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Abstract

Quantitative genetics in Caenorhabditis elegans seeks to identify naturally segregating genetic variants that underlie complex traits.
Genome-wide association studies scan the genome for individual genetic variants that are significantly correlated with phenotypic variation
in a population, or quantitative trait loci. Genome-wide association studies are a popular choice for quantitative genetic analyses because
the quantitative trait loci that are discovered segregate in natural populations. Despite numerous successful mapping experiments, the
empirical performance of genome-wide association study has not, to date, been formally evaluated in C. elegans. We developed an open-
source genome-wide association study pipeline called NemaScan and used a simulation-based approach to provide benchmarks of
mapping performance in collections of wild C. elegans strains. Simulated trait heritability and complexity determined the spectrum of
quantitative trait loci detected by genome-wide association studies. Power to detect smaller-effect quantitative trait loci increased with the
number of strains sampled from the C. elegans Natural Diversity Resource. Population structure was a major driver of variation in mapping
performance, with populations shaped by recent selection exhibiting significantly lower false discovery rates than populations composed
of more divergent strains. We also recapitulated previous genome-wide association studies of experimentally validated quantitative
trait variants. Our simulation-based evaluation of performance provides the community with critical context to pursue quantitative genetic
studies using the C. elegans Natural Diversity Resource to elucidate the genetic basis of complex traits in C. elegans natural populations.
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Introduction
Quantitative trait variation in human populations is abundant
and arises from genetic differences between individuals, as well
as inputs from the environment. Genetic variation can be statisti-
cally linked to phenotypic variation using genome-wide associa-
tion studies (GWAS). GWAS have uncovered genetic variants that
contribute cumulatively to human disease risk and complex trait
variation (Visscher et al. 2017). However, the most powerful and
useful applications of GWAS to complex human traits rely on
precise phenotype measurements from hundreds of thousands
of individuals. Also, many important sources of variation in dis-
ease risk and trait variation cannot be measured ethically, reli-
ably, and with sufficient statistical power in human populations
(e.g., cellular pathology underlying behavioral traits and variation
in diet or xenobiotic exposure underlying metabolic traits). This
gap underscores an urgent need for replicable and translatable
genome-wide association (GWA) platforms with the added ability
to dissect traits that are difficult to assay in humans.

The development of genetic reference populations has become
increasingly popular and has facilitated the analysis of complex
traits for several organisms, including the Drosophila Synthetic
Population Resource (King, Macdonald, et al. 2012; King, Merkes,

et al. 2012), Drosophila Genetic Reference Panel (Mackay et al.

2012), the Collaborative Cross (Churchill et al. 2004; Chesler et al.

2008; Aylor et al. 2011), and BXD (Peirce et al. 2004; Ashbrook et al.

2021) mouse recombinant inbred line (RIL) panels, outbred

mouse populations (Churchill et al. 2012; Svenson et al. 2012;

Nicod et al. 2016; Parker et al. 2016), the hybrid mouse diversity
panel (Bennett et al. 2010), outbred rat populations (Rat Genome

Sequencing and Mapping Consortium et al. 2013; Chitre et al.

2020), Arabidopsis MAGIC and RILs (Kover et al. 2009; Klasen et al.

2012), and nested association mapping lines in both maize (Yu

et al. 2008; McMullen et al. 2009) and sorghum (Bouchet et al.

2017). These genetic reference populations offer tremendous ben-

efits for quantitative genetics because they take advantage of

well characterized genomic resources and the opportunity to col-

lect repeated measurements from diverse genetic backgrounds in

controlled environments.
The free-living roundworm nematode Caenorhabditis elegans

has contributed to discoveries at every level of biology, has rich

genomic resources, and can be easily genetically manipulated.

Over the past few decades, the number of cataloged genetically

unique C. elegans wild strains has expanded, giving rise to diverse

collections of strains useful for quantitative genetics (Cook et al.

Received: April 15, 2022. Accepted: May 02, 2022
VC The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

G3, 2022, 12(7), jkac114

https://doi.org/10.1093/g3journal/jkac114
Advance Access Publication Date: 10 May 2022

Investigation

https://orcid.org/0000-0003-0229-9651
https://academic.oup.com/


2017; Lee et al. 2021). For example, both the C. elegans Multiparent
Experimental Evolution (CeMEE) panel and the C. elegans mpRIL
population offer fertile ground for quantitative trait locus (QTL)
mapping with high-resolution and detection power (Noble et al.
2017, 2021; Snoek et al. 2019). Although rich in novel haplotypes
derived from its founders, alleles segregating within these popu-
lations represent only a small fraction of the segregating genetic
variants present across the C. elegans species. The C. elegans
Natural Diversity Resource (CeNDR) has expanded to over 500 ge-
netically unique C. elegans strains. GWA mapping has repeatedly
linked phenotypic variation of all types to alleles segregating
among these strains (Ghosh et al. 2012; Ashe et al. 2013; Cook et al.
2016; Laricchia et al. 2017; Lee et al. 2017, 2019; Zdraljevic et al.
2017, 2019; Hahnel et al. 2018; Gimond et al. 2019; Webster et al.
2019; Evans et al. 2020; Na et al. 2020; Evans, van Wijk, et al. 2021;
Evans, Wit, et al. 2021; Zhang et al. 2021). However, GWAS in C. ele-
gans has not, to date, been formally evaluated for its power and
precision to detect QTL across a range of genetic architectures.

The ability to identify functional natural variation in complex
traits in C. elegans using GWA is confounded by idiosyncratic ge-
nomic features. For instance, adaptation to human-associated
habitats is hypothesized to have caused the generation of
haplotypes with signatures of selective sweeps among many wild
C. elegans strains. Within these swept haplotypes, genetic varia-
tion is drastically reduced and long-range linkage disequilibrium
is high—sometimes stretching over 85% of whole chromosomes
(Andersen et al. 2012). Approximately 66% of the C. elegans strains
available in CeNDR contain at least one chromosome of which at
least 30% contains the most common identical-by-descent haplo-
type across the species, which can be categorized as a swept hap-
lotype (Lee et al. 2021; Zhang et al. 2021). The unintended
consequence in GWA mapping is that, if the phenotype of inter-
est happens to segregate with a common swept haplotype, it is
likely that insufficient ancestral recombination has occurred
across that haplotype to resolve individual candidate loci. In
contrast to strains rich in swept haplotypes, divergent strains
harbor nearly three times the levels of genetic diversity and often
lack signatures of recent selection in spite of recent migration
and gene flow (Crombie et al. 2019). Furthermore, genetically
distinct C. elegans strains contain “hyper-divergent” regions
(Thompson et al. 2015; Lee et al. 2021) (regions of the genome
characterized by high allelic diversity) that segregate at varying
frequencies. These regions are hypothesized to be maintained by
balancing selection and are predicted to harbor alleles for biologi-
cal processes that are crucial for environmental sensing, patho-
gen responses, and xenobiotic stress responses (Lee et al. 2021).
These observations suggest that evolutionary biology is inextrica-
ble from GWA mapping performance in C. elegans and that the
conclusions drawn about complex trait variation from these
analyses are dictated by the population structure of the mapping
population as previously reported for other species (Zhao et al.
2007; Kang et al. 2008). However, the magnitude of the effect of
population structure and segregating hyper-divergent regions on
mapping performance has not been quantified. In order to assess
how mapping performance varies as a function of population
composition, we require an approach that can rapidly simulate
GWA mappings and address important caveats unique to
C. elegans genome biology.

