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G R A P H I C A L A B S T R A C T
� Splicing dysregulation is an emerging
molecular feature of lung cancer.

� Splicing alterations are critical for lung
cancer pathogenesis.

� Targeting dysregulated splicing holds
great potential for lung cancer
treatment.
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RNA splicing alterations are widespread and play critical roles in cancer pathogenesis and therapy. Lung cancer is
highly heterogeneous and causes the most cancer-related deaths worldwide. Large-scale multi-omics studies have
not only characterized the mutational landscapes but also discovered a plethora of transcriptional and post-
transcriptional changes in lung cancer. Such resources have greatly facilitated the development of new diag-
nostic markers and therapeutic options over the past two decades. Intriguingly, altered RNA splicing has emerged
as an important molecular feature and therapeutic target of lung cancer. In this review, we provide a brief
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Splicing alterations
Lung cancer
Figure 1. Dysregulation of RNA splicing in canc
(C) Mechanisms by which splicing is dysregulated i
factors, and snRNAs, as well as the altered express
nucleoprotein; ISE/S: Intronic splicing enhancer/sil
overview of splicing dysregulation in lung cancer and summarize the recent progress on key splicing events and
splicing factors that contribute to lung cancer pathogenesis. Moreover, we describe the general strategies tar-
geting splicing alterations in lung cancer and highlight the potential of combining splicing modulation with
currently approved therapies to combat this deadly disease. This review provides new mechanistic and thera-
peutic insights into splicing dysregulation in cancer.
Introduction

Lung cancer is the most prevalent cancer type and the leading cause of
cancer-related death worldwide, with an estimated 2 million new cases
and 1.8 million deaths every year.1 Histologically, it is classified as
non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC),
and NSCLC mainly comprises lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC).2 With continuous advances in detec-
tion and treatment approaches, clinical outcomes have been markedly
improved for patients with lung cancer. However, lung cancer manage-
ment is still very challenging because of its tremendous complexity and
heterogeneity in terms of clinicopathological and molecular features.3–6

Over the past decade, genomic and functional studies have identified
oncogenic molecular changes that greatly facilitate the development of
targeted therapies for lung cancer. Intriguingly, the dysregulation of
ribonucleic acid (RNA) splicing has been proven to be widespread and
plays a critical role in NSCLC pathogenesis and treatment.7–10
er. (A) General mechanisms of
n cancer. Splicing alterations mai
ion of splicing factors in cancer.
encer; snRNP: Small nuclear ribo
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RNA splicing is the process of excising introns and ligating exons in
precursor messenger RNA (pre-mRNA) to generate mature mRNA in
eukaryotic cells. The spliceosome, a huge RNA-protein complex, cata-
lyzes the two-step transesterification chemical reactions involved in
RNA splicing. RNA splicing is highly dynamic and extensively regu-
lated,11,12 and this has been described well in previous reviews.9,13–15

The interactions between cis-regulatory elements in pre-mRNA and
various trans-acting factors (i.e., splicing factors) largely determine
splicing outcomes through the modulation of basal spliceosome activity
[Figure 1A]. Alternative splicing (AS), the selection and usage of
different splice sites, frequently occurs due to splicing regulation
[Figure 1B]. Almost all multi-exon genes in humans are regulated by
AS, greatly expanding the complexity and diversity of the transcriptome
and proteome.16 According to the pattern of splice-site usage, AS can be
divided into five major basic types as follows: skipped exon, alternative
30 or 50 splice site, mutually exclusive exons, and intron retention
[Figure 1B].
alternative splicing regulation. (B) Categories of alternative splicing events.
nly arise from mutations in splicing regulatory cis-elements, trans-acting splicing
ESE/S: Exonic splicing enhancer/silencer; hnRNP: Heterogeneous nuclear ribo-
nucleoprotein; SR: Serine/arginine-rich protein.
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Splicing dysregulation is a major cause of human diseases and has
been proposed as an emerging molecular hallmark of cancer. Splicing
alterations, arising from mutations in splicing cis-regulatory elements
and mutations in or changes in the expression of splicing factors, have
crucial functions in cancer development, progression, and therapy
[Figure 1C; more details are provided in previous excellent reviews17–21].
To date, the role of aberrant splicing has been best characterized in he-
matopoietic malignancies, but this has also been increasingly investi-
gated in solid tumors. Exciting progress has been made in understanding
splicing alterations in lung cancer, making it one of the most represen-
tative examples of the role of this dysregulated process in solid tumors.
Nevertheless, an updated summary of this research direction is currently
lacking. In this review, we highlight key oncogenic splicing events and
frequently mutated splicing factors in lung cancer, summarize the stra-
tegies used to target such splicing alterations, and discuss several po-
tential challenges in the mechanistic understanding and clinical
translation of splicing dysregulation in lung cancer.

