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Abstract

Migratory birds can detect the direction of the Earth’s magnetic field using the magnetic

compass sense. However, the sensory basis of the magnetic compass still remains a puz-

zle. A large body of indirect evidence suggests that magnetic compass in birds is localized

in the retina. To confirm this point, an evidence of visual signals modulation by magnetic

field (MF) should be obtained. In a previous study we showed that MF inclination impacts

the amplitude of ex vivo electroretinogram (ERG) recorded from isolated pigeon retina. Here

we present the results of an analysis of putative MF effect on one component of ERG, the

photoreceptor’s response, isolated from the total ERG by adding sodium aspartate and bar-

ium chloride to the perfusion solution. Photoresponses were recorded from isolated retinae

of domestic pigeons Columba livia. The retinal samples were placed in MF that was modu-

lated by three pairs of orthogonal Helmholtz coils. Light stimuli (blue and red) were applied

under two inclinations of MF, 0˚ and 90˚. In all the experiments, preparations from two parts

of retina were used, red field (with dominant red-sensitive cones) and yellow field (with rela-

tively uniform distribution of cone color types). In contrast to the whole retinal ERG, we did

not observe any effect of MF inclination on either amplitude or kinetics of pharmacologically

isolated photoreceptor responses to blue or red half-saturating flashes. A possible explana-

tions of these results could be that magnetic compass sense is localized in retinal cells other

than photoreceptors, or that photoreceptors do participate in magnetoreception, but require

some processing of compass information in other retinal layers, so that only whole retina sig-

nal can reflect the response to changing MF.

Introduction

Migratory birds use the Earth’s magnetic field (MF) for navigation and orientation during

their long-distance journeys between breeding and wintering areas, and are known to possess

both a magnetic compass [1] and a magnetic positioning system, a map [2]. The sensory basis

of avian magnetic compass still remains a puzzle. A large body of behavioral data indicates that

the avian magnetic compass has several important properties: it is based on the inclination

angle of the magnetic field lines rather than on the polarity of the field [1], it is light-depen-

dent, and, moreover, it depends on the light spectral composition. In experiments on magnetic

compass orientation, birds of different species were able to orient under UV, blue and green
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light and disoriented under yellow and red light [3–8, for a review see 9]. Based on this fact,

the primary magnetoreceptor in birds is supposed to be localized in the retina of the eye, and

the prevalent hypothesis describing the work of such a magnetoreceptor is the radical pair

model [10, 11; reviewed in 12]. According to this model, the primary receptor molecules that

perceive the magnetic field are the cryptochromes. So far most promising candidate for being

the magnetoreceptive protein is cryptochrome 4 (Cry4) because of seasonal but not circadian

oscillations in its synthesis, and since its expression was shown in the outer segments of the

double cones and long-wavelength single cones of avian retina [13]. It is assumed that crypto-

chromes are orderly oriented with respect to the surface of the retina, hypothetically due to

binding to membrane proteins. These molecules absorb the short-wavelength photons, start-

ing reversible chemical reactions, whose yield of (hypothetical) final products depend on the

direction of the vector of the external magnetic field. However, at present, essentially nothing

is known about the molecular mechanisms that might enable cryptochromes to transduce neu-

ronal signals to the brain [for a review see 14].

For clarifying the mechanisms by which retinal cells can respond to the change in the MF,

the most direct way is to make electrophysiological recording from the retina. Earlier we have

tested a possible modulating effect of MF on the light response of pigeon retina. We found a

small but statistically significant influence of the MF direction on the amplitude of half-satu-

rated retinal responses to blue, but not red flashes [15]. ERG is a complex sum of electrical

responses of several heterogeneous layers of cells. Since photoreceptors are supposed to be the

most likely source of magnetoreception, we undertook a new series of experiments in which

the possible influence of the magnetic field on the photoreceptor component of ERG was selec-

tively analyzed. Thus we were going to see whether photoreceptor cells would make a major

contribution to the effect observed in our previous study with recording from the whole

pigeon retina.

Materials and methods

Experimental animals

The experiments were carried out on the retina of domestic pigeons Columba livia (n = 14).