We have developed NemaScan, an open-source pipeline for
GWA mapping in C. elegans. NemaScan offers two profiles: a map-
ping profile, where users can supply population-specific variant
information and trait values to perform their own analyses on
real data, and a simulation profile, where users can supply a

variety of parameters to provide baseline performance bench-
marks for a past, present, or prospective experiment. These
parameters include trait heritability, polygenicity, a minimum
minor allele frequency for variants included in the marker set,
custom sample populations, and specific regions of interest
where QTL are simulated and mapped iteratively. NemaScan
makes use of two different formulations of the genomic relation-
ship matrix in attempts to correct for varying types of population
structure known to exist across the C. elegans species using well
established frameworks within the GCTA software suite (Yang
et al. 2011; Jiang et al. 2019). We present empirical estimates of de-
tection power and false discovery rates (FDRs) derived from the
simulation profile for GWA mapping across different genetic
architectures, and we confirm that GWA mappings in C. elegans
robustly identify most large-effect QTL. We also demonstrate
that GWA performance in C. elegans, as in other systems, is im-
proved by both increasing the number of strains tested in a popu-
lation and reducing the amount of population stratification in
the population. Finally, we quantify the precision of GWA map-
ping when QTL are present on different chromosomes and within
hyper-divergent regions that segregate in swept and divergent
populations. These performance benchmarks provide the C. ele-
gans community with critical context for interpreting the results
of ongoing quantitative genetic studies using CeNDR, and in so
doing, increase our understanding of the genetic basis of complex
traits in C. elegans.

Materials and methods
The C. elegans Natural Diversity Resource (CeNDR)
CeNDR is composed of 1,379 unique C. elegans isolates. The pro-
cess of isolating and identifying unique C. elegans strains from the
wild, generating whole-genome sequence data, and calling high-
quality variants has been described in-depth previously (Crombie
et al. 2019; Lee et al. 2021). Briefly, nematodes that could be unam-
biguously described as C. elegans by both morphological charac-
teristics and ITS2 sequencing were reared, and genomic DNA
from these strains (n¼ 1,238) was isolated and whole-genome se-
quenced. High-quality, adapter-trimmed sequencing reads were
aligned to the N2 reference genome and single nucleotide variant
(SNVs) were called for each strain using GATK. After variant qual-
ity filtering, the pairwise genetic similarity of all strains is consid-
ered. Strains that share alleles across at least 99.97% of all
segregating sites are considered members of the same isotype, of
which 540 were identified. In this manuscript, we use the term
“strain” to refer to each strain chosen to represent the collection
of genetically similar strains within that isotype (i.e., the “isotype
reference strain”). Because hermaphroditism is the dominant
mode of sexual reproduction in C. elegans and strains are inbred
in the laboratory during the strain isolation process, all strains
can be considered fully inbred and homozygous at all loci. All
data used in GWA mapping simulations (isotype-level hard-
filtered SNVs, sweep haplotype calls, and hyper-divergent region
calls) were downloaded from the 20210121 CeNDR release
(https://www.elegansvariation.org/data/release/20210121).

Structure of the NemaScan pipeline
The NemaScan pipeline is written in Nextflow (Di Tommaso et al.
2017) and divided into two main profiles: the mapping profile,
where users can simply provide collected phenotype data and a
full GWAS is conducted, and the simulation profile, where users
can provide a set of genetic parameters and quantitative traits
are simulated to match these parameters, allowing ex ante and
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post hoc evaluation of GWAS performance. The underlying frame-
work of preparing strain variant calls and performing GWAS is
similar between both profiles, but each profile offers distinct ben-
efits for different types of users (Supplementary Fig. 1).

Mapping profile
This profile allows users to submit trait data collected on C. ele-
gans strains and perform GWAS. The trait data are first cross-
validated against isotype reference strains present in the VCF file
representing the full set of 540 CeNDR isotypes and, if necessary,
strain names are altered to reflect isotype reference strain names
in the CeNDR release. The VCF is then filtered to the strains pre-
sent in the submitted trait file and then pruned for variants in r2

� 0.8 within 50 kb windows spaced 10 variants apart across the
chromosome and filtered to contain variants with a minor allele
frequency greater than or equal to the user-supplied minor allele
frequency cutoff. The LD-pruned and minor allele frequency
(MAF)-filtered VCF is then used to construct a genomic relation-
ship (kinship) matrix among all strains using the –make-grm and
–make-grm-inbred function from GCTA. The methods for con-
structing the genomic relationship matrix and the benefits of
each for association mapping has been described in-depth else-
where (Jiang et al. 2019). At this point, GWAS is then performed
using two separate methodologies: fastGWA using a leave-one-
chromosome-out (LOCO) approach to constructing the kinship
matrix and fastGWA using a kinship matrix designated for inbred
model organisms (denoted as INBRED). Both algorithms provide
situational advantages for C. elegans and were selected based on
empirical performance metrics (see Results). The user has three
threshold choices to determine significance of marker associa-
tions: (1) Bonferroni correction using all tested markers (“BF”); (2)
Bonferroni correction using the number of independent tests de-
termined by eigendecomposition of the population VCF (“EIGEN”);
or (3) any nominal value supplied by the user. SNVs exceeding
the user-specified significance threshold are then grouped into
QTL “regions of interest,” motivated by the fact that C. elegans can
be rapidly crossed to generate near-isogenic lines (NILs) harbor-
ing small introgressed regions to localize candidates using fine
mapping. Regions of interest are determined by finding signifi-
cantly associated markers within 1 kb of one another or any
user-specified distance. Once no more markers meet this crite-
rion, the region of interest is extended on each flank by a user-
specified number of markers. We note that demarcating regions
of interest in this manner will sometimes mask conditional de-
pendence of adjacent associated markers caused by pervasive
LD. Users of NemaScan can provide different parameter values to
specify the region of interest depending on the granularity of
reporting that they desire. For instance, if the user would like to
consider each individual significant marker association as an in-
dependent QTL, the grouping and extension parameters can be
set to zero. Therefore, default parameters for defining regions of
interest in the NemaScan framework are not meant to assign sta-
tistically meaningful confidence to all markers within the region
but rather provide experimenters with a starting point for genetic
crosses designed to fine map QTL and establish causal relation-
ships between individual variants and their trait of interest. The
raw mapping results are processed and appended with metadata
describing any identified QTL, including trait values for each
strain at the top associated marker, the phenotypic variance
explained by that QTL, and the start and end positions of the cal-
culated QTL region of interest. The phenotypic variance
explained by a QTL is calculated using a simple ANOVA model
using the simulated phenotypes as a response and the allelic

state of each strain as a factor for the peak associated marker
within a region of interest. If any QTL are identified, these regions
are passed to a fine-mapping step in which GWAS is rerun using
fastGWA with the INBRED kinship matrix against all markers
within the QTL interval without any LD pruning. Any identified
QTL are also passed to a gene expression mediation analysis in
which transcript abundance measurements collected from a se-
lect set of C. elegans strains are tested as mediators of QTL effects
(Evans and Andersen 2020; Zhang et al. 2022). Diagnostic plots
including Manhattan plots of both whole-genome scans and
fine mappings are produced and synthesized into an HTML file to
help users prioritize candidate genes and design experiments
to validate any detected QTL.