Oncogenic splicing events in lung cancer

Based on the systematic identification and functional characteriza-
tion, it is currently well-recognized that splicing alterations exert onco-
genic effects and can serve as potential prognostic markers and
Figure 2. Key oncogenic splicing events in lung cancer. (A) Exon 14 skipping in ME
leading to an in-frame deletion of 47 amino acids in the juxtamembrane domain of
resulting in increased downstream signaling. (B) The 4th exon of KRAS is alternative
KRAS4A and KRAS4B share common GTP/GDP-binding domains but differ in hyperva
1ΔEx3, which lacks the transmembrane domain. PD-1ΔEx3 might enhance anti-tumo
length; IgV: Immunoglobulin variable domain; IPT: Immunoglobulins-plexins-trans
Immunoreceptor tyrosine-based switch motif; LUAD: Lung adenocarcinoma; MHC:
Semaphorin domain; TCR: T cell receptor.
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therapeutic targets in lung cancer.22,23 As a representative example of
global identification, a recent study systematically identified AS changes
and investigated their biological implications via multi-omics analyses in
NSCLC. Splicing changes in cancer-related genes, such as epidermal
growth factor receptor (EGFR), fibroblast growth factor receptor 2
(FGFR2), and cluster of differentiation 44 (CD44), were found to be
associated with prognosis in both LUAD and LUSC.22 In addition to global
identification, a rapidly increasing number of aberrant AS events has
been characterized in lung cancer. Several key examples are emphasized
as follows.

Mesenchymal–epithelial transition (MET) exon 14 skipping

MET gene encodes a receptor tyrosine kinase whose over-activation
promotes lung cancer by activating downstream oncogenic signaling
pathways, encompassing mitogen-activated protein kinase (MAPK),
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)–AKT serine/
threonine kinase (AKT), and signal transducer and activator of tran-
scription (STAT).24 Genomic alterations in MET, including amplification
and mutations, lead to constitutively activeMET signaling.25–30 Notably,
MET exon 14 skipping (MET-ΔE14) has been identified as one of the
paradigmatic aberrant splicing events, with an oncogenic function and
clear clinical significance, in LUAD [Figure 2A].6,31,32
T is caused by mutations/deletions that disrupt splice donor and acceptor sites,
MET (MET-ΔE14). This deletion inhibits MET degradation and internalization,
ly spliced, generating two splicing isoforms designated as KRAS4A and KRAS4B.
riable regions (red). (C) Exon 3 skipping in PD-1 produces a soluble isoform, PD-
r immunity by interfering with the PD-1/PD-L1 signaling axis. Ex: Exon; FL: Full-
cription factors; ITIM: Immunoreceptor tyrosine-based inhibitory motif; ITSM:
Major histocompatibility complex; PSI: Plexins–semaphorins-integrins; SEMA:
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MET-ΔE14 occurs in approximately 4% of NSCLC patients, based on
the genomics data frommultiple large-scale cohorts (The Cancer Genome
Atlas Program (TCGA), Memorial Sloan Kettering Cancer Center
(MSKCC), and Singapore Oncology Data Portal (OncoSG)). The genomic
mutations in MET causing this change are heterogeneous, encompassing
deletions and substitutions, and these mostly reside in or across from the
splice donor and acceptor sites of exon 14 [Figure 2A]. Exon 14 skipping
results in an in-frame deletion of 47 amino acids in the juxtamembrane
domain of MET, which inhibits its degradation and internalization
[Figure 2A], and thus, this is regarded as a gain-of-function alteration.33

