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Abstract

Acid-sensing ion channels (ASICs) are neuronal, proton-gated, Na+-selective ion channels.

They are involved in various physiological and pathological processes such as neurodegen-

eration after stroke, pain sensation, fear behavior and learning. To obtain information on the

activation mechanism of ASIC1a, we attempted in this study to impose distance constraints

between paired residues in different channel domains by using cross-linkers reacting with

engineered Cys residues, and we measured how this affected channel function. First, the

optical tweezer 40-Bis(maleimido)azobenzene (BMA) was used, whose conformation

changes depending on the wavelength of applied light. After exposure of channel mutants to

BMA, an activation of the channel by light was only observed with a mutant containing a Cys

mutation in the extracellular pore entry, I428C. Western blot analysis indicated that BMA did

not cross-link Cys428 residues. Extracellular application of methanethiosulfonate (MTS)

cross-linkers of different lengths changed the properties of several Cys mutants, in many

cases likely without cross-linking two Cys residues. Our observations suggest that intersu-

bunit cross-linking occurred in the wrist mutant A425C and intrasubunit cross-linking in the

acidic pocket mutant D237C/I312C. In these mutants, exposure to cross-linkers favored a

non-conducting channel conformation and induced an acidic shift of the pH dependence

and a decrease of the maximal current amplitude. Overall, the cross-linking approaches

appeared to be inefficient, possibly due to the geometrical requirements for successful reac-

tions of the two ends of the cross-linking compound.

Introduction

Acid-sensing ion channels (ASICs) are proton-gated voltage-independent Na+-selective ion

channels that form a sub-family within the Epithelial Na+ Channel/Degenerin family. In

rodents, 6 homologous ASIC subunits, ASIC1a, -1b, -2a, -2b, -3 and -4 have been identified.

Homotrimeric or heterotrimeric assembly of ASIC subunits results in channels with different

pH sensitivity and kinetics [1, 2]. ASIC1a, -2a, -2b and -4 are expressed in the CNS, and all

ASICs except ASIC4 are expressed in the PNS [2, 3]. ASICs are involved in various pathologi-

cal and physiological functions, such as learning and memory [4–7], anxiety and fear [3],
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neurodegeneration after ischemic stroke [8], seizure termination [9] and pain sensation [10,

11]. Extracellular acidification results in rapid ASIC activation, producing an inward current

that is transient because it decays when the channel enters the non-conducting desensitized

state [2, 3, 12]. High-resolution structures of chicken ASIC1a in closed, toxin-opened and

desensitized conformations [13–18] and of human ASIC1a in the closed state [19] have been

published and indicate that ASICs are trimers. The structure of a single ASIC subunit has been

compared to the shape of a hand holding a small ball (Fig 1A), with the two transmembrane

domains corresponding to the forearm [16]. The region just above the pore entry is called

"wrist". The extracellular sub-domains were named accordingly as palm, finger, knuckle,

thumb and β-ball. In each subunit, the finger, thumb and β-ball enclose together with the palm

of a neighboring subunit a vestibule containing several acidic amino acid residues, the acidic

pocket. Structural comparison of the closed and open state indicates that during channel acti-

vation the acidic pockets collapse, the extracellular fenestrations (located just above the mem-

brane) are expanded, and the channel gate opens [18]. During desensitization, the lower palm

domains collapse towards the central vertical axis and the transmembrane helices relax back to

a resting-like conformation in which the pore is closed [14, 15, 18, 20]. The acid-induced col-

lapse of the acidic pocket was initially proposed as the driving force for channel opening [16].

The observation that simultaneous mutation of all acidic amino acid residues of the acidic

pocket resulted in channels that were still activated by acidification, suggested however that

protonation of acidic pocket residues is not required for ASIC activation [21]. Several muta-

genesis studies identified residues outside the acidic pocket, whose mutation changed the acti-

vation pH dependence. The identification of such residues [22–28] highlighted the potential

roles of the wrist and palm as pH-sensing domains.

The present study combines functional analysis with the application of Cys-reactive cross-

linkers to mutant ASIC1a channels containing engineered Cys residues in the wrist and extra-

cellular domains, in order to identify conformational changes that are involved in ASIC1a acti-

vation. Experiments were carried out with a cross-linker whose conformation can be changed

by light, and by a series of light-insensitive cross-linkers of different length. Channels were

exposed to these cross-linkers with the aim of locking the channel in specific functional states.

Cross-linking appeared to be inefficient; for many mutants and reagents however, it appeared

that reaction of a single end of these compounds with a Cys residue affected ASIC function

and identified residues involved in activation and desensitization.

Materials and methods

Reagents

4, 40-Bis (maleimido) azobenzene (BMA) and MTS (methanethiosulfonate) compounds were

purchased from Toronto Research Chemicals (Canada). BMA was dissolved in dimethylsulf-

oxide (DMSO) to prepare a 10mM stock solution, which was stored in the dark at -20˚C. Stock

solutions of MTS compounds at 100mM were prepared for MTS-14-PEO3-MTS and MTS-

17-PEO5-MTS in methanol, for MTS-11-MTS in chloroform and for all other MTS reagents

in DMSO and stored at -20˚C. The stock solutions were thawed at the beginning of the

electrophysiological experiments and kept at 4˚C.

Molecular biology

Cysteine mutations were introduced in human ASIC1a [29, 30] and human ASIC2a [29] in

the mammalian expression vector peak8 (Edge Biosystems, Gaithersburg, MD), using site-

directed mutagenesis. The human ASIC1a clone used contained a Gly residue at position 212

[30]. All except two mutants were generated in this background. Two single mutants used
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here, D237C and D351C, had previously been generated in the D212 background [29, 30].

Primers for the mutagenesis were designed using the Quikchange site-directed mutagenesis

method in the PrimerX online tool and synthesized by Microsynth (Switzerland). Site-directed

mutagenesis was performed using KAPA HiFi Hot-start PCR polymerase (Roche, Switzer-

land). All mutations were confirmed by Sanger sequencing (Synergene and Microsynth, Swit-

zerland). The rat P2X2 P329C mutant in pcDNA3.1 was a gift of Dr. Thomas Grutter

(University of Strasbourg, France).

ASIC1a Cys mutants in the peak8 vector were sub-cloned in the pSP65-derived vector

pSD5, containing 5’ and 3’ non-translated sequences of β-globin for improved protein expres-

sion in Xenopus laevis oocytes. The sub-cloning was done with the cloning kit In-Fusion HD

(TaKaRa, Switzerland), using digestion of the pSD5 vector by EcoRI and XbaI, and was veri-

fied by analytical digestions and sequencing. cRNA was synthesized using the in vitro tran-

scription kit mMESSAGE mMACHINE™ SP6 (ThermoFisher, Switzerland). Integrity of the

cRNA was verified by running the synthesized cRNA on an agarose gel.

Mammalian cell culture and transfection

Wild-type and mutant ASIC1a or ASIC2a were transiently co-transfected with EGFP or sfGFP

in Chinese hamster ovary (CHO) cells using Rotifect (CarlRoth, Karlsruhe, Germany),

Fig 1. Light-dependent activation of ASIC1a. A, Structural image of the ASIC1a trimer showing its domain

organization; transmembrane (red), thumb (green), palm (yellow), β-ball (orange), finger (purple), and knuckle (cyan;

human ASIC1a model based on chicken ASIC1a structure). B, BMA in cis (top) and trans conformation (bottom). C,

Localization of I428 and G430 in the transmembrane 2 domain. D-E, data obtained from whole-cell patch-clamp

recording of transfected CHO cells, voltage-clamped to -60mV. D, Representative traces of pH5-induced (left) and

440nm light-induced current (right) of hASIC1a-I428C. The blue and purple bars over the right trace represent the

application of 440nm light (5s) and 360nm light (0.1s), respectively. E, Light-induced current amplitudes measured

from the indicated mutants, normalized in each cell to the pH5-induced current amplitude; n = 11.

https://doi.org/10.1371/journal.pone.0270762.g001
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following the standard manufacturer protocol. Since recent studies had shown successful

application of optical tweezers to P2X2 receptors [31, 32], the mutant P329C of rat P2X2 was

used as a positive control to validate the measuring setup. For the expression of rP2X2-P329C,

HEK cells were transiently co-transfected with EGFP. The ratio of EGFP to ASIC or P2X2 was

0.2:1. CHO cells were cultured in DMEM/Nutrient Mixture F-12, HEK cells in DMEM

medium; these media were supplemented with GlutaMaxTM medium, 10% fetal bovine serum

(FBS, ThermoFischer Scientific) and 1% Penicillin/Streptomycin (5,000 U/mL, ThermoFischer

Scientific). Cells were grown at 37˚C in a 5% CO2 atmosphere, and currents were measured

48–72 h after transfection.

Handling and labeling of Xenopus laevis oocytes

Female South African Clawed frogs Xenopus laevis were anaesthetized with 1.3g/L of MS-222

(Sigma-Aldrich, USA). A small incision of ~1cm was performed on the abdominal wall for the

extraction of oocytes. All procedures with Xenopus laevis were approved by the local veteri-

nary authority of the Canton de Vaud, Switzerland. Healthy stage V and VI oocytes were

treated with collagenase for isolation and defolliculation. Oocytes were injected with 50nl

cRNA at concentrations of 10–500 ng/μl. Oocytes were stored during protein expression in

modified Barth’s saline (MBS) containing (in mM) 85 NaCl, 1 KCl, 2.4 NaHCO3,0.33 Ca

(NO3)2,0.82 MgSO4,0.41 CaCl2, 10 HEPES, and 4.08 NaOH.