Simulation profile
This profile allows users to make flat files required to simulate
genetic parameters and automatically downloads the latest
CeNDR variant release as a VCF file. Briefly, the user provides
files specifying genetic parameters of simulated GWA mappings,
including the CeNDR variant set release to use as the source of
genetic variants, minor allele frequency cutoff for variant inclu-
sion in the mappings, trait heritabilities, number of causal QTL,
QTL effect ranges, and the number of replicate mappings to be
performed for each permutation of the previously mentioned
parameters. The user may also specify the location of causal QTL
using a supplied .bed file, as well as a list of custom strain sets in
which GWA mappings are to be simulated. Separately, the user-
specified number of causal variants are then sampled from LD-
pruned and MAF-filtered VCF and assigned effects sampled from
a user-specified effect distribution [either Uniform [a, b] (where a
¼ the user-specified minimum effect and b ¼ the user-specified
maximum effect) or Gamma (k¼ 0.4, h ¼ 1.66)]. Once these effects
are assigned to causal variants, phenotype values are then simu-
lated for each of the strains in the supplied population using the
–simu-causal-loci function from GCTA and the user-specified
trait heritability. The user-specified number of replicates dictates
the number of simulated trait distributions within each combina-
tion of strain sets, heritability values, and specified number of
causal variants. Simulated phenotypes, filtered variants, and the
genomic relationship matrix are brought together to perform
rapid GWA in the same fashion as the mapping profile.

Performance assessment
We used the simulation profile of NemaScan to showcase the
performance of GWAS in C. elegans across a broad parameter
space, including trait heritability, degree to which traits are poly-
genic, sample size and composition, and QTL location in the ge-
nome. We cross-referenced simulated causal variants for each
mapping and asked whether any detected QTL region of interest
overlapped with a simulated causal variant. QTL regions of inter-
est were denoted by the peak association found within the region
and assigned the phenotypic variance explained by that peak
marker and its frequency in subsequent analyses. The possible
outcomes regarding the performance of GWA mapping to
detected simulated causal variants were (1) a simulated causal
variant exceeded the defined significance threshold and was the
peak association within a region of interest, (2) a simulated
causal variant exceeded the defined significance threshold but
was not the peak association within a region of interest, (3) a sim-
ulated causal variant did not exceed the defined significance
threshold but still fell within the calculated QTL region of inter-
est, and (4) a simulated causal variant did not exceed the signifi-
cance threshold nor fall within a QTL region of interest. For each
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replicate mapping, we calculated detection power as the number
of causal variants that adhered to criteria (1) or (2) and divided
them by the total number of causal variants simulated for that
mapping. QTL regions of interest that did not contain a simulated
causal variant were tabulated as false discoveries, and the FDR
was calculated as the number of QTL regions of interest that did
not contain a simulated variant divided by the total number of
QTL regions of interest for each mapping. For analyses assessing
the ability of GWA mappings from different strain sets and popu-
lation sizes to detect causal variants explaining a particular
amount of phenotypic variance, detection power was calculated
by first determining the number of causal variants that adhered
to criteria (1) or (2) and that explained that amount of phenotypic
variance. We then divided them by the total number of causal
variants simulated that explained the same amount of pheno-
typic variance across all replicate mappings of each population
and then averaged over all populations.

Demographic characterization of strains
Haplotype data for 540 C. elegans strains were obtained from the
20210121 CeNDR release. The degree of swept haplotype sharing
among strains was determined in a similar fashion to that previ-
ously described (Crombie et al. 2019; Lee et al. 2021; Zhang et al.
2021). Briefly, the length of every haplotype present in each strain
was recorded, and if regions sharing the most common haplotype
were longer than 1 Mb, these haplotypes were recorded as swept
haplotypes. Only swept haplotypes on chromosomes I, IV, V, and
X were considered in strain classification because selective
sweeps are not found on chromosomes II and III among the set of
540 strains in this CeNDR release. If swept haplotypes composed
�30% of the length of these chromosomes, that chromosome
was considered swept. Swept strains were determined as those
strains that contain at least one swept chromosome, and diver-
gent strains are those strains that do not. In total, 357 swept and
183 divergent strains were identified. Some populations used in
simulations were constructed by sampling among these swept
and divergent strains (Fig. 3), and others were sampled from the
overall collection of 540 strains (Figs. 2 and 3). In simulations
comparing QTL simulated in hyper-divergent regions from those
simulated outside of such regions, we filtered the entire strain set
to those containing at least 37 hyper-divergent regions, regard-
less of their population frequency or distribution. This hyper-
divergent region cutoff was selected to yield equally sized swept
(n¼ 182 strains) and divergent populations (n¼ 183 strains) with-
out producing a swept population devoid of hyper-divergent
regions entirely, which could confound performance of simulated
QTL in these regions with genome-wide genetic stratification.
Dendrograms representing population differentiation were con-
structed for these swept and divergent populations by filtering
genetic variants identically to NemaScan and passing these vari-
ant calls to vcf2phylip (Ortiz 2019) and QuickTree (https://github.
com/khowe/quicktree).

Statistical testing
Significant differences in performance among experimental fac-
tors were determined using both parametric and nonparametric
specifications of power or empirical FDR as a response.
Simulation regimes where only one QTL was specified for each
simulated mapping caused a binary distribution of power output,
and differences in performance as a function of experimental
factors were determined using the Kruskal–Wallis test.
Differences between all pairwise contrasts of factor levels were
determined using the Dunn’s test. In cases where multiple

experimental factors were considered simultaneously (e.g.,
whether mapping strain set and the location of the single simu-
lated QTL interacted to determine performance), factors were
combined to make an aggregate factor and tested using the
Kruskal–Wallis test. When the specified number of QTL were
greater than one, differences in performance as a function of sin-
gle and multiple factors were determined using the one-way
ANOVA and two-way ANOVA tests, respectively, and followed up
with post hoc tests using Tukey’s HSD.