The juxtamembrane domain is the key negative regulatory region of
MET. This domain contains a caspase-cleavage sequence (ESVD1002)
and a tyrosine-binding site (Y1003) for the E3 ubiquitin ligase Casitas B
lineage lymphoma (c-CBL), which mediates the ubiquitination and
degradation of MET.34 Compared to the wild type, MET-ΔE14 markedly
slows down ligand-induced ubiquitination but has no significant effect on
the phosphorylation of MET.35 In addition, exon 14 skipping causes a
much more prominent association between MET and the p85 subunit of
PI3K, which enhances the activation of downstream oncogenic
signaling.36 Accordingly, mouse NIH3T3 fibroblasts were demonstrated
to be tumorigenic in vivo when expressing MET-ΔE14.35

Multi-institutional studies have identified MET-ΔE14 as an indepen-
dent oncogenic driver and a biomarker that is significantly associated
with poorer survival in NSCLC.35 Clinical evidence has proven that pa-
tients harboring MET-ΔE14 could benefit from MET tyrosine kinase in-
hibitors (TKIs), including crizotinib, tepotinib, and capmatinib.37–39

Prior to the approval of new-generation MET inhibitors, crizotinib was
recommended for NSCLC patients with MET-ΔE14, according to the Na-
tional Comprehensive Cancer Network (NCCN) guidelines. The objective
response rate (ORR) of crizotinib treatment in patients with MET-ΔE14
was determined to be 32.3%, based on the PROFILE 1001 clinical trial.
However, the poor blood–brain barrier permeability of crizotinib has
resulted in limited therapeutic efficacy in lung cancer patients with brain
metastases.40 Recently, capmatinib, a highly potent, selective type 1b
inhibitor of MET, was approved in the United States for the treatment of
patients with advanced NSCLC.41–43 Moreover, multiple pre-clinical
studies have provided strong evidence that it is more potent than pre-
vious MET TKIs (crizotinib and tepotinib) for the treatment of NSCLC
with MET-ΔE14.41,42,44 In addition to the pre-clinical data, a phase I
clinical trial supported the safety of the clinical application of capmati-
nib.45 Furthermore, a multi-institutional phase II clinical trial showed
that the ORR of capmatinib was 68% and 41% in treatment-naive and
pre-treated advanced NSCLC patients with MET-ΔE14, respectively.45–47

Kirsten rat sarcoma viral oncogene (KRAS) 4A and 4B

KRAS gene is the most frequently mutated oncogene in cancer,
including LUAD.48,49 In Caucasian populations, KRAS mutations are
found in approximately 30% of LUAD patients.6 Currently, novel com-
pounds targeting the KRAS Gly12Cys mutation, such as sotorasib and
adagrasib, have been developed and approved for clinical
applications.50–52 Unfortunately, both are only effective against the
KRAS G12C mutation, with limited effects on other KRAS driver muta-
tions, such as G12D and G12V. Moreover, resistance to these inhibitors
often occurs rapidly.51 Therefore, therapy targeting KRAS mutations re-
mains a challenge in lung cancer.50,53,54

The 4th exon of KRAS is alternatively spliced, generating two splice
variants designated as KRAS4A and KRAS4B [Figure 2B].55,56 Since the
oncogenic mutation in KRAS is predominantly located in the 2nd and 3rd
exons and leads to constitutively active oncoproteins, both isoforms were
demonstrated to promote tumorigenesis in LUAD57 [Figure 2B].
Although KRAS4A was identified from the Kirsten rat sarcoma virus by
Shimizu, early in 1983,48 over the past decades, the vast majority of
studies have focused on KRAS4B largely owing to its higher expression
(than KRAS4A) in lung cancer. KRAS4A and KRAS4B share the first 165
amino acids encoding G domains but differ substantially in their
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hypervariable regions that mediate membrane association and subcel-
lular trafficking [Figure 2B]. The distinct landscape of interactomes for
KRAS4A and KRAS4B was identified via affinity-purification mass spec-
trometry.58 For example, the v-ATPase A2 was shown to specifically
interact with KRAS4B, but not KRAS4A, whereas the RAF-1 proto--
oncogene serine/threonine kinase (RAF1) preferentially interacts with
KRAS4A.58 In addition, KRAS4A was shown to profoundly enhance
glycolysis by directly associating with hexokinase 1 on the outer mito-
chondrial membrane in cancer cells.59