The birds were purchased from the breeder (“Pigeons of the Northern Capital” voluntary asso-

ciation, Russia) and kept for about one week in the lab at a 12:12 h light/dark cycle and with

free access to water and food. Pigeons were housed in an outdoor aviary measuring 300 x 400

x 200cm. The cages fulfill the EU directive specifications for holding cages. In their housing

caches, the pigeons could move about freely. Food and water were provided ad libitum. Floors

of cages and aviaries were covered with wooden flakes and two perches were installed at differ-

ent levels. Euthanasia was achieved by decapitation, in order to avoid effects of injected sub-

stances on retina. Decapitation conforms to institutional guidelines for animal welfare and the

laws on the involvement of animals in experimental research issued by the government of Rus-

sian Federation and represents the most commonly used techniques to obtain tissue samples.

The animals were treated in according to the protocol approved by Institutional Animal Care

and Use Committee of Sechenov Institute of Evolutionary Physiology and Biochemistry, Rus-

sian Academy of Sciences (4-4/en dated April 23, 2018).

Preparations, perfusion and solution

Before the experiment, the birds were dark-adapted for about 1 hour. Their eyes were enucle-

ated and the retinas were extracted under dim red light. Pigeon retina consists of two special-

ized areas (with different percentage of particular cone types): the “red field” in the dorso-

temporal part of the retina and the “yellow field” in the remaining part (see Fig 1) [16]. For all
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tested eyes in this study retinae were divided into these two parts and recorded separately (see

Result section).

Pigeon cone photoreceptors, like in all typical diurnal birds, contain colored and colorless

oil droplets that act as cut-off filters reducing the sensitivity of cones in the short-wavelength

part of the spectrum. The type of visual pigment in each particular cone can be inferred from

the color of its oil-droplet [17]. In the pigeon’s retinal red field, the proportion of the total of

red and orange oil-droplets, corresponding to long-wavelength sensitive pigment, is about

80% of the total cone count, which makes it look reddish. In the yellow field, red and orange

oil-droplets make only 25% of the total cone count, making it yellow-looking. Therefore, the

red and the yellow fields are characterized by different ratios of cone pigment types [18].

Tissue preparations and perfusion were made using Ringer’s solution for birds [19], con-

taining in mM: NaCl 100, KCl 6, MgCl22, CaCl21, NaHCO330, NaH2PO41, Glucose 50; pH

adjusted to 7.5. All chemicals were purchased from Sigma-Aldrich (St. Louis, USA).

The perfusion solution was bubbled with 95% O2/5% CO2 gas mixture and heated up to

37˚C before passing through the perfusion chamber. Perfusion flow rate was 3 ml/min. Isola-

tion of the photoreceptor potential from the whole retinal response was achieved by pharma-

cological means, commonly used in vision research: to cut-off the signal transduction from

photoreceptors to second-order neurons, the perfusion solution was supplemented with 5 mM

L-Aspartate. In order to suppress the glial (Müller cell) component of ERG, 0.1 mM BaCl2 was

also added to perfusion solution [20–22].

Fig 1. Scheme of fundus of the pigeon eye according to [16]. Positions of the red and yellow fields are shown.

https://doi.org/10.1371/journal.pone.0229142.g001
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Electrical recordings and light stimulation

Transretinal voltage was recorded by ex vivo electroretinography [23]. Responses to the light

were recorded across the isolated retina placed in an Ussing-type perfusion chamber, photore-

ceptor side down. Signals were captured by a differential amplifier (DAM50 Extracellular

Amplifier, World Precision Instruments, FL, USA). Responses were recorded in the low-pass

filtering at 1000 Hz at 10-ms digitization intervals.

The light stimulation system was based on a high-output light-emitting diode (LED). The

stimulus intensity was controlled by switchable neutral density filters and LED current. Retinas

were stimulated with 10-ms flashes of blue or red LED (λmax = 470 or 630 nm, respectively).

Data acquisition, stimulus intensity, and timing were controlled by National Instruments

hardware and LabView software (National Instruments, Austin, TX).