Results
GCTA software improves GWAS power and
precision
A previous GWA mapping workflow, cegwas2-nf (Zdraljevic et al.
2019), was built on the foundation of kinship matrix specification
using EMMA or EMMAX (Kang et al. 2008, 2010) implemented by
R/rrBLUP (Endelman 2011) as the association mapping algorithm.
However, with the advent of more efficient and flexible algo-
rithms, we wondered whether GCTA offered better performance.
We first compared available algorithms used for fitting linear
mixed models and estimating kinship among individuals in the
GWA mapping. Simulations were performed using 4 different as-
sociation mapping algorithms to generate the kinship matrix, of
which three are different implementations of association map-
ping using GCTA software using linear mixed model association
analysis (fastGWA) (Yang et al. 2011; Jiang et al. 2019). (1) EMMA:
GWA mapping using R/rrBLUP fits a kinship matrix and performs
association using variance components using the “P3D ¼ TRUE”
option; (2) standard approach using –make-grm fits a sparse kin-
ship matrix using all chromosomes (fastGWA-lmm-exact); (3) –
make-grm-inbred fits a sparse kinship matrix tailored toward
populations composed of inbred organisms (fastGWA-lmm-ex-
act-INBRED); (4) –mlma-loco fits a kinship matrix constructed us-
ing all chromosomes except for the chromosome harboring the
tested genetic variant (“LOCO”) (fastGWA-lmm-exact-LOCO). This
method of constructing the genomic relationship matrix
attempts to increase QTL detection power by excluding the tested
variant, and others in strong LD, from the covariance matrix in
order to reduce the effects of “proximal contamination,” or the
tendency of that variant’s inclusion in the kinship matrix to in-
crease the likelihood of the null hypothesis of association
(Listgarten et al. 2012). This correction causes a theoretical in-
crease in power to detect QTL for which effects are, in part,
explained by population stratification. The statistical properties
of each mapping algorithm have been reported elsewhere (Yang
et al. 2011; Jiang et al. 2019).

We next used convenient features offered by GCTA to simu-
late quantitative traits (–simu-qt) and assign effects to QTL (–
simu-causal-loci) across a panel of real C. elegans genomes. To be-
gin, we used a population of 203 isolates that were previously
measured for susceptibility to albendazole (Hahnel et al. 2018).
We simulated 50 quantitative traits with increasing narrow-
sense heritability (the proportion of phenotypic variance
explained by specific genetic differences between strains, h2),
ranging from 0.1 to 0.9, supported by either a single QTL or five
independent QTL. Each QTL was assigned a large effect size sam-
pled from a uniform distribution (Supplementary Fig. 2) to in-
crease the likelihood that at least one true QTL was detected in
each simulation.

We measured the statistical power and the empirical FDR of
each association mapping workflow across varying levels of trait
heritability and for traits supported by either one or five QTL
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applying the Bonferroni correction. We observed that GCTA-
based workflows were frequently more powerful than EMMA for
each simulated genetic architecture (Fig. 1a). When mapping a
single causal QTL, we observed that all algorithms exhibited
nearly perfect power when that QTL explained at least 30% of the
phenotypic variance (Kruskal–Wallis test, P � 0.295). However,
when traits were supported by five QTL, power varied among
algorithms and increased as a function of trait heritability. When
h2 < 0.4, the algorithms exhibited no significant differences in de-
tection power (Kruskal–Wallis test, P � 0.276). When h2

� 0.4,
algorithms diverged in performance, fastGWA-lmm-exact and
fastGWA–lmm-exact-INBRED generally exhibited lower power
than both the EMMA and fastGWA-lmm-exact-LOCO (Dunn test,
Padj � 0.01385). Furthemore, LOCO exhibited significantly greater
power than EMMA for traits with h2 > 0.7 (Dunn test, Padj �

0.00826) (Supplementary Table 2). We also observed only modest
differences in empirical FDRs among algorithms at different trait
heritabilities, among them being that LOCO and fastGWA-lmm-
exact-INBRED often exhibited lower empirical FDR than both
EMMA and fastGWA-lmm-exact (Fig. 1b; Supplementary Table 3).
These results indicated that some mapping algorithms imple-
mented by GCTA have equal or greater power for QTL detection
and lower FDR in C. elegans than the previous implementation of
GWA mapping using EMMA.

We observed that GWA mapping power using kinship matrices
constructed using GCTA were either greater than or equal to that
obtained using EMMA with comparable rates of false discovery.
We also evaluated the amount of genomic inflation provided by
these algorithms in mappings using the whole CeNDR collection
(n¼ 540) with and without including the first eigenvector from
principal component decomposition of the kinship matrix.

Mappings performed using fastGWA-lmm-exact-INBRED consis-
tently yielded genomic inflation factors below 1, while mappings
performed using fastGWA-lmm-exact-LOCO often yielded geno-
mic inflation factors exceeding 1 and significantly different be-
tween those performed with and without PCA (1-way ANOVA,
Tukey HSD, Padj ¼ 0.013), suggesting that fastGWA-lmm-exact-
INBRED more effectively and robustly corrects for systemic
effects of population stratification (Fig. 1c). Both of these method-
ologies offer complementary benefits for C. elegans GWAS;
fastGWA-lmm-exact-LOCO offered greater detection power than
our previous pipeline for highly heritable traits, and fastGWA-
lmm-exact-INBRED tended to reduce genomic inflation in the en-
tire strain set compared with fastGWA-lmm-exact-LOCO. We
therefore chose to perform more extensive simulation evaluation
with the more conservative fastGWA-lmm-exact-INBRED kinship
matrix construction algorithm. Mapping results provided using
CeNDR include results derived from both GCTA-based methodol-
ogies with metadata if researchers prefer the handling of the ge-
nomic relatedness from one algorithm over the other. These
complementary outputs integrated into distinct simulation and
mapping profiles is the foundation of our new GWA mapping
workflow, called NemaScan.

Genetic architecture dictates the spectrum of QTL
detection using GWA mapping
In order to quantify the ability of NemaScan to identify QTL in
natural populations of wild strains, we performed simulations
making changes to the genetic architectures of simulated traits.
First, simulated QTL effects were drawn from a Gamma (k¼ 0.4, h

¼ 1.66) distribution, conforming to the assumption that the natu-
ral genetic variants underlying complex traits and adaptation
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Fig. 1. GCTA-based kinship matrix construction and GWAS outperforms EMMA. Estimates of power (a), and FDR (b), and genomic inflation (kGC) (c) of
simulated mappings as a function of the narrow-sense heritability (x-axis) and the number of underlying QTL (strip titles). Simulations performed using
EMMA, which undergirded cegwas2-nf (Zdraljevic et al. 2019), were compared with different formulations of kinship matrices and linear mixed model-
based GWA implemented by GCTA (Yang et al. 2011; Jiang et al. 2019). In (c) metrics obtained from mappings that used indicated algorithms but also
fitting the first eigenvector of the kinship matrix obtained from principal components analysis are also denoted.
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primarily contribute small phenotypic effects but occasionally
exert moderate or large effects (Supplementary Fig. 3). Second,
because experimenters have limited control over noise in pheno-
type measurement and, therefore, the narrow-sense heritability
of their trait of interest, traits were simulated with h2 ¼ 0.2, 0.4,
0.6, or 0.8. For each heritability specification, traits were either
supported by 1, 5, 10, 25, or 50 QTL to examine GWA performance
across a broad spectrum of genetic architectures. Third, we
simulated each of these genetic architectures in the complete set
of 540 wild isolates currently available from CeNDR to determine
the expected performance in the theoretical case where every
available genetic background is assayed for a phenotype of
interest. Significant QTL were determined using the Bonferroni
correction.