Electrophysiology

Patch-clamp. Whole-cell patch-clamp recordings were carried out at -60mV at RT. The

BMA stock solution was diluted to different concentrations (10–40 μM) in the extracellular

solution at pH7.3 immediately before use, and the cells were labelled at room temperature in

the dark for 12, 20 or 40min. Unless noted differently, the BMA concentration used was

20mM, and the exposure time was 20min. The cells were subsequently washed twice with the

extracellular solution at pH 7.4 and were used immediately in the experiment. Whole-cell

recordings were performed using an EPC-10 patch-clamp amplifier and the PatchMaster soft-

ware (HEKA Electronics, Germany). The solution exchange for the experiments was done

using a cFlow 8 channel flow controller connected to the MPRE8 perfusion head (Cell Micro-

Controls, Virginia, USA). The sampling interval for all the experiments was set at 1ms and

low-pass filtering at 3 kHz. Patch pipettes had a resistance between 3–4MO when filled with

intracellular solution. The pipette solution contained (in mM): 90 K-gluconate, 10 NaCl, 10

KCl, 60 HEPES, 10 EGTA, with a final osmolarity of 290 mOsm, adjusted to pH7.3 with KOH.

The standard extracellular solution contained (in mM): 140 NaCl, 4 KCl, 2 CaCl2, 1 MgCl2, 10

MES, 10 HEPES, 10 Glucose to a final osmolarity of 320 mOsm, adjusted to the desired pH

with NaOH or HCl. For NMDG+-containing extracellular solution, NaCl was replaced by

NMDG+. Illumination of cells was achieved with high-power LEDs of 445nm and 365 nm

wavelengths (SOLIS, ThorLabs). Light was directed on the cells using a CFI S Fluor 40X Plan

Fluorite 40X, 0.75 NA objective lens (Nikon). The intensity of the light output was measured

using a handheld optical meter (Newport). The maximal measured output intensities for wave-

lengths of 360 and 440 nm were 2.8 and 6.3 mW/mm2 (corresponding to the maximal inten-

sity). Unless noted differently, the 440nm light was applied at 10% of the maximal intensity,

while the 360nm light was applied at 100% of the maximal intensity. To validate the measuring

setup, the previously reported mutant P2X2-P329C [31, 32] was tested. In this mutant, the

peak current amplitude induced with 440nm light was ~15% of that induced with 7mM ATP

(S1 Fig).
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Recordings using Xenopus oocytes. Electrophysiology experiments were performed 1–2

days after cRNA injection with a Dagan TEV-200 amplifier (Minneapolis, MN) equipped with

two bath electrodes at a holding potential of -60mV. Oocytes were placed in the recording

chamber, impaled with two glass electrodes filled with 1M KCl with a resistance of<0.5 MO

and perfused with experimental solutions by gravity at a rate of 10-12ml/min. The recording

solution contained (in mM): 110 NaCl, 2 CaCl2, 10 HEPES for pH� pH6.8 (MES for

pH<6.8). The pH was adjusted using NaOH or HCl. Solution flow was controlled by a cFlow 8

channel flow controller and electro valve unit. Currents were recorded with the Clampex 9.2

software (Molecular Devices). The sampling interval for all the experiments was set at 1 ms

and current filtering at 3 kHz. The conditioning pH in these experiments was pH7.4. It was

applied during 50s between 10-s applications of acidic solutions. The MTS stock solutions

were diluted in extracellular solution at pH7.4 immediately before use. Oocytes were incubated

for 3min with 1mM of monovalent or cross-linking MTS reagent in the measuring chamber.

Following MTS reagent treatment, oocytes were washed for 1min with extracellular solution

pH7.4 before current recording.

Cell surface cross-linking, biotinylation and Western blot

CHO cells were transiently transfected with 10μg of WT or mutant ASIC1a per 10cm cell cul-

ture plate. 48h after transfection, the cells were washed twice with extracellular solution pH7.3.

The cells were then labelled in the dark with 20μM of BMA for 20 min as described above. The

following steps were all done on ice. After the labelling, cells were washed with extracellular

solution at pH7.3, followed by two washing steps with ice-cold PBS-CM (in mM, 137 NaCl, 2.7

KCl, 8 Na2HPO4, 2 KH2PO4, 0.1 CaCl2, 1 MgCl2) at pH7.4, followed by two wash steps with

PBS-CM at pH8.0. Cells were incubated with EZ-link Sulfo-NHS-SS-Biotin (ThermoFischer

Scientific) in PBS-CM, pH8, at a concentration of 1mg/ml for 15 min. Biotin was quenched by

PBS-CM containing 100mM glycine for 10 min. The cells were then washed twice with

PBS-CM at pH7.4. The cell lysate was prepared by scraping the cells in 1 ml of membrane iso-

lation buffer containing (in mM) 100 NaCl, 5 EDTA, 20 HEPES, 1% Triton X-100 at pH 7.4,

supplemented with 200mM cOmplete protease inhibitor (Roche). Lysed cells were centrifuged

at 11’000g, 4˚C, and the supernatant was collected. The supernatant was added to 50 μl of

Streptavidin Agarose resin beads (ThermoFischer Scientific) and samples were incubated

overnight at 4˚C on a rotating wheel. On the next day, beads were washed thrice with ice-cold

PBS-CM at pH7.4 and recovered by centrifugation at 4˚C, 1000g. Recovered beads were added

to 50 μl of 2x sample loading buffer (20% glycerol, 6% SDS, 250mM Tris-HCl at pH6.7, 0.1%

(w/v) bromophenol blue, 50mM DTT) and surface protein was kept at 65˚C for 15min. Sur-

face protein samples of 25μl were loaded and resolved on Mini-protean TGX stain free 4–15%

precast SDS-PAGE (BioRad) in running buffer containing 27.5mM Tris-base, 213mM Glycine

and 1% SDS at 100V for 1.5h. Proteins were transferred to ProtranTM 0.2μM nitrocellulose

membranes (Amersham Biosciences) at 4˚C and 100V for 2.5h. After the transfer, the mem-

brane was blocked by TBST (137mM NaCl, 2.7mM KCl, 19mM Tris-base, 0.1% Tween 20)

containing 5% non-fat milk for 1h. Membranes were exposed overnight at 4˚C to polyclonal

anti-ASIC1 antibody MTY19 (1:1000) [33] in TBST buffer containing 1% non-fat milk,

washed three times, and were then exposed to Donkey anti-rabbit IgG horseradish peroxidase-

linked secondary antibody (1:4000, GE healthcare, Switzerland). The antibody MTY19 is

directed to the C-terminal 22 amino acid residues of mouse ASIC1a; it has been shown to

detect ASIC1a with high specificity in the hippocampus [33]. To detect actin, the same blots

were exposed overnight at 4˚C to Anti-actin (1:1000, Sigma Aldrich) in TBST buffer contain-

ing 1% BSA, washed three times and detected with Donkey anti-rabbit IgG horseradish
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peroxidase linked secondary antibody (1:4000, GE healthcare). Blots were exposed to second-

ary antibodies for 1h at room temperature and washed three times with 1x TBST. The signals

were detected using the Fusion SOLO chemiluminescence system (Vilber Lourmat, Marne-

laVallée, France) using SuperSignalTM West Femto maximum sensitivity substrate (Thermo

Scientific). The band intensities were quantified by the linear analysis method of the software,

with the area of measurement kept constant for all samples of the same blot. Background noise

was subtracted prior to determining the intensity of individual bands.

Structural models

The crystal structures of chicken ASIC1a in open, desensitized and closed state (PDB ID:

4NTW, 4NYK and 5WKU; [14, 15, 18]) were used to generate homology models of human

ASIC1a, as described [34]. Distances in the models were measured by using Chimera [35].

Data analysis

The pH of half maximal activation (pH50) was determined by fitting normalized activation

curves to the Hill equation, I = Imax/(1+(10-pH50/10-pH)nH), where Imax is the maximal current

amplitude, pH50 is the pH that induces a current amplitude corresponding to 50% of the maxi-

mal current amplitude, and nH is the Hill-coefficient. Data are presented as mean ± SEM. Dif-

ferences between ASIC1a WT and mutant, and between different treatments were analyzed by

ANOVA followed by the indicated post hoc test, using GraphPad Prism. Differences in paired

experiments were analyzed with student’s t-test.

Results

Light-activated current in ASIC1a-I428 after incubation with BMA

A recent study showed that exposure of the mutants I428C and G430C of human ASIC1a to

the optical tweezer BMA allowed the activation of the channel by light [31]. Here, we used this

approach at different positions of ASIC1a to probe for conformational changes involved in

ASIC activation. The end-to-end length of BMA is ~13Å in the cis, and ~22 Å in the trans con-

formation [31], illustrated in Fig 1B. The two mutants ASIC1a-I428C and -G430C were used

as positive controls in a first set of experiments with BMA. Structural models of human

ASIC1a (Methods) indicate an intersubunit distance between Ile428 residues (measured

between the b-carbon atoms) of 21.3Å in the closed and 28.4Å in the open state; for Gly430

the corresponding distances (between a-carbon atoms) are 9.5Å and 16.6Å, respectively

(Table 1). These residues are located at the top of the TM2, in the extracellular pore entry, with

Ile428 pointing in the open conformation towards the outside, and Gly430 towards the adja-

cent subunit (Fig 1C). The I428C and G430C mutants were expressed in CHO cells, and cells

were incubated with 10μM BMA for 12 min in the dark immediately before testing in whole-

cell patch-clamp for two possible ways of activation, extracellular acidification, or illumination

with light of 440nm wavelength. Light with a wavelength of 440nm induces the trans confor-

mation of BMA [31]. Changing the extracellular pH from 7.4 to 5.0 induced transient inward

currents, as shown for I428C in Fig 1D (left trace). The pH of half-maximal activation (pH50)

of I428C, determined from exposure to solutions of different pH, was 6.46±0.03 (n = 7; S2A

Fig). Application of 440nm light for 5s to I428C-expressing cells induced inward currents con-

taining a transient and a sustained component (Fig 1D, right). Switching from 440nm to

360nm light for 0.1s brought the current back to the baseline, due to induction of the cis con-

formation of BMA and likely subsequent closure of the channel. The light-induced currents

had smaller amplitudes than the pH5-induced I428C currents (Fig 1E, left). Channel activation
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occurred rapidly with both ways of activation, with time constants of τ = 48±16ms (440nm

light) and τ = 106±24ms (pH5, n = 8). In control experiments with cells expressing ASIC1a

wild type (WT) that were exposed during 12min to 10mM BMA, 440 nm light did not induce

any current (n = 7), while the pH5-induced current amplitude was -4.2±1.1nA (n = 7). In con-

trast to a previous study [31], we were not able to induce current with 440nm light in the

G430C mutant. The pH5-induced current amplitude in G430C-transfected cells was -18.1

±6.9nA (n = 11), while the 440nm light-induced current amplitude was with -0.028±0.008

(n = 11) only 0.15% of the pH5-induced current amplitude (Fig 1E, right).

