quantitative RT-PCR. Data points from (A,B) represent 4–13 individual animals, and (C) represents
4–10 individual samples, * represents p < 0.05 vs. untreated controls; + represents p < 0.05 vs. + Noise.

4. Discussion

With the present study, we confirm our previous observations that aircraft noise expo-
sure of mice causes cardiovascular oxidative stress, inflammation, endothelial dysfunction,
and hypertension [4,5]. Molecular proof of a central role of superoxide radicals derived
from NOX2 was based on the prevention of adverse cardiovascular effects by noise in
mice with genetic deficiency in NOX2 (gp91phox−/−) [5], and a major role of immune
cell infiltration in the vascular tissue of noise-exposed mice was demonstrated by tissue
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flow cytometry analysis [4,28]. Here, we investigated the protective potential of HO-1
induction and NRF2 activation to prevent noise-induced cardiovascular damage by treating
noise-exposed mice with hemin and DMF. In line with previous reports on the antioxi-
dant and anti-inflammatory properties of these compounds, we observed normalization
of noise-induced oxidative stress and inflammation, all of which resulted in improved
endothelial function and lower blood pressure in noise-exposed mice.

The cellular redox state largely affects the cardiovascular system, and oxidative stress,
in the form of overproduction of ROS, is a major trigger of cardiovascular diseases and
risk factors like atherosclerosis, hypertension, and diabetes [29–32]. Endothelial (vascular)
dysfunction is an early hallmark of atherosclerosis and future cardiovascular events, [1]
and importantly, endothelial dysfunction was also reported in human subjects upon ex-
posure to aircraft or train noise [33–35]. The •NO/cGMP signaling pathway can be es-
pecially impaired by adverse redox regulation and oxidative stress [36] as exemplified
by superoxide-mediated breakdown of nitric oxide, uncoupling/dysregulation of eNOS,
oxidative inhibition of soluble guanylyl cyclase (sGC), and ROS-induced endothelin-1
signaling [37], all of which were also observed in noise-exposed mice [4,5]. Noise ex-
posure may further contribute to impaired endothelial function and hypertension by
stress hormone signaling [38]. We previously showed that noise exposure induced higher
levels of catecholamines and corticosterone in mice, which was associated with more pro-
nounced endothelin-1 signaling [4]. It is worth noting that stress hormone signaling via
hypothalamic–pituitary–adrenal axis and sympathetic nervous system activation is also
known to cross-activate the renin–angiotensin–aldosterone system [39,40].

Inflammation is another hallmark of cardiovascular mortality and is itself an indepen-
dent cardiovascular risk factor (reviewed in [1,41]). Cardiovascular mortality was lowered
by targeted anti-inflammatory therapy in patients with psoriasis (interleukin (IL)-17/IL-23
axis) [42–44], systemic lupus erythematosus (IL-17A signaling) [45], and rheumatoid arthri-
tis (IL-6, tumor necrosis factor (TNF)-α, and IL-17A cascades) [46,47], further reinforcing
the integral role of inflammation in cardiovascular disease. The presence of oxidative stress
in almost all cardiovascular diseases contributes to endothelial cell activation with facili-
tated adhesion/infiltration of immune cells, leading to tissue damage. Accordingly, chronic
endothelial cell activation may lead to a persistent low-grade inflammatory phenotype of
the vasculature as observed in most cardiovascular diseases [41,48]. A molecular proof of
this link between oxidative stress and inflammation in the development of hypertension
in mice was provided by genetic ablation of myelomonocytic cells, which prevented all
adverse effects of angiotensin-II infusion, including increased blood pressure, endothelial
dysfunction, vascular oxidative stress, and inflammation. All negative effects were restored
by adoptive cell transfer of monocytes from wild-type mice, but monocytes from Nox2−/−

mice failed to do so [49]. As noise exposure aggravated the cardiovascular damage and
dysfunction in angiotensin-II-treated mice [28], similar pathomechanisms may come into
play in both cardiovascular risk factors. Since kidney dysfunction plays a central role in the
development of hypertension and is directly linked to sympathetic hyperactivity [50], our
present preliminary observations that noise may cause oxidative kidney damage and DMF
treatment may confer protection (e.g., via HO-1 upregulation) warrant further detailed
studies on the adverse effects of noise on the kidney.

In light of the described importance of inflammation and oxidative stress in the de-
velopment of cardiovascular diseases, we explored the antioxidant and anti-inflammatory
properties of an HO-1 inducer and an NRF2 activator for the prevention of cardiovascular
damage in noise-exposed mice. NRF2 controls not only oxidative stress but also other
fundamental physiological and pathophysiological processes, such as inflammation, reper-
fusion injury, fibrosis, and cancer [51–53]. In some aspects, NRF2 can be regarded as an
antagonist of NF-κB by shifting the macrophage activity from an inflammatory M1 to
anti-inflammatory M2 phenotype and activating regulatory T cells [54]. Classical and alter-
native activations of macrophages are also redox-regulated, and NRF2 plays an important
role in this differential activation [55], which may explain the here observed normaliza-
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tion of CD68 expression levels by NRF2 activation or HO-1 induction. Accordingly, the
bardoxolone derivative (RTA) DH404 activated NRF2 and conferred anti-inflammatory
effects (via suppression of the transcription factor NF-κB) and normalized ROS formation
and endothelial dysfunction in animals with chronic kidney disease or diabetes [56–58].
Numerous antioxidant enzymes are regulated by NRF2, such as ferritin, HO-1, glutathione
peroxidase-1 (GPX-1), peroxiredoxin-1 (PRX-1), superoxide dismutases (SODs), and thiore-
doxins (TRXs) (for review, see [59]), and most of them also have important functions in the
cardiovascular system. In addition, DMF confers anti-inflammatory effects on endothelial
cells by the inhibition of endothelial VEGF receptor 2 expression, which contributes to its
antiangiogenic effects [60].