Magnetic field modulation

The MF around the preparation of the retina was controlled with coils creating a uniform

magnetic field and measured with a magnetometer. A homogeneous magnetic field was cre-

ated using three Helmholtz orthogonal coils with a diameter of about 30 cm. One pair of rings

was used only to compensate for the earth’s magnetic field along one of the horizontal direc-

tions. Coils were connected to DC laboratory power supply TK Lambda ZUP36-12

(TDK-Lambda Americas Inc. USA). Two other pairs of rings, oriented in the vertical and hori-

zontal directions, created a uniform magnetic field in any direction in the vertical plane. To do

this, the currents through the coils were controlled by a computer using a custom-made two-

channel programmable current source. Thus, it was possible, in particular, to establish the ver-

tical or horizontal direction of the magnetic field of 50 μT amplitude, which was correspond-

ingly perpendicular or parallel to the plane of the retina. The switching time of the field

direction was<1 ms. The magnetic field was independently controlled using a three-coordi-

nate magnetometer based on the eCompass module LS303DHL from STMicroelectronics,

connected to a computer through the STM32-Nucleo board. The measurement accuracy of

the magnetic field was 1 μT.

To avoid any signal disturbances from ferromagnetic parts of experimental setup, the

recording chamber with the retina preparation and the Helmholtz coils were placed at a dis-

tance from any iron-containing objects. A tight aluminum box protected the preparation from

the ambient light and from the external electromagnetic interference. Stimulation system pro-

jected the flashes from LEDs onto retinal preparations via an optical fiber.

To further reduce electromagnetic noise near the preparation, the aluminum box was con-

nected to the ground of the outlet. Typical noise spectra, recorded in the experimental room

and inside the experimental chamber while all systems of the experimental setup are running

are shown in S1 Fig (Supporting materials). Integration of the noise density in a range 0.1–10

MHz gives the total amplitude of the altering magnetic field near the preparation B = 8 nT,

which roughly corresponds to conditions in which birds show magnetic orientation in behav-

ioral experiments [24].

Experimental protocol

In present study we investigated pharmacologically isolated full-field photoreceptor responses

of the retina. Typical set of photoreceptor responses to blue flashes of increasing intensities is

presented in Fig 2.

To detect a modulating effect of the MF on the photoreceptor responses, we used experimen-

tal protocol similar to the one described before [14].Two types of light stimuli were selected,

blue (470 nm) and red (630 nm) because, according to behavioral data, birds are able to orient
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under blue, but not under red light [5–7].Therefore, one could expect the effect of MF modula-

tion on responses to blue, but not to red stimulus. Light flashes were presented at two directions

of the MF, orthogonal (inclination 90˚) and parallel (inclination 0˚) to the plane of the retinal

preparations loaded into a perfusion chamber. The obtained photoresponses’ amplitude and

kinetics were then compared. It should be emphasized that in the present protocol the magnetic

field did not change during the signal recording. Therefore, there was no electromagnetic

induction in the signal detection pathway caused by the electromagnetic system.

Before the start of the MF inclination modulation, the retinal preparations were initially

stimulated by short blue and red flashes of increasing intensity (Fig 2) to determine the range

of its sensitivity to light and choose the approximately half-saturating intensity of the flash.

After that, we recorded four sets of responses (6 to 8 each): the first and third sets were

recorded under 90˚inclination of MF, the second and fourth ones, under 0˚ inclination. Time

intervals between sets’ recordings varied from 46 to 371 s. Responses in every set were then

averaged to increase the signal-to-noise ratio.

The typical experimental protocol (Fig 3A) and representative photoreceptor responses to

blue (Fig 3B) and red (Fig 3C) half-saturating flashes are shown with overlap of responses

recorded under two different MF inclination values.

Fig 2. Typical set of photoreceptor responses of isolated pigeon retina to blue flashes of increasing intensities. Flash duration is 10

ms. The intensities of flashes were 3.7×106, 4.67×107, 1.17×108, 4.17×108, 1.32×109, 4.36×109 photons/mm2. Red curve indicates approx.

half-saturated response (flash 1.17×108) that was selected for further testing with modulated MF inclination.

https://doi.org/10.1371/journal.pone.0229142.g002
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Statistical analysis

To determine whether the differences in photoresponses amplitude were statistically signifi-

cant, we calculated the ratio of the amplitude recorded under magnetic inclination 0˚ to the

amplitude for inclination 90˚ and used the Student’s one sample t-test to compare it with 1.

Shapiro-Wilk’s test was applied to confirm the normality of data distribution. If needed, the

amplitudes of half-saturated responses were normalized by the maximal response amplitude,

achieved for a given preparation.