Mutations homologous to hASIC1a-I428C and -G430C were also generated in human

ASIC2a (V425C and A427C) and it was tested whether 440 nm light induced currents after

exposure to BMA. This was however not the case (S3 Fig).

Characterization of the light-activated ASIC1a-I428C current

It was then tested how the conditions of the BMA incubation affected the amplitude of the

light-induced current of I428C. Varying the duration of the incubation with 10μM BMA

between 12 and 20 min did not affect the current amplitude (Fig 2A). The current amplitude

did not depend on the BMA concentration, when tested on an incubation duration of 20 min

(Fig 2B). In many experiments, the relative amplitude of the light-induced current was very

low (Fig 2A and 2B). Light-induced currents were found in only ~20–40% of the measured

cells (Fig 2C; cells with light-induced current amplitude >20pA were considered as expressing

a light-induced current). The low current amplitudes and low fraction of positive cells after

incubation with 40mM BMA may be due to a stress of the cells induced by the high BMA con-

centration. Fig 2D plots the I440nm-BMA as a function of the IpH5.0 for all measured cells, show-

ing that there was no significant correlation between the pH- and the light-induced current

amplitudes. This suggests that the light-induced current amplitude depended on additional

factors.

Table 1. Distance in ASIC1a WT between mutated residues.

Residue Open 4NTW (Å) Des. 4NYK (Å) Closed 5WKU (Å) Residues Open 4NTW (Å) Des. 4NYK (Å) Closed 5WKU (Å)

E63 27.0 22.2 22.2 E97/D347 12.5 12.8 14.8

R64 21.0 15.0 15.2 E97/V354 17.2 17.2 21.2

Y67 24.8 18.0 17.7 E97/E355 19.8 19.7 25.4

H72 22.2 15.5 15.2 I137/K396 20.7 21.0 21.0

T419 17.3 17.9 18.8 I137/E403 20.4 20.3 21.2

E421 17.6 16.3 15.9 E235/E355 15.3 15.4 25.9

K423 16.3 12.1 11.8 T236/D351 11.4 11.4 17.4

A425 16.2 9.2 9.0 D237/F257 15.5 16.3 22.3

E427 23.8 15.6 16.0 D237/I312 17.0 17.0 23.4

I428 28.4 21.0 21.3 D237/E315 13.7 14.1 20.6

G430 16.6 9.4 9.5 D237/E355 11.6 11.6 18.2

G433 14.4 5.2 5.7 K246/D347 17.6 17.7 20.7

F257/D351 14.6 14.3 18.0

D296/E359 14.4 22.8 23.6

Distances between residues that were mutated to Cys in this study, determined between Cβ-atoms (Ca for Gly) of open (4NTW, [14]), desensitized (4NYK, [14, 15]) and

closed state (5WKU, [18]) models of human ASIC1a. The indicated distances were measured in hASIC1a models between two subunits for single mutants and within a

single subunit for double mutants.

https://doi.org/10.1371/journal.pone.0270762.t001
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The transient H+-activated ASIC currents are Na+-selective, and ASICs are not permeable to

the large cation NMDG. To further confirm that the light-induced current is mediated by the

expressed ASIC1a channels, the main monovalent cation of the extracellular solution, Na+, was

replaced with NMDG, resulting in a reversible loss of 440nm light-induced current (Fig 2E, n = 7,

One-way ANOVA, Sidak’s post-hoc test). If ASIC1a-I428C was repeatedly activated by 440 nm

light, the current amplitude was increased at the second application relative to the first and showed

then a rundown. This rundown did not depend on the interval between the applications of the

light pulse (S2B and S2C Fig, n = 3–6, Mixed effect One-way ANOVA, Dunnett post-hoc test).

Absence of BMA-mediated light-activated currents in mutants of different

ASIC1a domains

Target residues for mutagenesis to Cys and docking of BMA were chosen in the extracellular

pore entry and upper half of the transmembrane domains, and in extracellular domains, mostly

the acidic pocket. To allow reaction of BMA with its both ends to engineered Cys residues of

Fig 2. Characterization of light-activated currents in I428C. Data were obtained from whole-cell patch-clamp

recording of hASIC1a-I428C-expressing CHO cells, voltage-clamped to -60mV. A, Light-induced current amplitudes

normalized to the IpH5 measured in the same cells, obtained after incubation with 10μM BMA for 12 or 20 min. B,

Light-induced current amplitude normalized to IpH5 measured in the same cell, obtained after incubation of I428C

with different concentrations of BMA for 20min. C, Occurrence of cells in which a light-induced current (� 20pA) was

measured (red) or not (grey), after a 20-min incubation at different concentration of BMA. D. Current amplitudes

obtained under 440nm light were compared with the IpH5 measured in the same cell, for incubation conditions

containing 10μM, 20μM or 40μM BMA. Linear regression analysis did not show any significant correlation between

the current amplitude induced by pH5 and by 440nm light. E, Light-induced current amplitude, normalized to IpH5

in the same cell, obtained with extracellular solutions containing Na+ or NMDG+. The light stimulation in the

NMDG+ solution was carried out between the two indicated stimulations in the Na+ solution; the stimulation interval

was 1min. �, p<0.05 between indicated conditions (one-way ANOVA with Sidak’s post-hoc test).

https://doi.org/10.1371/journal.pone.0270762.g002
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the channel, mutations were chosen based on structural information, in a way that the distance

between the b-carbon atoms (a for Gly residues) of two residues to be replaced by Cys, either in

the same or in adjacent subunits, matched approximately the length of BMA in the cis or trans
conformation. This distance was further compared in structural models of the closed, open and

desensitized state, with the aim of selecting mutants in which it changed between the functional

states. The localization of residues that were part of selected double mutants with matching

intrasubunit distances is shown in Fig 3A and that of single mutants, for which intersubunit dis-

tances matched the length of BMA, are shown in Fig 3B, and the distances are listed in Table 1.

When these mutants were expressed in CHO cells, they produced normal transient H+-induced

currents. It was then determined whether light could activate these mutants after exposure to

BMA. All mutants listed in Table 1 were exposed to 440nm and 360nm light in the two timely

orders, as illustrated in Fig 3C for the double mutant E97C/V354C of the acidic pocket, and the

single mutants T419C of the lower palm and Y67C of the wrist. However, none of the mutants

except for I428C produced light-induced currents that exceeded an amplitude of 20pA.

Modulation of pH-induced currents by light

Since light-induced currents were not observed in any mutant other than I428C, it was tested

whether simultaneous application of light and low pH to BMA-exposed mutants changed the

Fig 3. Absence of light- and BMA-activated currents in two series of ASIC1a Cys mutants. A, Indication of the

location of Cys mutations introduced in the thumb, finger, knuckle, palm and β-ball domains. These mutations were

paired to double mutants, as indicated in Table 1. B, Indication of the location of single Cys mutations in the

transmembrane domains and the wrist. The black frames in the structural image on the left indicates the positions of the

zoomed views in A and B. Current traces were obtained from whole-cell patch-clamp recordings of transfected CHO

cells, voltage-clamped to -60mV. C, Representative traces showing a pH5-induced current and the absence of light-

induced currents in E97C/V354C (top), T419C (center) and Y67C (bottom). Blue bars represent the application of 440nm

light, and purple bars that of 360nm light. The color of the mutant label matches that of the domain in which the mutation

is located.

https://doi.org/10.1371/journal.pone.0270762.g003
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current response compared to low pH alone. The IpH6.x/IpH5 ratio (with pH6.x being a pH

that induced 30–60% of the maximal current amplitude in each mutant) was measured in the

absence and presence of 440nm light to determine if the pH dependence of activation was

affected by BMA binding and subsequent illumination. Representative traces of pH-induced

currents of D351C/F257C in the absence and presence of 440nm light are shown in Fig 4A.

The ratios of the IpH6.x/IpH5 ratios obtained in the presence and absence of 440nm light,

(IpH6.x/IpH5)Light/(IpH6.x/IpH5)Ctrl are plotted and compared to that of the WT in Fig 4B

and 4C, confirming the absence of a difference to the WT (One-way ANOVA, Dunnett’s post-
hoc test) in all mutants except for E97C/D347C. The ratio of the peak amplitudes obtained at

saturating pH, IpH5440nm/IpH5ctrl, indicated a decrease of the IpH5 amplitude in the WT and

in many mutants (Fig 4D and 4E; paired t-test). This decrease was in none of the mutants dif-

ferent from the WT (Ordinary one-way ANOVA, Dunnett’s post-hoc test), indicating that this

was a non-specific effect of 440nm light.

The same measurements as described above for 440nm light were then carried out with

360nm light (Fig 5). The application of 360nm light produced on BMA-treated cells a modula-

tory effect on mutants G430C ((IpH6.x/IpH5)light/(IpH6.x/IpH5)Ctrl = 1.57±0.07, n = 4,

p = 0.012), D237C/E315C (1.47±0.05, n = 4, p<0.0068) and K246C/D347C (0.64±0.11, n = 4,

p = 0.050; paired t-test). The (IpH6.x/IpH5)light/(IpH6.x/IpH5)Ctrl ratio was however for none

of the mutants different from that of WT (Fig 5A and 5B, ordinary one-way ANOVA, Dun-

nett’s post-hoc test). The IpH5 amplitude was significantly reduced by 360nm light in WT and

several mutants (Fig 5C and 5D, paired t-test). The IpH5light/IpH5Ctrl ratio was however not

different between the WT and any of the mutants (One-way ANOVA, Dunnett’s post-hoc
test).