We observed that detection power decreased as a function of
the number of supporting QTL for each simulated trait, regard-
less of its heritability. In the simplest case where a single QTL
accounted for all of the phenotypic variance, mappings exhibited
at least 90% power to detect it on average. However, detection
power decreased as simulated trait complexity increased, espe-
cially for less heritable traits (Fig. 2a). NemaScan exhibited only
34.4% power to detect 5 QTL architectures and only 6.2% power
to detect 50 QTL architectures, corresponding to detecting on av-
erage 1.72 true QTL out of 5 or 3.08 true QTL out of 50, respec-
tively. Depending on the number of simulated QTL, detection
power increased by between 1.5-fold (5 QTL) to 4-fold (50 QTL)
magnitude when trait heritability was increased from 0.2 to 0.8.
The empirical FDR also decreased as a function of genetic com-
plexity (Fig. 2b). Mappings of 5 QTL architectures produced a
mean FDR of 20.0%, and mappings of 50 QTL architectures pro-
duced a mean FDR of 2.06%. Among traits supported by the same
number of QTL, FDR increased with trait heritability but to a
much lesser extent than detection power. These results demon-
strated that the quantity and effect sizes of underlying QTL and
the relative contribution of genetics to phenotypic variation alter
the performance of GWA mappings in C. elegans similarly to other
model organisms. By quantifying increases in power and FDR
across various genetic architectures, we also provide perfor-
mance benchmarks for GWA mappings in C. elegans and empha-
size that obtaining more precise phenotype measurements, and
thereby reducing environmental noise, improves the prospects of
QTL detection across C. elegans strains.

In C. elegans as well as other systems, the power to detect
causal alleles underlying QTL in natural populations is limited in
part by their frequency and effect size, which together contribute
to the fraction of phenotypic variance explained by that QTL. We
calculated the phenotypic variance explained by each causal QTL
across all simulations and found that true positive QTL (simu-
lated QTL with significant trait associations) explained more phe-
notypic variance than false negative QTL (causal QTL without
significant trait associations) within all combinations of trait her-
itability and polygenicity regimes (one-way ANOVA, Tukey HSD,
Padj < 0.05) except for 1 QTL and h2 ¼ 0.2 (one-way ANOVA,
Tukey HSD, Padj � 0.871) (Fig. 2c). The median simulated variance
explained by top hits in polygenic architecture simulations
ranged from 6.76% (h2 ¼ 0.2; 50 QTL) to 39.5% (h2 ¼ 0.8; 5 QTL),
and the median simulated variance explained by false negative
QTL consistently remained below 2%. When markers with the
highest statistical association within a region of interest were
also the causal markers, they explained significantly more phe-
notypic variance than significantly associated causal markers
that were not peak associations (one-way ANOVA, Tukey HSD,
Padj < 0.05), except for traits supported by 1 QTL (one-way

ANOVA, Tukey HSD, Padj � 0.815). We conclude from these pat-
terns that, as in other model systems (Yu et al. 2008; King,
Macdonald, et al. 2012; Klasen et al. 2012; King and Long 2017;
Keele et al. 2019), GWA mapping in C. elegans is able to robustly
detect QTL across traits of varying heritability.

Sample size and population structure modulates
the sensitivity of GWA mapping
A common practical limitation of the scope and performance of
any GWAS is the size of the sample population for which traits
have been measured. Caenorhabditis elegans GWA mappings are
no exception, despite high-throughput platforms becoming more
commonplace in studies of natural phenotypic variation (Yemini
et al. 2013; Andersen et al. 2015). We quantified the detection
power of NemaScan when applied to complex traits given the fi-
nite sampling potential of a typical GWA experiment. To accom-
plish this simulation, we subsampled the 540 CeNDR isolates at
five different depths (n¼ 100, 200, 300, 400, or 500) 50 times each.
We then measured the sensitivity of GWA mappings to detect
simulated QTL according to the phenotypic variance that they
explained by grouping simulated QTL into bins representing in-
creasing influence on trait variation. Among all QTL simulated,
we found no clear differences in the minor allele frequencies of
identifiable variants among populations of different sizes
(Supplementary Fig. 4). For these simulations and all others
where the composition and/or size of mapping populations was a
dependent variable in the analysis (Figs. 3–5) or not held constant
across traits (Fig. 6), we applied the EIGEN multiple-testing cor-
rection threshold to determine significant QTL, capitalizing on its
ability to increase power within individual mapping simulation
replicates by reducing the number of independent tests.

We first observed that, as expected, overall detection power
generally increased as a function of sampling depth. The average
power to detect 5 QTL among 100 subsampled strain mappings
was 0.27 6 0.13 (�1 QTL out of 5), increasing to 0.41 6 0.17 (at least
2 QTL out of 5) among 500 subsampled strain mappings (Table 1).
The observation of �41% power to detect 5 QTL at h2 ¼ 0.8 among
500 subsampled strains is consistent with our previous simula-
tion results (Fig. 2a). We also observed that the impact of increas-
ing sample size was most striking when considering the
sensitivities of mappings to detect QTL with smaller effects
(Fig. 3). Both 100- and 500-strain mappings had >80% power to
detect QTL that explained >50% of the phenotypic variance.
However, the power of 500-strain mappings to detect QTL
explaining as little as 7.5% of the phenotypic variance (0.49 6 0.16)
was nearly seven times greater than that of 100-strain mappings
(0.07 6 0.08) (Supplementary Table 4). These results indicate that
power to detect QTL with large effects (i.e., those QTL explaining
>20% of the phenotypic variance) increased only marginally with
increasing sampling depth, and power to detect QTL with smaller
effects improves significantly by adding more strains to mapping
populations.

We then measured GWA mapping performance in sets of
strains that were distinguished by presence of haplotypes shaped
by past selective sweeps (Andersen et al. 2012; Crombie et al. 2019;
Zhang et al. 2021). Using the criterion of whether strains harbored
at least 1 chromosome composed of at least 30% swept haplo-
types, we divided the 540 strains into 2 groups: “swept” strains
(n¼ 357) and “divergent” strains (n¼ 183). We then simulated and
mapped 50 quantitative traits supported by 5 QTL and h2 ¼ 0.8,
and QTL effects were once again sampled from a Gamma (k¼ 0.4,
h ¼ 1.66) distribution. We performed these simulations using
populations of equal sampling depth (n¼ 144) from swept strains,
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divergent strains, and 144 randomly sampled strains from the en-
tire CeNDR strain collection.