The difference in the shape between two normalized responses can be quantitatively charac-

terized by sum of the absolute values of the difference between the two responses normalized

on the number of points the response records consisted of. So, to compare the kinetics of pho-

toreceptor responses we performed the following protocol:

Fig 3. Effect of the MF inclination on photoreceptor responses from the isolated pigeon retina. (A) Series of four average photoreceptor

responses to half-saturating blue flashes (10 ms, intensity 2.1×108 photons/mm2) recorded one after another with changing of MF inclination

(90˚!0˚!90˚!0˚). (B) Two average photoreceptor responses to half-saturating blue flashes (10 ms, intensity 2.1×108 photons/mm2) at different

MF inclinations. (C) Same for two average responses to half-saturating red flashes (10 ms, intensity 1.8×1010 photons/mm2).

https://doi.org/10.1371/journal.pone.0229142.g003
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1. We normalized every averaged response from 2nd, 3rd and 4th sets on their own maximal

amplitude to make them all have the amplitude of 1 unit. This procedure allows us to avoid

the effect of amplitude changing with time on the result.

2. We calculated point-by-point differences between two normalized responses from the sets

recorded either under the same inclinations of the MF or under two different inclinations

for each retinal preparation and then squared these differences.

3. We summarized the squared differences for every recorded point of the response and then

averaged these sums on number of terms, i.e. on number of points the response comprise

of. The values of three sums were obtained: first, for the point-by-point difference between

the two responses recorded under the same MF with inclination 0˚, which served as a con-

trol; second, for the point-by-point difference between the first response recorded under

MF with inclination 0˚ and the response recorded under MF with inclination 90˚; third, for

the difference between the second response recorded under MF with inclination 0˚ and the

same answer recorded under MF with inclination 90˚.

4. We formed three samples from described three types of averaged sums obtained for each

retinal preparation (red or yellow field) and compared these samples using the one-way

repeated measures ANOVA with post hoc Bonferroni correction.

All data were analyzed using Microsoft Excel 2010 (Microsoft Corp., USA), IBM SPSS Sta-

tistics 22.0 (SPSS software, IBM Corp., USA) and GraphPad Prism 8 (GraphPad software, Inc.,

USA). Statistical significance was set at p<0.05. N refers to number of retina preparations

throughout the Results section.

The raw data for amplitude and kinetics analysis are presented both for our earlier study

[15] and the current work as supporting files “S1 File” and “S2 File”, respectively.

Results

Decrease of the response maximum during the experimental procedure

We found that the photoreceptor responses demonstrate slight decrease in amplitude during

our experimental protocol. A possible reason for this process could be slow metabolic deterio-

ration of the retina. We tested if this decrease was statistically significant.

Statistical analysis showed that, after normalization by the maximal response amplitude,

achieved for a given preparation, for the responses to blue stimulus, the 1st average (n = 31)

response maximum was significantly higher than 2nd average response maximum (one-way

repeated measures ANOVA with post hoc Bonferroni correction: p = 0.007). Likewise, the

response maximum was significantly higher for the 2nd average response than for the 3rd

(p = 0.012), and higher for the 3rd average response than for the 4th (p = 0.004; see Fig 4A).

We obtained a different result after analysis of the responses to red stimulus: repeated mea-

sures ANOVA showed no significant decrease in the average (n = 31, F = 0.140, p = 0.711)

maximum of responses recorded at different times (see the supporting file “S2 Fig”). This

result could possibly be explained by a difference in spectral sensitivity of the pigeon’s photore-

ceptors to our light stimuli. The sensitivity of pigeon rods to 630 nm (red) stimulus is several

orders of magnitude lower than to the 470 nm (blue) stimulus [17], which means that rods

contribution to the whole photoreceptor response is much lower for the responses to red

flashes than to blue flashes. One could expect that rods are more sensitive to retinal prepara-

tion handling and perfusion conditions, which results in decrease of their response amplitude

after several flashes. Thus, responses to blue flashes containing relatively large rod component

would show a decrease in their amplitude, while responses to red flashes predominantly
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containing the responses of only long-wavelength sensitive cones would not show any signifi-

cant amplitude decrease.