No evidence for BMA cross-linking of the I428C mutant

BMA is a cross-linker, and it was assumed in a previous study [31] that BMA links in the

ASIC1a-I428C mutant the engineered Cys428 of two adjacent subunits. Many studies have

previously shown that monovalent sulfhydryl reagents can change the function of ASIC1a

mutants [20, 36–38]. We have therefore tested biochemically in ASIC1a WT and the two

mutants I428C and G430C, whether BMA cross-linked two subunits. As in the patch-clamp

experiments, cells expressing these ASIC constructs were labeled with 20μM BMA for 20min

in the dark. Cell surface proteins were labeled with biotin, and cells were lysed. The extracted

biotinylated surface proteins were separated on SDS-PAGE and detected on western blot by

using an ASIC1 antibody. The specificity of the antibody used had been demonstrated [33].

Monomeric ASIC1a WT or mutant bands migrated at ~70kDa and dimer bands at ~130kDa

(Fig 6A). Comparison of the dimer / monomer band intensity ratio showed no significant dif-

ference between control and 20μM BMA treatment conditions (Fig 6B).

Modulation of H+-activated currents by MTS cross-linkers

As an alternative approach to BMA, MTS cross-linkers were then used. These reagents can

cross-link two Cys residues of a protein; their conformation is however in contrast to BMA

not changed by light. An array of MTS cross-linkers of different lengths is commercially avail-

able. For each mutant, one or several MTS cross-linkers were selected based on their length

(S1 Table) to match the distance measured between the b-carbon atoms (a for Gly) of the

paired residues in at least one of the functional channel states (Table 1). The chosen reagents

for each mutant are listed in the S2 Table. Successful cross-linking was expected to impose the

distance of the cross-linker between the residue pair of the mutant to force the channel into

the conformation that best matches the imposed distance between the two residues.
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The functional analysis with MTS cross-linkers was performed on most of the mutants that

had been used in the first part of this study. For each mutant, the ASIC current was measured

at two different pH values before and after exposure to the cross-linker (applied for 3 min at

1mM), pH6.x that induced 30–60% of the maximal current amplitude under control condi-

tions, and pH5 for the maximal current amplitude. The current amplitude induced by pH5,

Fig 4. Modulatory effect of BMA and 440nm light. Traces and data were obtained from whole-cell patch-clamp recording of transfected CHO cells, voltage-

clamped to -60mV. A, Representative traces of D351C/F257C currents induced by acidification to pH6.4 or pH5.0 from a conditioning pH of 7.4, in the absence

and presence of 440nm light. The light exposure is indicated by the blue bars, the exposure to the acidic solution is indicated by the black horizontal line. B-C,

(IpH6.x/IpH5)Light/(IpH6.x/IpH5)Ctrl ratio in WT and mutants of the lower palm, TM1 and TM2 domain (B), and in the double mutants of the extracellular

domain (C). The pH6.x corresponded to 6.0 in D237C/I312C and F257C/D351C, pH5.5 in K246C/D347C, and pH6.4. in all other mutants. D-E, IpH5Light/

IpH5Ctrl ratio, in WT and mutants of the lower palm, TM1 and TM2 domain (D), and in the double mutants of the extracellular domain (E). The 440nm light was

pre-applied 200ms before, and co-applied during the perfusion with the acidic solutions. Statistically significant differences between 440nm and control condition

are reported for IpH6.x/IpH5 and IpH5 as �, p< 0.05, ��, p< 0.01 (paired t-test), and for (IpH6.x/IpH5)440nm/(IpH6.x/IpH5)Ctrl between mutant and WT as #,

p< 0.05 (One-way ANOVA with Dunnett’s post-hoc test). The color of the mutant label matches that of the domain in which the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g004
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and the IpH6.x/IpH5 ratio were then compared between the control and the cross-link condi-

tion. Since monovalent MTS reagents can also affect the function of ASIC1a Cys mutants [36,

37, 39, 40], an observed effect of a cross-linker may also be induced if the reagent reacts only at

one of its ends with a Cys residue of the channel. It was assumed that an effect due to such a

mechanism should be similar to that of a monovalent MTS reagent of similar size. If an MTS

cross-linker affected the function of a given mutant, the experiment was therefore repeated

with a monovalent MTS reagent of similar size. In Figs 7 and 8, the Cys-Cys distance is indi-

cated for each mutant in the closed, open and desensitized state by horizontal, colored lines,

and for comparison, the lengths of the used reagents are shown in matching colors. For many

mutants, the MTS reagents induced an acidic shift of the pH dependence, as indicated by a

decrease of the IpH6.x/IpH5 ratio (Figs 7 and 8). If the effect of the cross-linker was greater

than that of the monovalent compound, it suggested that the difference may be due to the

cross-linking of two Cys residues. The (IpH6.x/IpH5)MTS/(IpH6.x/IpH5)Ctrl ratio with MTS

cross-linkers showed a significantly stronger change than with a size-matched monovalent

Fig 5. Modulatory effect of BMA and 360nm light. Data are from whole-cell patch-clamp recordings of transfected CHO cells, voltage-clamped to -60mV. A-B,

(IpH6.x/IpH5)Light)/(IpH6.x/IpH5)Ctrl ratio in WT and mutants of the lower palm, TM1 and TM2 domain (A), and in double mutants of the extracellular domain

(B). The pH6.x corresponded to 6.0 in D237C/I312C and F257C/D351C, pH5.5 in K246C/D347C, and pH6.4. in all other mutants. C-D, IpH5Light/IpH5Ctrl ratio, in

WT and mutants of the lower palm, TM1 and TM2 domain (C), and in the double mutants of the extracellular domain (D). The 360nm light was pre-applied 200ms

before and co-applied during the perfusion with the acidic solutions. Statistically significant differences between 360nm light and control condition are reported for

IpH6.x/IpH5 and IpH5 as �, p< 0.05, ��, p< 0.01, ���, p< 0.001, ����, p< 0.0001 (paired t-test). The color of the mutant label matches that of the domain in which

the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g005
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MTS reagent in A425C (MTS-4-MTS and MTS-6-MTS compared to MTSES, Fig 7) and

E97C-E355C (MTS-17-MTS compared to MTS-PEO3-Biotin, Fig 8; ANOVA, followed by

Tukey post-hoc test). Several mutants showed tendencies of stronger effects on the (IpH6.x/

IpH5)MTS/(IpH6.x/IpH5)Ctrl ratio with bifunctional as compared to monovalent reagents,

T236C-D351C (MTS-11-MTS compared to MTSEA-Biotin), D237C-I312C (MTS-17-MTS

compared to MTS-PEO3-Biotin) and D237C-E315C (MTS-14-MTS compared to MTS-PEO3-

Biotin, Fig 8). In control experiments, the (IpH6.4/IpH5)MTS/(IpH6.4/IpH5)Ctrl ratio was

determined with ASIC1a WT for several compounds, showing no statistically significant effect

(S4 Fig).

From the same experiments, the effect of the MTS reagents on the IpH5 was analyzed. In

many mutants, a significant decrease in IpH5 was observed, which was however in most cases

not stronger than the effect of the corresponding monovalent MTS reagent (Fig 9). Exceptions,

with stronger effects of the cross-linkers on IpH5, were the mutants A425C, E97C-E355C,

D237C-I312C and F257C-D351C.

Stronger cross-linker-induced shift of pH dependence in D237C/I312C

than in the corresponding single mutants

For two promising double mutants (Fig 10A), the IpH6.x/IpH5 ratio was determined, and the

pH dependence of activation was measured under control conditions and after exposure to the

MTS cross-linker, in the double, and also in the corresponding single mutants. The measure-

ment of the pH dependence of activation, as illustrated in Fig 10B and 10C for I312C, yields

the midpoint of activation, the pH50 value. The ratio of IpH6.x/IpH5 and the pH50 of activa-

tion are plotted for the two double mutants and the corresponding single mutants in Fig 10D–

Fig 6. No evidence in western blot analysis for intersubunit cross-linking by BMA in I428C and G430C mutants.

Cell surface-expressed proteins of transfected CHO cells were isolated by biotinylation, separated by SDS-PAGE and

transferred to Western blot, and ASIC1a was detected by a specific antibody. A. Representative Western blots, showing

the bands of monomeric ASIC1a at 70kDa, and the bands of the subunit dimer at 130kDa for the indicated constructs.

The blot of WT and I428C originates from blot 1 (S1 Raw images), while that of G430C originates from blot 2. B, Ratio

between dimeric to monomeric band intensity, n = 3.

https://doi.org/10.1371/journal.pone.0270762.g006
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Fig 7. Effects of MTS reagents on the pH dependence of single mutants in the wrist and TM domains. Data were obtained from two-

electrode voltage-clamp of Xenopus oocytes expressing the indicated mutants, clamped to -60mV. The IpH6.x/IpH5.0 ratio was determined in

each cell before and after exposure to the MTS reagents and is indicated with black symbols for the control condition, and with red symbols for

the condition after exposure to the MTS reagent. Changes in the IpH6.x/IpH5.0 ratio indicate that the MTS reagent affected the pH dependence.

The pH6.x was pH6.6 for mutants Y67C, E427C, G430C and G433C, and pH6.4 for R64C, H72C, T419C, E421C, K423C, A425C and I428C.