We observed that strain composition has a large impact on
the sensitivity with which QTL explaining varying amounts of
phenotypic variance are detected (Fig. 4a; Supplementary
Table 5). Two patterns emerged from these results. First, swept
populations exhibited greater detection power than other pop-
ulations for QTL that explained >10% of the phenotypic vari-
ance. Second, for QTL explaining >20% of the phenotypic
variance, populations assembled without regard for selective
sweep haplotypes exhibited lower power than both swept and
divergent populations, despite the fact that divergent popula-
tions are enriched for low frequency alleles (Fig. 4b).
Furthermore, the differences in power between these popula-
tions cannot be explained by underlying differences in the
amount of phenotypic variance explained by simulated QTL
(Fig. 4c). These simulated mapping results provide evidence
that strain choice as well as sampling depth dictate the

realized genetic architecture of C. elegans quantitative traits, as
previously shown for other species.

Fine-scale genomic landscape of GWA
performance
Selective sweep and hyper-divergent region haplotype frequen-
cies and distributions vary across wild strains, motivating us to
ask whether heterogeneity in GWA sensitivity among populations
with different demographics can be partly explained by the chro-
mosomes on which QTL are located and whether these QTL are
also located in hyper-divergent regions. In order to assess these
points, we simulated 100 mappings of a single QTL with a defined
effect size in a population of 182 swept strains and a population
of 183 divergent strains. For each set of 100 mappings, the loca-
tions of simulated QTL were assigned to (1) a particular region of
the chromosome (tips, arms, or centers) and (2) within or outside
of hyper-divergent regions. We simulated these mappings across
3 different heritabilities, but for display purposes, performance
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was aggregated across these ranges for each chromosome, chro-
mosomal region, and hyper-divergent region assignment type.

We observed several critical differences in mapping performance
across different regions of the genome and between divergent

and swept mapping populations (Fig. 5a).
Power to detect QTL was significantly lower among divergent

strains than swept strains across all chromosomes, regardless of

whether QTL were in hyper-divergent regions, arms, or centers of
the chromosome (Kruskal–Wallis test; P < 0.0084). However, we

also observed subtle differences in the relative detection power
for QTL within these classes within certain chromosomes

(Supplementary Table 6). The empirical FDR of mappings was sig-
nificantly greater in mappings among divergent strains than

swept strains regardless of the location of simulated QTL
(Kruskal–Wallis test; P < 0.00001). These differences are likely

caused by the large extent to which the divergent population was
structured into distinct clusters (Fig. 5b), and the swept popula-

tion much closely approximates a star phylogeny because most
variation in the population segregates on a much more common

genetic background of swept haplotypes (Fig. 5c). These results
confirm a clear effect of population stratification and evolution-

ary history in C. elegans, as previously shown for other species, on
both genome-wide precision and local detection power of GWA

mapping.
We also investigated whether certain genomic regions pro-

vided varying performance for GWA mapping in C. elegans.

Within the swept population, we observed no significant differen-
ces in power to detect QTL simulated in hyper-divergent regions

nor on chromosome arms compared with centers (Kruskal–
Wallis test; P ¼ 0.2132). In contrast, power to detect QTL within

the divergent population differed subtly as a function of whether
they were simulated in hyper-divergent regions or different parts

of the chromosome (Supplementary Table 7). For example, power

to detect QTL simulated in the centers of chromosomes was sig-
nificantly lower than on the tips or arms of chromosomes
(Dunn test, Padj < 0.0396). Once again, the empirical FDR among
hyper-divergent region types and different chromosomal
regions varied significantly within both the divergent and swept
strain set (Kruskal–Wallis test; P < 0.00001) (Supplementary
Table 8). We also observed limited cases where, when QTL were
simulated within them, regions of certain chromosomes yielded
differences in detection power, primarily among divergent
strains (Supplementary Table 9). For example, power to detect
QTL simulated within hyper-divergent regions in the center of
chromosome III was significantly lower compared with hyper-
divergent regions in the centers of chromosomes II, V, and X
(Dunn test, Padj � 0.0065). Empirical FDR varied significantly
among chromosomes in several instances among both diver-
gent and swept strain sets (Kruskal–Wallis test; P < 0.05)
(Supplementary Table 10). Taken together, these results dem-
onstrate that subtle differences in GWA mapping performance
can be explained in part by the interaction of stratified popula-
tions of C. elegans strains and the recombination landscape of
C. elegans genomes.

NemaScan recapitulates previously validated
genetic associations
Previous work has used GWA mappings to identify QTL and sub-
sequently identify quantitative trait variants (QTV) in C. elegans
(Evans, van Wijk, et al. 2021). In order to test whether NemaScan
performs similarly to cegwas2-nf, the previous mapping pipeline
(https://github.com/AndersenLab/cegwas2-nf) that used the
EMMA algorithm (Kang et al. 2008) implemented by R/rrBLUP
(Endelman 2011), we remapped five quantitative traits using both
cegwas2-nf and NemaScan. We remapped these traits using
both the INBRED and LOCO approaches, asking whether it yielded
similar results with real data. Although our evaluation of
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performance using simulation focused on mappings using the
INBRED approach, results from both methodologies are gener-
ated as part of the standard output of the mapping profile. Raw
trait files were downloaded from the Supplementary Materials
for each published mapping (Cook et al. 2016; Zdraljevic et al.
2017, 2019; Lee et al. 2019; Evans, Wit, et al. 2021) and remapped
using the 20210121 CeNDR release VCF. The experimentally

validated QTL underlying each trait were mapped using both
cegwas2-nf and NemaScan (Fig. 6a; Supplementary Fig. 5). Of the
16 QTL identified across the previously mapped traits, 14 were re-
covered by NemaScan using either the INBRED or LOCO
approaches. Similar to prior results (Fig. 1c), mappings using the
INBRED approach exhibited lower genomic inflation than those
mappings that used the LOCO approach (Fig. 6b). We also ob-
served that mappings that used the INBRED approach exhibited
slightly lower genomic inflation than cegwas2-nf. As a result,
NemaScan mappings that made use of the INBRED approach
yielded the lowest concordance of overall genetic architectures
for four of the five traits, including abamectin resistance for
which no significant associations were detected (Fig. 6a).