Such effect could lead to misinterpretations of our experimental data concerning photore-

sponse maxima, resulting in false positives. To avoid it, we performed a correction of the ampli-

tude of the photoreceptor responses, recorded under particular inclination of MF used in

experimental protocol, over time (Fig 4B). We used the previously recorded four sets of

responses, where average maxima of 1st and 3rd set were used to calculate the linear trend for

responses under MF with inclination 90˚, average maxima of 2nd and 4th sets–for responses

under the MF with inclination 0˚. Still, we tested whether the slopes of these two trends are sig-

nificantly different, which would correspond to non-linearity of the response amplitude changes

during the time of experiment. At least in one case, for the full ERG dataset from our earlier

study [15], we found a significant difference between slopes for 0˚ and 90˚ inclination linear

trends (Student’s t-test for paired samples, t = 3.554, p = 0.002, see the supporting file “S3 Fig”).

According to this result, we suggest that the initial part of the curve describing changes in

response amplitude during time has a different slope than the remaining part. Therefore, to

make our data processing method more reliable, we analyzed our data by taking into calcula-

tions only last three sets of responses (“0˚ – 90˚ – 0˚” scheme). We used linear regression correc-

tion only for the amplitude of response recorded under magnetic inclination 0˚. This way we

found the value corresponding to the same time point as the amplitude for inclination 90˚.

Despite the fact that a significant decrease in response maximum was observed only for the

responses to blue flashes, the same procedure was applied to the responses to red flashes in

order to standardize the data processing protocol and avoid effect that could be not significant

in general, but distort data for several particular retinal preparations. Moreover, we re-

Fig 4. Analysis of gradual changes in the response maximum. (A) Differences in the amplitude maximum of the average responses to blue flashes recorded

one after another with certain time intervals (normalized by response amplitude, achieved for a given preparation). For all retinal preparations (n = 31)

responses show significant decreasing of the amplitude maximum. Data presented as medians (black horizontal lines) and quartiles (boxes and bars).�—

statistically significant changes for one-way repeated measures ANOVA with post hoc Bonferroni correction. (B) Pair of responses recorded under the same 0˚

inclination of MF was used for building the linear trend in the amplitude of photoreceptor responses over time, and then such calculated trend was used for

calculation of corrected response amplitude at the same time point as the amplitude for inclination 90˚. The value of amplitude used for subsequent statistical

analysis is marked as “corrected data”.

https://doi.org/10.1371/journal.pone.0229142.g004

PLOS ONE Searching for magnetic compass mechanism in pigeon retinal photoreceptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0229142 March 5, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0229142.g004
https://doi.org/10.1371/journal.pone.0229142


analyzed the full ERG data from our earlier study according to the described protocol to ensure

that the significant difference in amplitude that occurred with the change of magnetic inclina-

tion was not a false positive.

Comparison of response maxima under different MF inclination

We analyzed the amplitudes for full ERG data from our earlier study [15] together with iso-

lated photoreceptor potentials. The response maxima recorded under magnetic inclination 0˚

were corrected as described above and the ratios of the amplitude recorded under magnetic

inclination 0˚ to the amplitude for inclination 90˚ were calculated. We used the Student’s one

sample t-test to compare this ratio with 1, moreover, for the current study’s data we analyzed

the effect of MF inclination on response maximum for red and yellow fields of the pigeon ret-

ina preparations separately.

For the yellow field preparations the average photoreceptor response maximum amplitude

to blue flashes was 50±2 μV, while to red flashes it was 52±3 μV. Half-saturating intensity var-

ied from 4.7×107 to 8.3×108photons/mm2 for blue flashes, and from 8.3×109 to 5.6×1010 pho-

tons/mm2 for red flashes. We found no significant effects of MF inclination change on the

amplitude of photoreceptor responses to blue (n = 16, t = -1.045, p = 0.312) or red flashes

(n = 16, t = -0.365, p = 0.720; see Fig 5A).

Average response amplitude for the preparations of the red field was 36±3 μV for blue

flashes and 42±5 μV for red flashes. For blue flashes half-saturating intensity varied from

9.3×107 to 2.9×1010 photons/mm2, and for red flashes–from 7×109 to 7×1010 photons/mm2.

There were also no significant effects of MF inclination change on the responses amplitude

neither to blue (n = 15, t = 1.219, p = 0.243) nor to red flashes (n = 15, t = 0.515, p = 0.615; see

Fig 5B).