HO-1, the focus of the present study, catalyzes the rate-limiting step in heme degra-
dation by the generation of equimolar concentrations of biliverdin, ferrous free iron, and
carbon monoxide [61], followed by biliverdin conversion to bilirubin by the biliverdin
reductase and chelation of free iron by ferritin [62]. Thus, the induction of HO-1 is usually
paralleled by the upregulation of ferritin, decreasing the free iron levels and preventing
Fenton-type reactions. Bilirubin is one of the most powerful endogenous antioxidants
and efficiently scavenges peroxynitrite, superoxide, and hydrogen peroxide [25] and is a
more potent inhibitor of lipid peroxidation in vitro as compared with vitamin E [63]. In
addition, higher serum bilirubin levels show an inverse correlation with the incidence of
coronary artery disease [64]. Bilirubin was reported to suppress the activity of vascular
NADPH oxidase [65] to confer inhibition of protein kinase C activity [66] and to suppress
adverse inflammatory signaling [67], mechanisms that are known to contribute to the
development of cardiovascular damage by noise exposure [5]. Importantly, Hmox1−/− mice
displayed upregulated NOX2 protein expression, vascular oxidative stress, markers of
inflammation, endothelial dysfunction, and hypertension in response to angiotensin-II [13].
In contrast, pharmacological HO-1 activation improved cardiovascular complications and
oxidative stress in diabetic and nitrate-tolerant animals [68,69]. It is worth noting that
hemin-mediated protective effects were partially lost in Hmox1−/− animals and were en-
hanced in Hmox1-overexpressing animals [70]. Similar opposite effects of hemin in human
renal proximal tubule cells, either with pharmacological HO-1 inhibition or with genetic
HO-1 overexpression, were observed under cisplatin-induced apoptosis and necrosis [71],
all of which support a central role of HO-1 in the protective effects of hemin.

As a major limitation of our study, we would like to mention that we did not use
genetic deletion or pharmacological inhibition of HO-1 to provide a molecular proof of
HO-1 as a central target of hemin or DMF. In addition, we did not prove that DMF causes
activation of NRF2 (e.g., by translocation from the cytosol to the nucleus) but only adopted
this NRF2-related protective mechanism of DMF from previous reports [72,73].

5. Conclusions

Noise exposure in mice [4,5,28] and men [33–35] was demonstrated to induce a pro-
oxidative and proinflammatory phenotype associated with cardiovascular damage, en-
dothelial function, and increased blood pressure (Figure 8). As the HO-1 inducer hemin
and the NRF2 activator DMF possess potent antioxidant and anti-inflammatory properties
and display beneficial cardiovascular effects (Figure 8), these compounds were expected
to ameliorate the cardiovascular damage and dysfunction induced by noise exposure.
Indeed, with the present study, we could demonstrate for the first time that hemin and
DMF treatments prevent the induction of vascular oxidative stress and inflammation as
well as endothelial dysfunction and hypertension in noise-exposed mice. Mechanistically,
the prevention of NOX2 upregulation in response to noise exposure by hemin and DMF
administration may represent a key mechanism by which these drugs confer their beneficial
effects. Suppression of monocyte activation and infiltration markers (e.g., downregulated
vascular levels of CD68 and IL-6) in noise-exposed mice by hemin and DMF may represent
other important mechanisms of the observed protective effects. Although we did not
confirm the central role of HO-1 in hemin-mediated protection, previous reports support
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this assumption. However, it should be noted that NRF2 controls multiple antioxidant
and anti-inflammatory pathways (e.g., via above-mentioned other antioxidant genes but
also direct effects on endothelial and immune cells independent of NRF2), and accordingly,
HO-1 may be only one of several targets that mediate the protective effects of DMF. In
light of the recent and future pandemic of noise-induced cardiovascular disease (espe-
cially ischemic heart disease) [74–76], low-cost and widely applicable drugs (e.g., in the
form of nutraceuticals) that potently prevent the major pathomechanisms of noise expo-
sure cardiovascular damage may represent an attractive strategy to lower the burden of
environmental diseases.

Figure 8. Mechanistic scheme of adverse cardiovascular effects of noise exposure and protection by HO-1/NRF2 induction
or activation. Heme or hemin are involved in the dynamic exchange of Bach1 and Nrf2 in the Maf transcription factor
network. Enzymatic degradation of heme is catalyzed by HO-1, leading to the formation of biliverdin, carbon monoxide,
and ferrous iron. DMF and its primary intestinal metabolite, monomethyl fumarate (MMF), can bind to the cysteine
residues of the NRF2/KEAP-1 complex in the cytoplasm or reduce glutathione (GSH) levels. As a consequence, GSH
metabolism may affect the oxidative clearance and increase ROS. Besides Hmox1, NRF2 also regulates other antioxidant and
cytoprotective genes encoding for superoxide dismutases, peroxiredoxins, and others. The effects studied in the present
study are marked with red color and roman numbers (I,II,III,IV). We found the upregulation of HO-1 and higher plasma
levels of bilirubin in response to hemin and DMF treatments (I). Markers of inflammation (IL-6, CD68) and oxidative stress
(4-HNE, 3-NT) (II) and aortic, cerebral, and cardiac ROS formation (DHE fluorescence) were suppressed (III), leading to
subsequent improvement of blood pressure and endothelial function (ACh response) (IV). Created with BioRender.com.
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