Previously, two abamectin resistance QTL were mapped to the
left (VL) and right (VR) arms of chromosome V. These same QTL,
as well as an additional QTL on chromosome IV, were resolved
using the LOCO approach in NemaScan. However, no QTL were
detected using the INBRED approach, which caused the least ge-
nomic inflation for that trait (Fig. 6b). The VR QTL overlaps with
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Fig. 6. GWA mapping with NemaScan recaptures previously validated QTVs. a) Significant genetic associations are shown genome-wide for five
quantitative traits that were remapped using the 20210121 CeNDR release both with cegwas2-nf (“Previous Mappings”) and NemaScan, and the
strength of the association is displayed in the right-hand panel. b) Quantile-quantile plots of all �log transformed P-values from cegwas2-nf,
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from each mapping is displayed in the upper left of each panel.

Table 1. Power and FDR estimates for GWA mappings performed
with subsampled populations of increasing depth.

Sample size Power FDR

100 0.27 6 0.13 0.63 6 0.27
200 0.32 6 0.14 0.49 6 0.30
300 0.36 6 0.16 0.38 6 0.29
400 0.38 6 0.16 0.31 6 0.28
500 0.41 6 0.17 0.27 6 0.26

Traits were simulated with a heritability of 0.8 and 5 underlying QTL effects
sampled from Gamma (k¼ 0.4, h ¼1.66).
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the glutamate-gated chloride channel subunit glc-1, which under-
lies some macrocyclic lactone resistance in C. elegans (Ghosh et al.
2012; Burga et al. 2019). The VL QTL is novel and, from NIL valida-
tion experiments, has a demonstrated quantitative effect on
abamectin resistance. However, this QTL resides within a hyper-
divergent region, which made candidate gene identification
difficult despite functional recapitulation of the QTL region for
the trait of interest (Evans, Wit, et al. 2021). Given that both chro-
mosome V QTL were experimentally validated, these results
provide a useful example of how the LOCO approach increases
the likelihood of detecting QTL within populations or specific
regions of the genome subject to the effects of population stratifi-
cation and subsequent proximal contamination (Listgarten et al.
2012). These findings confirm that NemaScan has sufficient de-
tection power to robustly recapture experimentally validated
QTL segregating in diverse C. elegans populations of varying size
and composition.

Discussion
GWAS as a tool for QTL discovery in C. elegans
The C. elegans community has contributed steadily to the catalog
of species-wide genetic variation. As the number of genetically
characterized unique strains expands the CeNDR collection, we
learn more about genomic patterns of diversity from all over the
world. The prospects for using GWA mapping to dissect the ge-
netic underpinnings of complex traits have improved in tandem.
Although the community has successfully employed GWA map-
pings in C. elegans to discover novel genes related to a variety of
traits, we lack a robust characterization of the power and preci-
sion with which this resource is equipped to detect QTL.
Evaluating population-based genetic resources using simulations
for other organisms has provided key benchmarks for their re-
spective communities (Kover et al. 2009; Bennett et al. 2010; King,
Macdonald, et al. 2012; King, Merkes, et al. 2012; Bouchet et al.
2017; Gage et al. 2018; Keele et al. 2019). The burgeoning C. elegans
quantitative genetics community has applied GWA mapping to a
growing collection of wild strains and identified genetic variants
linked to complex traits with novel biomedical and evolutionary
implications (Evans, van Wijk, et al. 2021). In the simulations pre-
sented here, we systematically tested a robust framework for
GWA against a variety of genetic architectures and sample popu-
lations to contextualize past, present, and future studies using
CeNDR. However, some important limitations of our simulation
framework have implications in real populations.

First, simulated causal variants were selected from the minor
allele frequency and LD-filtered variant set, meaning that all QTL
are perfectly tagged and at >5% frequency in the population, up-
wardly biasing their detection in simulations. In practice, GWAS
may underestimate the effects of rare QTV imperfectly tagged by
filtered variants or fail to detect these variants altogether. Future
work should prioritize rare variant detection, especially given
their implied frequency in divergent populations (Fig. 4c). Second,
effects assigned to simulated causal variants were drawn from a
Gamma (k¼ 0.4, h ¼ 1.66) distribution (Supplementary Fig. 3) cre-
ating genetic architectures heavily biased against detection of
causal alleles with very small effects. In practice, traits supported
by fewer QTL of greater effect will be more amenable to GWA
mapping, even at low heritability (Fig. 2c). Finally, because LD is
pervasive in C. elegans, we define QTL in our pipeline as a region
of interest defined by user-provided grouping and extension
parameters (see Materials and Methods). The default values for
these parameters in both the mapping and simulation profile are

conservative in order to provide experimenters with a realistic
starting point for validation experiments using classical genetic
crosses. In practice, the user may specify smaller values for both
parameters in order to resolve a larger number of QTL, more of
which may be conditionally dependent because of LD. In spite
of these limitations, we hope to provide the community with a
flexible platform for QTL detection and simulation-based perfor-
mance evaluation. Complementary resources for quantitative ge-
netics in C. elegans also address some of these limitations. The
CeMEE panel is now composed of over 1,000 lines derived from
16 founder strains. Each source population comprising the panel
was reared under varying demographic and evolutionary
regimes, and together, the panel offers precise QTL localization
and sufficient power to identify epistatic interactions (Noble et al.
2017, 2021). Provided the same QTL alleles segregate in each
population, we see substantial opportunities for crosstalk be-
tween GWAS using CeNDR and linkage mapping using CeMEE
and mpRIL panels (Snoek et al. 2019) to resolve additional genetic
complexity in C. elegans.