Differences between the control and the MTS condition are indicated as �, p< 0.05; ��, p< 0.01, ���, p< 0.001 and ����, p< 0.0001 (paired t-

test) and between cross-linkers and matching monovalent MTS reagents as #, p< 0.05 and ####, p< 0.0001 (Ordinary one-way ANOVA and

Tukey post-hoc test). Above the data, a scale (in units of Å) and horizontal lines illustrate the distance between Cβ-atoms (Ca-atoms in Gly) of

the mutated residues in the closed, open and desensitized state, and the length of the used MTS cross-linkers and monovalent MTS reagents used

with the mutant. The color code is blue for closed, red for desensitized, and green for open; the colors of the reagents were chosen according to

the best match between the length of the reagent and the distance between the two residues. The color of the mutant label matches that of the

domain in which the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g007
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10G. If cross-linking was responsible for the functional effect of a cross-linker, we would

expect small effects in the two single mutants, and a larger effect in the double mutant. For the

D237C/E315C mutant, exposure to MTS-14-MTS decreased the IpH6.4/IpH5.0 ratio of

Fig 8. Effects of MTS reagents on the pH dependence of double mutants in the extracellular domain. Data were obtained from two-electrode voltage-

clamp of Xenopus oocytes expressing the indicated constructs, clamped to -60mV. The IpH6.x/IpH5.0 ratio was determined in each cell before and after

exposure to the MTS reagent and is indicated with black symbols for the control condition, and with red symbols for the condition after exposure to the

MTS reagent. Changes in the IpH6.x/IpH5.0 ratio indicate that the MTS reagent affected the pH dependence. The pH6.x was pH6.6 for the mutant

E97C-E355C, pH6.4 for E97C/V354C, E235C/E355C, D237C/E315C, E237C/E355C and D296C/E359C, pH6.2 for T236C/D351C and D237C/I312C, pH6.0

for E97C/D347C and F257C/D351C, and pH5.5 for K246C/D347C. Differences between the control and the MTS condition are indicated as �, p< 0.05; ��,

p< 0.01, ���, p< 0.001 and ����, p< 0.0001 (paired t-test) and between cross-linkers and matching monovalent MTS reagents as #, p< 0.05; ##, p< 0.01

(Ordinary one-way ANOVA and Sidak’s post-hoc test). The meaning of the colored horizontal lines above the graphs is the same as in Fig 7. The color of the

mutant label matches that of the domain in which the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g008
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D237C but did not change the pH50 of this mutant. On D237C/E315C and E315C, the IpH6.

x/IpH5.0 ratio and pH50 values were decreased in a very similar way (Figs 10E and 10G and

S5B and S5D), suggesting together that the observed functional changes in D237C/E315C are

to a large extent due to the effects of the reaction with the mutation E315C. The IpH6.2/IpH5

ratio change induced by MTS-17-MTS was opposite between D237C/I312C and I312C, and

this ratio showed a tendency of being lower in D237C/I312C than in D237C (p = 0.0714; Figs

Fig 9. Changes in maximal peak current amplitude induced by MTS reagents. IpH5MTS/IpH5Ctrl ratios plotted here were determined in the experiments described in

Figs 7 and 8. Differences between the control and the MTS condition are indicated as �, p< 0.05; ��, p< 0.01, ���, p< 0.001 and ����, p< 0.0001 (paired t-test), and

between cross-linkers and matching monovalent MTS reagents as #, p< 0.05; ##, p< 0.01, ###, p< 0.001 and ####, p< 0.0001 (Ordinary One-way ANOVA and Tukey

post-hoc test). The color of the mutant label matches that of the domain in which the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g009
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10D and S5A). The pH50 was changed significantly by MTS-17-MTS in D237C/I312C, but

not in the corresponding single mutants (Fig 10F). The IpH5 was not affected by MTS-

17-MTS in I312C, increased in D237C, and decreased in D237C/I312C (S5C and S5D Fig).

The above data suggest that a cross-link between D237C and I312C by MTS-17-MTS causes

Fig 10. Effect of MTS-cross-linkers on the pH dependence of selected double mutants and corresponding single mutants. Data were

obtained from two-electrode voltage-clamp of Xenopus oocytes expressing the indicated constructs, clamped to -60mV. A, Structural

representation of hASIC1a model in the closed state, identifying the paired residues of double mutants by the connecting dotted lines. B,

Current traces of representative experiments determining the pH dependence of I312C under control conditions (upper panel) and after

treatment with MTS-17-MTS (bottom). C, pH-response curves of I312C obtained under control conditions (ctrl, black), and after exposure to

MTS-17-MTS (red; n = 12–13). D-G, black symbols refer to control conditions, colored symbols to MTS exposure as indicated. D-E, IpH6.x/

IpH5 ratio under control conditions or after MTS exposure, for double and corresponding single mutants, (D), D237C/I312C, (E), D237C/

E315C. F-G, pH of half-maximal activation (pH50) values, obtained under control conditions or MTS reagent exposure; significantly different

between Ctrl and MTS condition, �, p< 0.05; ��, p< 0.01, ���, p< 0.001 for D-E (paired t-test) and F-G (unpaired t-test). ####, p< 0.0001;

different between single and corresponding double mutant (Ordinary one-way ANOVA, Tukey post hoc test). The color of the mutant label

matches that of the domain in which the mutation is located.

https://doi.org/10.1371/journal.pone.0270762.g010
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the observed acidic shift of the pH dependence. Such a cross-linking between D237C and

I312C would position these two residues in a relative distance that is similar to that observed

in the closed state.

Discussion

In this study we used cross-linking compounds on ASIC1a to detect conformational changes

involved in channel activation. We show that ASIC1a-I428C that has reacted with the optical

tweezer BMA can be activated by light, and that this does not involve a cross-linking between

I428C of adjacent subunits. None of the other tested mutants containing single or double Cys

mutations in the pore, wrist or extracellular domains were activated by light after exposure to

BMA. MTS cross-linkers and monovalent MTS reagents changed the pH dependence of many

of these mutants. In the A425C mutant, short cross-linkers had stronger effects on pH depen-

dence and maximal current amplitude than a size-matched monovalent MTS reagent. Analysis

of the pH dependence of activation of two selected double mutants and the corresponding sin-

gle mutants showed that MTS-17-MTS produced an acidic shift in the double mutant D237C/

I312C of the acidic pocket, and that this shift was smaller in the single mutant D237C, and

absent in I312C. The length of this compound corresponds to the distance between the two

engineered Cys residues of D237C/I312C in the closed state and suggests therefore that con-

straining the distance between these two residues may hinder ASIC activation.

Previous findings with MTS reagents in the extracellular domain of ASIC1a

For the mutant hASIC1a-G430C it had previously been observed that monovalent MTS

reagents such as MTSPTrEA produced an alkaline shift in the pH dependence of activation,

increasing therefore the sensitivity for activation [36]. MTSET and MTSPTrEA induced in this

mutant a current at pH7.4 in the absence of extracellular acidification (S3 Table) [36]. The

homologous mutation in mouse ASIC1a, G428C, was also shown to be involved in channel

activation (S3 Table) [37]. For Gly430, the intersubunit distances are 16.6 Å in the open, and

~9.5 Å in the closed and desensitized states. In our hand, MTS-4-MTS and MTS-6-MTS that

are close to the intersubunit distance between Gly430 residues in the closed state, did not

change the IpH6.6/IpH5 ratio. The larger reagent MTS-17-MTS (length 23 Å) induced an

alkaline shift of the pH dependence, which was however not different from that induced by the

size-matched control compound MTS-PEO3-Biotin. This observed alkaline shift was therefore

most likely due to a steric effect, and not to cross-linking. For two other mutants, hASIC1a-

E315C and -D347C, it had previously been shown that MTSET shifted the pH50 of activation

to more acidic values and inhibited the peak current amplitude [28].

Light-dependent activation of ASIC1a after exposure to BMA

To date, only a few publications have documented activation of ion channels by optical twee-

zers. This approach was in several studies successful with P2X receptors [31, 32, 41]. One of

these studies also showed that two ASIC1a mutants, I428C and G430C, were opened by light

after reaction with BMA [31]. In our hands, I428C, but not G430C produced light-induced

channel activation after exposure to BMA. Comparison of the distances in the structures indi-

cated intersubunit distances between the engineered Cys residues that appeared to be too long

in the case of I428C and too short in the case of G430C for gating by BMA (Table 1). Our bio-

chemical analysis of cell surface-expressed ASIC1a did not show cross-linking of two subunits

in any of these mutants by BMA. BMA-modified I428C likely contains attached BMA mole-

cules without the occurrence of a cross-linking between subunits, and application of 440nm
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light may change the orientation of the BMA chain to open the channel in a similar way as

MTSET and MTS-PTrEA open G430C [36].

Modulatory effect of BMA by application of light on hASIC1a activity

For this study we had selected mutations in the wrist and pore, and pairs of mutations in other

extracellular channel domains, for which the distance between the mutated residues in struc-

tural models of at least one of the functional states matched the end-to-end distance of BMA

in the cis or trans conformation (Table 1). In all the mutants shown in Table 1 except for

I428C, application of 440nm and 360nm light after exposure to BMA did not induce any light-

induced current. Comparison of the (IpH6.x/IpH5)440nm/(IpH6.x/IpH5)Ctrl ratio showed a sig-

nificant difference from the WT only for E97C/D347C, located in the acidic pocket. Analysis

of the change in the IpH6.x/IpH5 ratio under exposure to 360nm indicated a significant differ-

ence between control and light condition in G430C, D237C/E315C and K246C/D347C.

Gly430 is part of the wrist, and the residues mutated in the two double mutants are located in

the acidic pocket (Fig 3A and 3B). 360nm light induced an alkaline shift in the pH dependence

of G430C. Since BMA exposure did not cross-link G430C residues of neighboring subunits, it

is likely that the attachment by one end of the BMA molecules to the G430C of one or several

subunits per trimer, and the light-induced change in BMA conformation led to the shift in pH

dependence, as have done monovalent MTS reagents in a previous study [36], and as we

observed here in experiments with Xenopus oocytes. Application of 360nm light brings BMA

in the cis conformation [31]. Its length in this conformation (~13Å) would correspond in the

double mutant D237C/E315C to the open or desensitized state distance between the two engi-

neered Cys residues. 360nm light induced an alkaline shift of the D237C/E315C pH depen-

dence, as expected for a constraint that favors the open state (Fig 5B). The K246-D347 distance

is shorter in open and desensitized conformations as compared to the closed state. The

deduced acidic shift in K246C/D347C (Fig 5B) is inconsistent with the higher distance in the

closed state.