The re-analysis of full ERG data from our earlier study showed generally the same pattern

as the one presented in the original paper. The responses to blue flashes showed statistically

significant deviation of ratio of amplitudes recorded under 0˚/90˚ inclinations from 1, mean-

ing that response amplitude for 0˚ inclination was significantly higher than amplitude for 90˚

(n = 20, t = 2.192, p = 0.041, see Fig 5C). Conversely, we detected no significant changes in

response maximum under MF with two different inclinations for the responses to red flashes

(n = 20, t = -0.812, p = 0.427).

Comparison of response kinetics under different MF inclination

Similarly to response maximum, we analyzed the effect of MF inclination on response kinetics

separately for preparations of yellow and red fields of pigeon retina. One could expect the

change in sums of squares of point-by-point differences as the effect of MF inclination change

on the kinetics of photoreceptor responses, so that the difference between responses with the

same inclination (0˚) would be significantly lower than the difference between responses with

different inclinations (0˚ and 90˚).

However, we did not detect any statistically significant changes by one-way repeated mea-

sures ANOVA. Re-analysis of the data from our earlier study [15] showed the same results as

the analysis performed in original paper: no changes for responses neither to blue flashes

(n = 20, F = 2.378, p = 0.106) nor to red flashes (n = 20, F = 1.629, p = 0.219, see the supporting

file “S4 Fig”). In the current study, for preparations of yellow retinal field we found no signifi-

cant effect of MF inclination change for responses to blue (n = 16, t = 0.636, p = 0.536) or red

flashes (n = 16, F = 0.664, p = 0.552; see Fig 6A and 6B). For red field preparations there was

no significant effect on the kinetics of photoreceptor responses to blue (n = 15, F = 1.673,

p = 0.217) or red flashes (n = 15, t = 1.573, p = 0.230; see Fig 6C and 6D), either.
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Discussion

Over the recent decades, a large body of indirect data has been accumulating that suggests the

involvement of the retina in the mechanism of avian magnetic compass. However, so far no

direct evidence has been presented of involvement of one or more cellular types of retina in

the reception of magnetic field inclination. According to the current view, the most probable

molecular candidates for the substrate of magnetoreception, cryptochromes 4 and 1b, are

expressed in the photoreceptor cells of avian retina, particularly in cones [13, 25, 26]. Earlier,

we performed ERG recordings on isolated retina of the pigeon without pharmacological isola-

tion of photoreceptor potential and found a small but statistically significant influence of the

MF inclination on retinal responses to blue, but not to red flashes. This result is confirmed

here by the re-analysis of the data with new processing protocol. The present work was

designed to test for the possibility that photoreceptor layer of isolated retina alone is able detect

the MF inclination.

We analyzed the possible effect of MF inclination on the amplitude and kinetics of the

response. To test that, we used half-saturating blue and red short flashes. Furthermore, the

analysis was performed on two regions of pigeon retina, red and yellow fields, that differ in the

proportion of long-wavelength sensitive cones. The red field is characterized by a relatively

high concentration of red and orange oil droplets, i.e.by high concentration of long-wave-

length sensitive cones. The role of such compartmentalization of the pigeon retina has tradi-

tionally been thought to be correlated with behavioral tasks, e.g. enhancing contrast sensitivity

for objects lying against a green background for the red field, while the yellow field would pro-

vide enhanced contrast sensitivity for objects against a blue sky [27]. According to the most

recent and detailed study of localization of the putative “magnetoreceptor” cryptochrome 4, it

is mainly co-expressed with the long-wavelength cone visual pigment [12]. Thus one might

Fig 5. Analysis of potential effect of MF inclination change on the response maximum (amplitude). Y-axis shows the ratio of the response maximum

recorded under magnetic inclination 0˚ to the response maximum for inclination 90˚. (A) Results for yellow field preparations. n = 16 for responses both to

blue and red flashes. (B) Results for red field preparations. n = 15 for responses both to blue and red flashes. For both types of retinal fields no significant

changes in response maximum’s ratio were detected by Student’s one sample t-test. (C) Results for total retinal preparations from a previous study [15]. n = 20

for responses both to blue and red flashes. Ratio of amplitudes recorded under 0˚/90˚ inclinations under blue flashes was significantly different from 1

(Student’s one sample t-test, t = 2.192, p = 0.041). For red flashes, no significant changes from 1 for response maximum’s ratio were detected. Data presented as

medians (black horizontal lines) and quartiles (boxes and bars).

https://doi.org/10.1371/journal.pone.0229142.g005

PLOS ONE Searching for magnetic compass mechanism in pigeon retinal photoreceptors

PLOS ONE | https://doi.org/10.1371/journal.pone.0229142 March 5, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0229142.g005
https://doi.org/10.1371/journal.pone.0229142


expect a more prominent effect of MF in the red field of pigeon retina. However, we did not

observe any difference in the effect of MF inclination in red and yellow field.