Similar to mapping populations of other model systems (King
and Long 2017; Noble et al. 2017, 2021; Keele et al. 2019), we con-
firmed that the prospects of identifying QTL explaining less than
10% of overall trait variance depend primarily on three factors:
(1) the number of strains being phenotyped, (2) the precision with
which phenotypes can be measured, and (3) the composition of
the mapping population. For instance, we observed that measur-
ing only 100 wild strains is expected to provide almost 80% power
to detect QTL that explain >40% of the phenotypic variance
(Fig. 3). For many traits, it is no small feat to measure 100 strains
with sufficient replication for line means to robustly represent
that genetic background in a GWA mapping population. A recent
GWA analysis of sperm size among 96 wild strains and N2
revealed no significant associations despite the nomination of
the candidate gene nurf-1 using segregating mutations between
the N2 and LSJ1 lineages (Gimond et al. 2019). Another recent
GWA analysis of starvation resistance using population RAD-seq
read abundance in a 96 strain coculture revealed a single large-
effect QTL on chromosome III whose effect was validated using
NILs and was present in 11% of wild strains (Webster et al. 2019).
These applications of GWA mappings represent mixed outcomes,
providing some practical support for the conclusions of our simu-
lations—lower sampling depths are not expected to capture en-
tire genetic architectures, including small-effect loci or impactful
alleles that segregate at low frequency (<5% of the population).
Larger sample sizes (300–500 strains) and potentially fewer exper-
imentally strenuous trait measurements are optimal to identify
loci that confer more modest effects (approximately 5-10% of the
phenotypic variance) with greater likelihoods (Fig. 3). Traits that
can be measured in high-throughput (Hahnel et al. 2018; Evans,
Wit, et al. 2021) or as intermediate traits (e.g., mRNA abundances)
lend themselves to dissection in hundreds of strains and QTL
conferring more subtle effects can be more easily resolved. At the
current size of CeNDR, the primary driver of sampling depth of
GWA mapping populations should be the balance between phe-
notyping effort for the trait of interest and the end goal of associ-
ation mapping given the estimated heritability of the trait and
the lower bound of the effect of QTL that will be detected (Fig. 3).
In many cases, evaluating the same trait using linkage mapping
in complementary populations (i.e., traits segregate similarly be-
tween parental strains of the cross and in the association map-
ping population) can validate effect sizes and provide additional
support for candidates from GWA (Webster et al. 2019; Zdraljevic
et al. 2019; Evans, Wit, et al. 2021).
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Population structure is a major determinant of
performance
In this study, we also quantified the impact of mapping popula-
tion structure on the power and precision of GWA mapping. We
began by implementing a combination of 2 kinship matrix con-
struction algorithms: a linear mixed model tailored toward
GWAS among inbred strains (fastGWA-lmm-exact-INBRED) and
a linear mixed model that corrects for genetic relatedness on all
chromosomes except the chromosome containing the tested
marker (fastGWA-lmm-exact-LOCO). Previous simulations of
GWAS in inbred model organisms have demonstrated an in-
crease in power by excluding markers in LD with the tested
marker (Cheng et al. 2013). This feature is attractive for applica-
tion in C. elegans because intra- and interchromosomal LD is per-
vasive in the C. elegans genome (Barrière and F�elix 2005; Cutter
2006; Rockman and Kruglyak 2009; Cook et al. 2017). In comparing
mappings derived from (1) choosing strains from CeNDR at ran-
dom, (2) swept strains, and (3) divergent strains of equal sampling
depth, we confirmed that the most power to map QTL was pro-
vided by sampling swept strains (Fig. 4a). We also found from
these comparisons that the empirical FDR among the divergent
strain mappings was significantly higher than the swept strain
mappings when a single QTL was simulated (Fig. 5a). This result
aligns with outcomes of past GWA analyses in model organisms,
wherein mappings among structured populations provided less
specific inference of genetic architectures (Kang et al. 2008).
Caenorhabditis elegans populations also harbor highly variable pat-
terns of genetic variation across the genome in these distinct
populations, which contribute to subtle differences in local per-
formance and inference of associations (Fig. 5) such as that
mapped for abamectin (Fig. 6). However, we chose only one col-
lection of strains to represent both divergent and swept mapping
populations when considering local performance differences,
which limits the general extensibility of these particular bench-
marks in other populations. As different combinations of strains
with varying landscapes of selective sweeps and hyper-divergent
regions are tested, we will learn more about the relative influen-
ces of these regions on performance. Before concluding that an
experimenter’s particular mapping population will be less power-
ful because it contains many divergent strains, one is advised to
perform their own population-specific simulations. Below, we
outline some limitations to pursuing GWA in only swept strains
in certain contexts.

First, trait heritability is a major driver of detection power,
which means that if the phenotype of interest does not vary sig-
nificantly among swept strains, the prospects for mapping its ge-
netic architecture heavily rely on low experimental noise. For
this reason, in order to estimate the heritability of an experiment-
er’s trait of interest, we recommend that they measure the trait
of interest and estimate its heritability in a smaller collection of
C. elegans strains representative of the intended mapping popula-
tion prior to its more extensive analysis. Divergent strains have
been shown to exhibit distinct population-wide phenotypic differ-
ences from swept strains (Zhang et al. 2021) and therefore might
be expected to contribute significantly to estimates of narrow-
sense heritability of other traits. Second, swept populations will
be enriched for alleles that have arisen relatively recently on
swept haplotypes. Some QTL will be slightly more common in the
population in swept populations (Fig. 4c), but swept populations
provide a limited view of whether these QTL identified are mean-
ingful in divergent populations that are more representative of
the ancestral niche of C. elegans (Crombie et al. 2019; Lee et al.

2019, 2021). We know of many examples where strains more
closely associated with human colonization and laboratory do-
mestication express trait differences uncharacteristic of “wild” C.
elegans strains (Sterken et al. 2015; Schulenburg and F�elix 2017).
Third, one kinship matrix construction algorithm used in our
GWA platform was designed, in part, to collapse high relatedness
among inbred individuals by creating sparse genetic covariance.
This calculation is expected to provide more power in swept pop-
ulations than divergent populations because the covariance
among swept strains will be small enough for the algorithm to
collapse more often than among divergent strains.

An instructive comparison to the improvement of C. elegans
GWAS is the successes of identifying disease risk alleles in di-
verse human cohorts. Trans-ethnic GWAS has successfully identi-
fied common variants linked to complex human diseases by
leveraging rich data and population sizes (Pendergrass et al. 2019;
Wojcik et al. 2019; Hu et al. 2021). However, generalized predic-
tions of disease risk in the form of polygenic risk scores suffer
from sampling bias, genetic heterogeneity, and varying frequen-
cies of risk alleles among distinct subpopulations (Li and Keating
2014; Márquez-Luna et al. 2017; Martin et al. 2019, 2020). As the
community sampling of diverse C. elegans strains grows, GWAS
will provide more power to detect QTL with more modest effects,
and we will achieve more success in identifying common genetic
variants linked to complex traits. However, one advantage of C.
elegans is that complementary techniques for quantitative genet-
ics are easily achievable and essential for validating candidate
loci from GWA mappings. NILs and RILs can be derived from indi-
vidual strains with large phenotypic contrasts and used for fine
mapping alleles, making hypothesis-driven inferences of GWA
candidate gene identification and functional tests more address-
able than could be hoped for in many other species. As genomic
resources for comparative evolutionary studies in C. elegans grow,
we will characterize hyper-divergent regions more completely so
that variants identified in GWA within these regions can be more
confidently nominated as candidates. Furthermore, future
endeavors of GWA mapping should explicitly control for the ex-
tensive population structure present among divergent strains us-
ing statistical techniques being actively applied to significantly
larger cohorts of stratified human populations (Wojcik et al.
2019).

Data availability
The simulation and mapping profiles of NemaScan are available
at https://github.com/AndersenLab/NemaScan and are accessi-
ble with the same pipeline. In addition, we provide all parameter
specifications used to generate the mappings (Supplementary
Table 1). All code and data used to replicate the data analysis and
figures presented are available for download at https://github.
com/AndersenLab/nemascan_manuscript. All variant calls,
hyper-divergent region calls, and selective sweep haplotype calls
are available at https://www.elegansvariation.org/data/release/
20210121. Finally, prospective users are also encouraged to use
NemaScan to perform their own mappings at https://www.ele
gansvariation.org/mapping/perform-mapping/.

Supplemental material is available at G3 online.
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