Functional analysis of hASIC1a mutants using MTS cross-linkers

Thiol-specific MTS cross-linkers with various lengths of spacer arms were selected to match

the distance between the Cβ [Cα for Gly] of residue pairs located in ASIC domains that have

been associated with activation. Several studies have previously used monovalent MTS

reagents to analyze conformational changes associated with ASIC1a functional states [26, 36,

37, 39, 40, 42]. To date, only very few studies have used MTS cross-linkers [41, 43, 44]. Loo

and Clarke used different thiol-specific MTS cross-linkers to assess the drug-binding domain

of P-glycoprotein and the molecular mechanism associated to ATP-hydrolysis that causes

drug transport [43]. Fryatt et al. investigated the conformation of intracellular regions of the

human P2X1 receptor [41]. Cross-linking in the TM domain inhibited the ATPase activity due

to hindered conformation changes. A study with ENaC, which belongs to the same family as

ASICs, investigated the involvement of intersubunit distance changes in channel activity, by

using MTS cross-linkers [44]. Cross-linking at the level of the lower palm and thumb increased

the ENaC activity if the cross-linker was relatively long.

Our analysis with ASIC1a showed in some mutants a stronger change in the (IpH6.x/

IpH5)MTS/(IpH6.x/IpH5)Ctrl ratio after exposure to MTS cross-linkers in comparison to

monovalent MTS reagents. The residue Ala425 is located at the extracellular pore entry, with

intersubunit distances of ~16Å in the open, and ~9Å in the desensitized and closed structures.

Small MTS cross-linkers (< 13Å) strongly decreased the pH5-induced current amplitude and

the IpH6.4/IpH5.0 ratio, while the size-matched monovalent MTS reagent MTSES did not
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affect the IpH5 and increased slightly the IpH6.4/IpH5.0 ratio. This suggests that MTS-4-MTS

and MTS-6-MTS cross-linked A425C residues of neighboring subunits, possibly by forcing a

distance that is closer to that seen in the non-conducting states.

Besides A425C, MTS cross-linkers affected the IpH5 or the IpH6.x/IpH5 ratio of several

double mutants. In F257C/D351C, monovalent MTS reagents and cross-linkers induced a

similar acidic shift of the pH dependence. A IpH5 decrease, as induced by cross-linkers on this

mutant, was not observed after exposure to the matched monovalent MTS reagent. In the

D237C/E315C mutant, in which 360nm light after BMA exposure had induced an alkaline

shift of the pH dependence (Fig 5B), the exposure to MTS-8-MTS and MTS-14-MTS induced

a strong decrease in the IpH6.4/IpH5 ratio—thus an acidic shift—which was however not sig-

nificantly different from the effects of size-matched monovalent MTS reagents (Fig 8). Analy-

sis of the corresponding single mutants (Fig 10E and 10G) showed that these effects were to a

large extent due to the E315C mutation. In the mutant D237C/I312C, the cross-linker MTS-

17-MTS, whose length matches the closed state distance between the two mutated residues,

produced an acidic shift of the activation pH dependence, while it induced a smaller acidic

shift in D237C, and had no effect on I312C. A cross-linking with MTS-17-MTS of D237C and

I312C would lock the acidic pocket in its closed state conformation. Our experiments do how-

ever not prove the formation of a cross-link between D237C and I312C.

Rare occurrence of cross-linking in single and double mutants

Despite of testing 11 single mutants with intersubunit Cys-Cys distances matching the length

of BMA and MTS crosslinkers, and of 11–14 double mutants in which intrasubunit Cys-Cys

distances were compatible with the length of the crosslinkers, we found that for most mutants

no cross-linking occurred as judged by the absence of functional effects. In some mutants,

cross-linking may have occurred but did not change channel function. In a recent study with

the trimeric P2X receptor, it was found that of 10 tested single mutants, exposure to the BMA

analog 4,4´-bis(maleimido-glycine) azobenzene resulted in light-induced currents in 6

mutants, and that in 3 of these mutants, the reagent cross-linked adjacent subunits [32]. The

reason for the very low cross-linking success rate in our study is not clear. It is possible that

once the BMA has been attached at one end, the orientation of the molecule or steric con-

straints due to the conformation of the channel protein may make it difficult to react with the

second Cys residue.

MTS reagents affect the function of wrist and acidic pocket mutants

Although this study did not identify many functional changes that were due to cross-linking, it

showed that channels carrying engineered Cys residues at many different positions were mod-

ulated by the reaction with MTS compounds, including the following single mutants in the

pore entry and wrist: Arg64, Tyr67, Ala425, Glu427, Ile428, Gly430 and Gly433. The reagents

induced in most of these mutants acidic shifts in pH dependence and a decrease of the maxi-

mal current amplitude. Exceptions were alkaline shifts in pH dependence of A425C by MTSES

and of G430C by MTS-17-MTS. These are all positions in the upper part of the transmem-

brane segments or the wrist, indicating that this region is sensitive to modifications, that can,

depending on the exact position, either favor or hinder channel opening. In all tested double

mutants, at least one tested MTS reagent affected the pH dependence or the maximal current.

This contrasted with the absence of any significant effect on WT. For the double mutants it

was not always clear whether only one of the two mutations was responsible for the effect.

While the observed effects were in most cases an acidic shift and a decrease of the maximal

current amplitude, we found also other effects, such as a tendency of an IpH5 increase of
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E97C/E355C after exposure to MTS-PEO3-Biotin, while two cross-linkers decreased the IpH5.

Stronger effects of monovalent as compared to cross-linking reagents, as observed with R64C,

E97C/D347C, E97C/E355C and K246C/D347C, may be due accessibility constraints.

Conclusion

In conclusion, two different cysteine-based cross-link approaches were applied with the aim of

identifying residues and associated conformational changes involved in ASIC1a activation.

The analysis revealed the induction of current by light in I428C without cross-link formation.

The use of MTS cross-linkers and functional analysis suggested cross-linking of A425C resi-

dues of the wrist and between D237C and I312C of the acidic pocket with effects that were

consistent with an increase of the intersubunit A425C distance and a decrease of the D237C/

I312C distance upon activation.

Supporting information

S1 Fig. Light-induced current in rP2X2. A-B, Data are from whole-cell patch-clamp record-

ings of transfected HEK cells, voltage-clamped to -60mV. A, 7μM ATP-induced (left) and

440nm light-activated current (right) in rP2X2 P329C after exposure to BMA. The blue bar

over the right trace indicates the exposure to 440nm light, the purple bar indicates exposure to

360nm light. B, Comparison of 7μM ATP-induced and light-induced current in rP2X2 P329C

from paired experiments. In each cell, the current amplitudes were normalized to that induced

by 7 mM ATP. Statistical significance was determined by paired t-test, n = 11; ����,

p< 0.0001. C, Light intensity, measured by a portable light meter on the microscope stage, as

a function of the brightness level value set in the DC2000 light controller device (left) or by

adjusting the voltage input to the controller by the PatchMaster software.

(TIF)

S2 Fig. Properties of I428C. (A) pH dependence of I428C. Normalized current response as a

function of the stimulation pH for ASIC1a I428C (n = 7). Currents were induced by acidifica-

tion for 5s followed by conditioning pH7.4 for 55s. Data are from whole-cell patch-clamp

recordings of transfected CHO cells, voltage-clamped to -60mV. B-C, Light-induced current

amplitudes, normalized to the amplitude in sweep number 2, with a sweep interval of 3min

(B) and 1min (C) (n = 4).

(TIF)

S3 Fig. Absence of light-induced currents in hASIC2a carrying Cys mutations of the resi-

dues homologous to ASIC1a-I428C and -G430C. Cells expressing mutants were labelled

with 10μM BMA for 12 min prior to the measurement. Data were obtained from whole-cell

patch-clamp recording of transfected CHO cells, voltage-clamped to -60mV. Channels were

exposed to pH5 or to 440nm light for 5s and 360nm light for 0.1s.

(TIF)

S4 Fig. Effect of MTS crosslinker reagents on WT. Data were obtained from two-electrode

voltage-clamp of Xenopus oocytes expressing the WT ASIC1a clamped to -60mV. Currents

were induced by exposure to pH6.4 and pH5.0 before and after exposure to MTS crosslinking

reagents (1mM, 3min), in the same cell. The currents were normalized as indicated.

(TIF)

S5 Fig. Current ratios in selected mutants. Data were obtained from two-electrode voltage-

clamp of Xenopus oocytes expressing the indicated mutants, clamped to -60mV. Current ratios

obtained from the indicated mutants after exposure to the MTS crosslinking reagent,
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normalized to the control measurement done before MTS reagent incubation. A-B, Ratio of

(IpH6.x/IpH5)MTS/(IpH6.x/IpH5)ctrl and C-D, Ratio of IpH5MTS/IpH5ctrl. A, C, D237C/

I312C, B, D, D237C/E315C. Statistical significance was determined by Ordinary one-way

ANOVA and Dunnett’s post-hoc test, n = 6–17; #, p < 0.05, ###, p< 0.001, ####, p<0.0001. The

pH conditions are the same as in Fig 10. The reagents were: With D237C/I312C and corre-

sponding single mutants, MTS-17-MTS; With D237C/E315C and corresponding single

mutants, MTS-14-MTS.

(TIF)

S1 Table. Length of MTS cross-linkers and monovalent reagents. The length of each MTS

cross-linker or monovalent reagent was determined as the distance between the Sulphur

atoms on both ends after the release of sulfinic acid (SO2CH3; for cross-linkers), and between

the Sulphur atom and the other end of the molecule (monovalent MTS reagents).