It should be noted that we observed no difference in spectral sensitivity between yellow and

red field preparations of the retina. However, the difference in both these retinal parts’ sensitiv-

ity between blue and red stimuli is consistent with absorbance spectrum of rod (but not long

wavelength-sensitive cone) visual pigment (see supporting files “S5 Fig and S6 Figs”). There-

fore, we can conclude that half-saturated responses observed in the present study were entirely

rod-mediated. We assume that working at only rod-activating range of intensities still pro-

vided us with a possibility to detect magnetoreception which is presumably located in cone

photoreceptors. According to the hypothesis proposed by Hore & Mouritsen [12], the

Fig 6. Analysis of potential effect of MF inclination change on the response kinetics. Y-axis shows average sums of point-by-point

differences between normalized responses recorded under the same (0˚) or under two different (0˚ and 90˚) MF inclinations. Results

presented for responses both to blue and red flashes. “Different inclination-1” and “Different inclination-2” refer to the sums of point-

by-point differences between the responses recorded under the MF inclination 90˚ and 1st or 2nd set of responses recorded under

inclination 0˚, respectively. (A) Results for yellow field preparations. n = 16 for responses both to blue and red flashes. (B) Results for

red field preparations. n = 15 for responses both to blue and red flashes. For both types of retinal fields no significant changes in

response maximum were detected by one-way repeated measures ANOVA. Data presented as medians (black horizontal lines) and

quartiles (boxes and bars).

https://doi.org/10.1371/journal.pone.0229142.g006
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cryptochromes (the main candidates on the role of magnetoreceptive molecule) located in

cones could be activated even by low intensity stimulus and produce the electrical cell response

while the visual pigment molecules stay inactive and phototransduction cascade keeps its dark

state. Therefore, in the scotopic range of light intensities cones would function only as magne-

toreceptors but not photoreceptors, still their response to changing MF might be detected as

an addition to rod-mediated photoresponse, recorded from the retina. According to our

results, no such additional component is detected in isolated photoreceptor potential.

One explanation for our results could be that magnetic compass is localized in retinal cells

other than photoreceptors. Nießner and colleagues showed that CRY 1b is expressed in gan-

glion cells, but not in the photoreceptors of European robins Erithacus rubecula [28]. The

recent work by Mouritsen and co-workers also identified CRY1a in garden warbler Sylvia
borin ganglion cells and large displaced ganglion cells, i.e. not in photoreceptors [29]. It might

be useful to look again at the possibility that the magnetoreception mechanism of the magnetic

compass of migratory birds is localized not in photoreceptors, but in other retinal cells.

Another possible explanation is that photoreceptors do participate in magnetoreception, but

require some processing of compass information in other retinal layers, so that only whole ret-

ina signal can reflect the response to changing MF. Still another possibility is that only a small

portion of photoreceptor cells are the detectors of MF and their signals are diluted in the

pooled signal from photoreceptor layer of the entire retina, so that they are no longer detect-

able. This possibility should be tested by performing single cell recordings from the most

promising photoreceptor cells, e.g. double cones and long-wavelength single cones [13].

Supporting information

S1 Fig. Noise spectra (per 10 kHz) recorded in the experimental room (black curve) and

inside the experimental chamber (red curve) with all systems of the experimental setup

running. Magnetic noise was measured using a Textronix digital oscilloscope TDS2022c

equipped with a high-frequency preamplifier and a loop antenna consisting of a single turn of

wire. To increase the sensitivity, we used the computer accumulation of the noise spectrum

measured by the oscilloscope. Figure shows two spectra corresponding to the noise level in the

laboratory (black curve) and inside the experimental chamber (red curve) when all systems of

the experimental setup are running. To calculate the total field intensity in this spectral range

we assume that magnetic field noise at different frequencies has a random phase and hence we

use the root of the sum of the squares of the individual spectral components of the noise Bt =

∑i

p
(Bi

2) rather than its sum to determine the total amplitude of the magnetic field. Values of

the total time-dependent magnetic field intensity outside and inside the experimental chamber

calculated in this way equals 28 nT and 8 nT, respectively. Grounding of the Faraday cage is

done through a socket on the common ground of the institute, which is apparently rather

noisy, since the screening of noise by a Faraday cage is not very effective.

(TIF)

S2 Fig. Time dependence of the amplitude of responses to red flashes. Normalized ampli-

tude maximum of the average responses to red (630 nm) flashes recorded one after another

with certain time intervals are presented. For all retinal preparations (n = 31) one-way

repeated measures ANOVA with post hoc Bonferroni correction did not show any statistically

significant changes of response maximum. Data presented as medians (black horizontal lines)

and quartiles (boxes and bars).

(TIF)
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S3 Fig. Comparison of the slopes of linear trends for full ERG responses to red flashes. Lin-

ear trends were built for amplitudes at 0˚ and 90˚magnetic inclinations, respectively. Their

slopes showed significant difference, which correspond to non-linearity of the whole response

amplitude changes during the time of experiment (Student’s t-test for paired samples,

t = 3.554, p = 0.002).Therefore, the initial part of the curve describing changes in response

amplitude during time, should be excluded from the correction procedure, so we analyzed our

data by taking into calculation only last three sets of responses. Data are presented as medians

(black horizontal lines) and quartiles (boxes and bars).

(TIF)

S4 Fig. Analysis of potential effect of MF inclination change on the full ERG kinetics. Y-

axis shows average sums of point-by-point differences between normalized responses recorded

under the same (0˚) or under two different (0˚ and 90˚) MF inclinations. “Different inclina-

tion-1” and “Different inclination-2” refer to the sums of point-by-point differences between

the responses recorded under the MF inclination 90˚ and 1st or 2nd set of responses recorded

under inclination 0˚, respectively. (A) Results for responses to blue flashes. (B) Results for

responses to red flashes. For both stimuli no significant changes in response maximum were

detected by one-way repeated measures ANOVA (n = 20). Data presented as medians (black

horizontal lines) and quartiles (boxes and bars).

(TIF)

S5 Fig. Dependencies of normalized response maximum on light intensities for prepara-

tions of yellow and red field of the pigeon retina. Individual points indicate values for indi-

vidual preparations. Student’s t-test for two samples did not show any statistically significant

difference in sensitivity between retinal red (n = 15) and yellow (n = 17) field preparations

either for red or blue stimuli. Thus, the difference in proportion of long wavelength-sensitive

cones between these fields does not influence their sensitivities to blue and red stimuli with

intensities used in our experimental protocol.

(TIF)

S6 Fig. Superimposition of absorbance spectra of visual pigments (green solid line repre-

sents visual pigment of pigeon rod, red solid line represents visual pigment of pigeon red-

sensitive cones) and emission spectra of two LED (blue dashed line–blue LED, red dashed

line–red LED). Sensitivity of visual pigment to the particular LED can be estimated from over-

lap areas between respective absorbance and emission spectra. The ratio of sensitivity between

blue and red LEDs is approximately 1:1 for red-sensitive cones and 100:1 for rod visual pig-

ment. Supporting file “S5 Fig” indicates that approximately half-saturating intensities used in

present study correspond to ratio of sensitivity between blue and red flashes about 100:1. It

means that half-saturated responses observed in the present study are entirely rod-mediated.

(TIF)

S1 File. Raw data for the full ERG responses (for MF magnitude 50 μT). This table contains

all raw data on amplitudes and kinetics for the results originally described in our earlier study

[15]. Amplitudes presented as averaged from each of four sets (with corresponding times), also as

corrected values for amplitudes at 0˚ MF inclination and maximal response amplitude, achieved

for a given preparation. The kinetics data presented as averaged sums of point-by-point differ-

ences between the normalized responses recorded under the MF inclination 0˚ and 90˚.

(XLSX)

S2 File. Raw data for the isolated photoreceptor potential. This table contains all raw data

on amplitudes and kinetics for the results described in current study. Amplitudes presented as
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averaged from each of four sets (with corresponding times), also as corrected values for ampli-

tudes at 0˚ MF inclination and maximal response amplitude, achieved for a given preparation.

The kinetics data presented as averaged sums of point-by-point differences between the nor-

malized responses recorded under the MF inclination 0˚ and 90˚.

(XLSX)
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