(PDF)

S2 Table. Selection of MTS cross-linkers and monovalent MTS reagents for the different

mutants. The indicated MTS cross-linkers were chosen for each mutant, based on the match

between the cross-linker length and the distance between engineered Cys in the open

(4NTW), desensitized (4NYK) and closed state (5WKU) models of human ASIC1a. Monova-

lent MTS reagents of similar length were chosen as controls. #, the length of the reagent

matches the Cys-Cys distance of the desensitized state.

(PDF)

S3 Table. Summary of functional information obtained from previous studies using mono-

valent MTS reagents on ASIC1a mutants.

(PDF)

S1 Raw images. This file shows the uncropped blots underlying the images and the analysis

shown in Fig 6.

(PDF)

S1 Data. Listing of data, on which the figures are based.

(XLSX)
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colo for comments on the manuscript.

Author Contributions

Conceptualization: Anand Vaithia, Stephan Kellenberger.

Data curation: Anand Vaithia.

Formal analysis: Anand Vaithia, Stephan Kellenberger.

Funding acquisition: Stephan Kellenberger.

Investigation: Anand Vaithia.

Supervision: Stephan Kellenberger.

Validation: Stephan Kellenberger.

PLOS ONE Cross-linking ASIC1a

PLOS ONE | https://doi.org/10.1371/journal.pone.0270762 July 8, 2022 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270762.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270762.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270762.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270762.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0270762.s010
https://doi.org/10.1371/journal.pone.0270762


Writing – original draft: Anand Vaithia, Stephan Kellenberger.

Writing – review & editing: Anand Vaithia, Stephan Kellenberger.

References
1. Hesselager M, Timmermann DB, Ahring PK. pH dependency and desensitization kinetics of heterolo-

gously expressed combinations of acid-sensing ion channel subunits. J Biol Chem. 2004; 279

(12):11006–15. https://doi.org/10.1074/jbc.M313507200 PMID: 14701823

2. Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. Structure, Func-

tion, and Pharmacology of Acid-Sensing Ion Channels and the Epithelial Na+ Channel. Pharmacol Rev.

2015; 67(1):1–35. https://doi.org/10.1124/pr.114.009225 PMID: 25287517

3. Wemmie JA, Taugher RJ, Kreple CJ. Acid-sensing ion channels in pain and disease. Nature reviews

Neuroscience. 2013; 14(7):461–71. https://doi.org/10.1038/nrn3529 PMID: 23783197

4. Du J, Reznikov LR, Price MP, Zha XM, Lu Y, Moninger TO, et al. Protons are a neurotransmitter that

regulates synaptic plasticity in the lateral amygdala. Proc Natl Acad Sci U S A. 2014; 111(24):8961–6.

https://doi.org/10.1073/pnas.1407018111 PMID: 24889629

5. Kreple CJ, Lu Y, Taugher RJ, Schwager-Gutman AL, Du J, Stump M, et al. Acid-sensing ion channels

contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nat Neurosci. 2014; 17

(8):1083–91. https://doi.org/10.1038/nn.3750 PMID: 24952644

6. Liu MG, Li HS, Li WG, Wu YJ, Deng SN, Huang C, et al. Acid-sensing ion channel 1a contributes to hip-

pocampal LTP inducibility through multiple mechanisms. Sci Rep. 2016;6.

7. Quintana P, Soto D, Poirot O, Zonouzi M, Kellenberger S, Muller D, et al. Acid-sensing ion channel 1a

drives AMPA receptor plasticity following ischaemia and acidosis in hippocampal CA1 neurons. J Phy-

siol. 2015; 593(19):4373–86. https://doi.org/10.1113/JP270701 PMID: 26174503

8. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, et al. Neuroprotection in ischemia: blocking cal-

cium-permeable acid-sensing ion channels. Cell. 2004; 118(6):687–98. https://doi.org/10.1016/j.cell.

2004.08.026 PMID: 15369669

9. Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, et al. Seizure termi-

nation by acidosis depends on ASIC1a. Nat Neurosci. 2008; 11(7):816–22. https://doi.org/10.1038/nn.

2132 PMID: 18536711

10. Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, et al. ASIC3, a sensor of acidic and primary inflam-

matory pain. EMBO J. 2008; 27(22):3047–55. https://doi.org/10.1038/emboj.2008.213 PMID:

18923424

11. Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, et al. The DRASIC cation channel contributes

to the detection of cutaneous touch and acid stimuli in mice. Neuron. 2001; 32(6):1071–83. https://doi.

org/10.1016/s0896-6273(01)00547-5 PMID: 11754838

12. Grunder S, Pusch M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacol-

ogy. 2015; 94:9–18. https://doi.org/10.1016/j.neuropharm.2014.12.016 PMID: 25585135

13. Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, et al. Structure of the Acid-sensing ion

channel 1 in complex with the gating modifier Psalmotoxin 1. Nature communications. 2012; 3:936.

https://doi.org/10.1038/ncomms1917 PMID: 22760635

14. Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E. X-ray structure of Acid-sensing ion channel 1-

snake toxin complex reveals open state of a Na+-selective channel. Cell. 2014; 156(4):717–29. https://

doi.org/10.1016/j.cell.2014.01.011 PMID: 24507937

15. Gonzales EB, Kawate T, Gouaux E. Pore architecture and ion sites in acid-sensing ion channels and

P2X receptors. Nature. 2009; 460(7255):599–604. https://doi.org/10.1038/nature08218 PMID:

19641589

16. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolu-

tion and low pH. Nature. 2007; 449(7160):316–23. https://doi.org/10.1038/nature06163 PMID:

17882215

17. Yoder N, Gouaux E. The His-Gly motif of acid-sensing ion channels resides in a reentrant ’loop’ impli-

cated in gating and ion selectivity. Elife. 2020;9.

18. Yoder N, Yoshioka C, Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature. 2018; 555

(7696):397–401. https://doi.org/10.1038/nature25782 PMID: 29513651

19. Sun D, Liu S, Li S, Zhang M, Yang F, Wen M, et al. Structural insights into human acid-sensing ion chan-

nel 1a inhibition by snake toxin mambalgin1. Elife. 2020;9. https://doi.org/10.7554/eLife.57096 PMID:

32915133

PLOS ONE Cross-linking ASIC1a

PLOS ONE | https://doi.org/10.1371/journal.pone.0270762 July 8, 2022 23 / 25

https://doi.org/10.1074/jbc.M313507200
http://www.ncbi.nlm.nih.gov/pubmed/14701823
https://doi.org/10.1124/pr.114.009225
http://www.ncbi.nlm.nih.gov/pubmed/25287517
https://doi.org/10.1038/nrn3529
http://www.ncbi.nlm.nih.gov/pubmed/23783197
https://doi.org/10.1073/pnas.1407018111
http://www.ncbi.nlm.nih.gov/pubmed/24889629
https://doi.org/10.1038/nn.3750
http://www.ncbi.nlm.nih.gov/pubmed/24952644
https://doi.org/10.1113/JP270701
http://www.ncbi.nlm.nih.gov/pubmed/26174503
https://doi.org/10.1016/j.cell.2004.08.026
https://doi.org/10.1016/j.cell.2004.08.026
http://www.ncbi.nlm.nih.gov/pubmed/15369669
https://doi.org/10.1038/nn.2132
https://doi.org/10.1038/nn.2132
http://www.ncbi.nlm.nih.gov/pubmed/18536711
https://doi.org/10.1038/emboj.2008.213
http://www.ncbi.nlm.nih.gov/pubmed/18923424
https://doi.org/10.1016/s0896-6273(01)00547-5
https://doi.org/10.1016/s0896-6273(01)00547-5
http://www.ncbi.nlm.nih.gov/pubmed/11754838
https://doi.org/10.1016/j.neuropharm.2014.12.016
http://www.ncbi.nlm.nih.gov/pubmed/25585135
https://doi.org/10.1038/ncomms1917
http://www.ncbi.nlm.nih.gov/pubmed/22760635
https://doi.org/10.1016/j.cell.2014.01.011
https://doi.org/10.1016/j.cell.2014.01.011
http://www.ncbi.nlm.nih.gov/pubmed/24507937
https://doi.org/10.1038/nature08218
http://www.ncbi.nlm.nih.gov/pubmed/19641589
https://doi.org/10.1038/nature06163
http://www.ncbi.nlm.nih.gov/pubmed/17882215
https://doi.org/10.1038/nature25782
http://www.ncbi.nlm.nih.gov/pubmed/29513651
https://doi.org/10.7554/eLife.57096
http://www.ncbi.nlm.nih.gov/pubmed/32915133
https://doi.org/10.1371/journal.pone.0270762


20. Roy S, Boiteux C, Alijevic O, Liang C, Berneche S, Kellenberger S. Molecular determinants of desensiti-

zation in an ENaC/degenerin channel. FASEB J. 2013; 27(12):5034–45. https://doi.org/10.1096/fj.13-

230680 PMID: 24018065

21. Vullo S, Bonifacio G, Roy S, Johner N, Berneche S, Kellenberger S. Conformational dynamics and role

of the acidic pocket in ASIC pH-dependent gating. Proc Natl Acad Sci U S A. 2017; 114(14):3768–73.

https://doi.org/10.1073/pnas.1620560114 PMID: 28320963

22. Li T, Yang Y, Canessa CM. Two residues in the extracellular domain convert a nonfunctional ASIC1

into a proton-activated channel. Am J Physiol Cell Physiol. 2010; 299(1):C66–73. https://doi.org/10.

1152/ajpcell.00100.2010 PMID: 20427715

23. Smith ES, Zhang X, Cadiou H, McNaughton PA. Proton binding sites involved in the activation of acid-

sensing ion channel ASIC2a. Neurosci Lett. 2007; 426(1):12–7. https://doi.org/10.1016/j.neulet.2007.

07.047 PMID: 17881127

24. Schuhmacher LN, Srivats S, Smith ES. Structural domains underlying the activation of acid-sensing ion

channel 2a. Mol Pharmacol. 2015; 87(4):561–71. https://doi.org/10.1124/mol.114.096909 PMID: 25583083

25. Paukert M, Chen X, Polleichtner G, Schindelin H, Grunder S. Candidate amino acids involved in H+ gat-

ing of acid-sensing ion channel 1a. J Biol Chem. 2008; 283(1):572–81. https://doi.org/10.1074/jbc.

M706811200 PMID: 17981796

26. Krauson AJ, Rued AC, Carattino MD. Independent contribution of extracellular proton binding sites to

ASIC1a activation. J Biol Chem. 2013; 288(48):34375–83. https://doi.org/10.1074/jbc.M113.504324

PMID: 24142696

27. Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA. Acid-sensing ion channels emerged over

600 Mya and are conserved throughout the deuterostomes. Proceedings of the National Academy of

Sciences. 2018; 115(33):8430–5. https://doi.org/10.1073/pnas.1806614115 PMID: 30061402

28. Liechti LA, Berneche S, Bargeton B, Iwaszkiewicz J, Roy S, Michielin O, et al. A combined computa-

tional and functional approach identifies new residues involved in pH-dependent gating of ASIC1a.

Journal of biological chemistry. 2010; 285(21):16315–29. https://doi.org/10.1074/jbc.M109.092015

PMID: 20299463

29. Garcia-Anoveros J, Derfler B, Nevillegolden J, Hyman BT, Corey DP. BNaC1 and BNaC2 constitute at

new family of human neuronal sodium channels related to degenerins and epithelial sodium channels.

Proc Natl Acad Sci USA. 1997; 94(4):1459–64. https://doi.org/10.1073/pnas.94.4.1459 PMID: 9037075

30. Vaithia A, Vullo S, Peng Z, Alijevic O, Kellenberger S. Accelerated Current Decay Kinetics of a Rare

Human Acid-Sensing ion Channel 1a Variant That Is Used in Many Studies as Wild Type. Frontiers in

molecular neuroscience. 2019; 12:133. https://doi.org/10.3389/fnmol.2019.00133 PMID: 31178694

31. Browne LE, Nunes JP, Sim JA, Chudasama V, Bragg L, Caddick S, et al. Optical control of trimeric P2X

receptors and acid-sensing ion channels. Proc Natl Acad Sci U S A. 2014; 111(1):521–6. https://doi.

org/10.1073/pnas.1318582111 PMID: 24367083

32. Habermacher C, Martz A, Calimet N, Lemoine D, Peverini L, Specht A, et al. Photo-switchable tweezers

illuminate pore-opening motions of an ATP-gated P2X ion channel. Elife. 2016; 5:e11050. https://doi.

org/10.7554/eLife.11050 PMID: 26808983

33. Wemmie JA, Askwith CC, Lamani E, Cassell MD, Freeman JH Jr., Welsh MJ. Acid-sensing ion channel

1 is localized in brain regions with high synaptic density and contributes to fear conditioning. J Neurosci.

2003; 23(13):5496–502. https://doi.org/10.1523/JNEUROSCI.23-13-05496.2003 PMID: 12843249

34. Bignucolo O, Vullo S, Ambrosio N, Gautschi I, Kellenberger S. Structural and Functional Analysis of

Gly212 Mutants Reveals the Importance of Intersubunit Interactions in ASIC1a Channel Function. Front

Mol Biosci. 2020; 7:58. https://doi.org/10.3389/fmolb.2020.00058 PMID: 32411719

35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a

visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605–12.

https://doi.org/10.1002/jcc.20084 PMID: 15264254

36. Gautschi I, van Bemmelen MX, Schild L. Proton and non-proton activation of ASIC channels. PloS one.

2017; 12(4):e0175293. https://doi.org/10.1371/journal.pone.0175293 PMID: 28384246

37. Tolino LA, Okumura S, Kashlan OB, Carattino MD. Insights into the mechanism of pore opening of acid-

sensing ion channel 1a. J Biol Chem. 2011; 286(18):16297–307. https://doi.org/10.1074/jbc.M110.

202366 PMID: 21388961

38. Bonifacio G, Lelli CI, Kellenberger S. Protonation controls ASIC1a activity via coordinated movements

in multiple domains. J Gen Physiol. 2014; 143(1):105–18. https://doi.org/10.1085/jgp.201311053 PMID:

24344244

39. Frey EN, Pavlovicz RE, Wegman CJ, Li C, Askwith CC. Conformational changes in the lower palm

domain of ASIC1a contribute to desensitization and RFamide modulation. PloS one. 2013; 8(8):

e71733. https://doi.org/10.1371/journal.pone.0071733 PMID: 23977127

PLOS ONE Cross-linking ASIC1a

PLOS ONE | https://doi.org/10.1371/journal.pone.0270762 July 8, 2022 24 / 25

https://doi.org/10.1096/fj.13-230680
https://doi.org/10.1096/fj.13-230680
http://www.ncbi.nlm.nih.gov/pubmed/24018065
https://doi.org/10.1073/pnas.1620560114
http://www.ncbi.nlm.nih.gov/pubmed/28320963
https://doi.org/10.1152/ajpcell.00100.2010
https://doi.org/10.1152/ajpcell.00100.2010
http://www.ncbi.nlm.nih.gov/pubmed/20427715
https://doi.org/10.1016/j.neulet.2007.07.047
https://doi.org/10.1016/j.neulet.2007.07.047
http://www.ncbi.nlm.nih.gov/pubmed/17881127
https://doi.org/10.1124/mol.114.096909
http://www.ncbi.nlm.nih.gov/pubmed/25583083
https://doi.org/10.1074/jbc.M706811200
https://doi.org/10.1074/jbc.M706811200
http://www.ncbi.nlm.nih.gov/pubmed/17981796
https://doi.org/10.1074/jbc.M113.504324
http://www.ncbi.nlm.nih.gov/pubmed/24142696
https://doi.org/10.1073/pnas.1806614115
http://www.ncbi.nlm.nih.gov/pubmed/30061402
https://doi.org/10.1074/jbc.M109.092015
http://www.ncbi.nlm.nih.gov/pubmed/20299463
https://doi.org/10.1073/pnas.94.4.1459
http://www.ncbi.nlm.nih.gov/pubmed/9037075
https://doi.org/10.3389/fnmol.2019.00133
http://www.ncbi.nlm.nih.gov/pubmed/31178694
https://doi.org/10.1073/pnas.1318582111
https://doi.org/10.1073/pnas.1318582111
http://www.ncbi.nlm.nih.gov/pubmed/24367083
https://doi.org/10.7554/eLife.11050
https://doi.org/10.7554/eLife.11050
http://www.ncbi.nlm.nih.gov/pubmed/26808983
https://doi.org/10.1523/JNEUROSCI.23-13-05496.2003
http://www.ncbi.nlm.nih.gov/pubmed/12843249
https://doi.org/10.3389/fmolb.2020.00058
http://www.ncbi.nlm.nih.gov/pubmed/32411719
https://doi.org/10.1002/jcc.20084
http://www.ncbi.nlm.nih.gov/pubmed/15264254
https://doi.org/10.1371/journal.pone.0175293
http://www.ncbi.nlm.nih.gov/pubmed/28384246
https://doi.org/10.1074/jbc.M110.202366
https://doi.org/10.1074/jbc.M110.202366
http://www.ncbi.nlm.nih.gov/pubmed/21388961
https://doi.org/10.1085/jgp.201311053
http://www.ncbi.nlm.nih.gov/pubmed/24344244
https://doi.org/10.1371/journal.pone.0071733
http://www.ncbi.nlm.nih.gov/pubmed/23977127
https://doi.org/10.1371/journal.pone.0270762


40. Pfister Y, Gautschi I, Takeda AN, van Bemmelen M, Kellenberger S, Schild L. A gating mutation in the

internal pore of ASIC1a. J Biol Chem. 2006; 281(17):11787–91. https://doi.org/10.1074/jbc.

M513692200 PMID: 16497675

41. Fryatt AG, Dayl S, Stavrou A, Schmid R, Evans RJ. Organization of ATP-gated P2X1 receptor intracel-

lular termini in apo and desensitized states. J Gen Physiol. 2019; 151(2):146–55. https://doi.org/10.

1085/jgp.201812108 PMID: 30626615

42. Bargeton B, Kellenberger S. The contact region between three domains of the extracellular loop of

ASIC1a is critical for channel function. J Biol Chem. 2010; 285(18):13816–26. https://doi.org/10.1074/

jbc.M109.086843 PMID: 20215117

43. Loo TW, Clarke DM. Determining the dimensions of the drug-binding domain of human P-glycoprotein

using thiol cross-linking compounds as molecular rulers. J Biol Chem. 2001; 276(40):36877–80. https://

doi.org/10.1074/jbc.C100467200 PMID: 11518701

44. Collier DM, Tomkovicz VR, Peterson ZJ, Benson CJ, Snyder PM. Intersubunit conformational changes

mediate epithelial sodium channel gating. J Gen Physiol. 2014; 144(4):337–48. https://doi.org/10.1085/

jgp.201411208 PMID: 25225551

PLOS ONE Cross-linking ASIC1a

PLOS ONE | https://doi.org/10.1371/journal.pone.0270762 July 8, 2022 25 / 25

https://doi.org/10.1074/jbc.M513692200
https://doi.org/10.1074/jbc.M513692200
http://www.ncbi.nlm.nih.gov/pubmed/16497675
https://doi.org/10.1085/jgp.201812108
https://doi.org/10.1085/jgp.201812108
http://www.ncbi.nlm.nih.gov/pubmed/30626615
https://doi.org/10.1074/jbc.M109.086843
https://doi.org/10.1074/jbc.M109.086843
http://www.ncbi.nlm.nih.gov/pubmed/20215117
https://doi.org/10.1074/jbc.C100467200
https://doi.org/10.1074/jbc.C100467200
http://www.ncbi.nlm.nih.gov/pubmed/11518701
https://doi.org/10.1085/jgp.201411208
https://doi.org/10.1085/jgp.201411208
http://www.ncbi.nlm.nih.gov/pubmed/25225551
https://doi.org/10.1371/journal.pone.0270762