KRAS4A is widely expressed in various types of cancer, especially in
lung cancer and colon cancer.60,61 Recently, a multi-institutional study
examined the expression of KRAS4A and KRAS4B in advanced-stage
NSCLC patients and found that KRAS4A expression was elevated in
most patients.56 Another study, based on the genomic and transcriptomic
data of TCGA LUAD cohort, revealed that KRAS4A expression is posi-
tively correlated with genomic alterations in KRAS and significantly
worse survival in LUAD.61 Further, an in vivo study consistently showed
that KRAS4A alone could induce metastasis in LUAD in the absence of
KRAS4B.62 Together, these findings indicate that KRAS4A plays critical
roles, likely distinct from those of KRAS4B, in the development and
progression of LUAD. Intriguingly, targeting KRAS4A splicing through
degradation of the RNA-binding protein RBM39was shown to inhibit cell
stemness in lung cancer,63 providing a potential strategy to modulate
KRAS splicing in cancer therapy. However, the regulatory mechanisms of
KRAS splicing in cancer remain poorly understood and require further
investigation.

Splicing alterations of programmed cell death protein 1/programmed cell
death ligand 1 (PD-1/PD-L1)

Targeting the immune checkpoint molecules PD-1/PD-L1, known as
immune checkpoint blockade (ICB), has resulted in remarkable clinical
responses in various types of cancer, such as melanoma, NSCLC, and
colon cancer.64–66 However, only a fraction of patients respond to ICB,
calling for a deeper understanding of immune-escape mechanisms.67,68

Emerging evidence demonstrates that the AS of specific immune check-
point molecules has significant effects on ICB. For example, exon 3
skipping in the PD-1-encoding gene PDCD1 produces a soluble form of
the protein (designated as PD-1ΔEx3), which was shown to suppress the
PD-1/PD-L1 signaling axis, thereby enhancing anti-tumor immunity
[Figure 2C].69 Moreover, a clinical study in Denmark revealed that the
upregulation of PD-1ΔEx3 expression correlates with improved survival
in patients with EGFR-mutant NSCLC treated with TKIs.70 In addition, the
expression of PD-1ΔEx3 was reported to enhance the response rate to
immunotherapies, such as anti-PD-1 (a-PD-1) and anti-CTLA4 therapy, in
NSCLC.71 Antisense oligonucleotides (ASOs) can shift PDCD1 splicing
toward PD-1ΔEx3, providing an alternative approach when targeting
PD-1 in lung cancer. Recently, a novel PD-L1 splice variant lacking the
transmembrane domain has been identified.72 Compared with the ca-
nonical isoform expressed on the surfaces of cancer cells, this PD-L1
isoform appears to be secreted into the tumor immune microenviron-
ment, conferring resistance to anti-PD-L1 immunotherapy in NSCLC.72,73

Dysregulation of splicing factors in lung cancer

Splicing factors are frequently mutated in hematologic malignancies,
as well as in solid tumors.18,74 In addition to mutations, the abnormal
expression or activity of splicing factors is also commonly observed in
cancer.19,75 Accordingly, an increasing number of studies have demon-
strated the oncogenic and tumor-suppressive functions of various
splicing factors. Mechanistically, the dysregulation of splicing factors
generally causes splicing alterations in target genes, consequently
affecting cancer development, progression, and drug resistance. The
modulation of dysregulated splicing factors and/or their target genes
has started to show great potential for cancer therapy. However, despite
this exciting progress, a large proportion of splicing factors dysregulated



Figure 3. Splicing factors frequently mutated in lung cancer. (A) Spectrum of splicing factors frequently mutated in LUAD. Data are from the cBioPortal TCGA pan-
cancer LUAD cohort. (B) Distribution of RBM10 mutations in LUAD along the RBM10 protein sequence. These mutations are primarily frameshift, nonsense, and
splice-site mutations, leading to RBM10 loss-of-function alterations. Data are from the cBioPortal TCGA pan-cancer LUAD cohort. (C) RBM10 deficiency promotes lung
cancer development, progression, and TKI resistance by regulating the alternative splicing of key target genes, such as NUMB, EIF4H, and BCLX. LUAD: Lung
adenocarcinoma; RRM: RNA recognition motif; TKI: Tyrosine kinase inhibitor; ZnF: Zinc finger.
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in cancer remain to be investigated. The spectrum of splicing factors
exhibiting recurring mutations in lung cancer is shown in Figure 3A, and
their functional roles and clinical implications are highlighted in the
following sections.

RNA binding motif protein 10 (RBM10)

RBM10 encodes an RNA-binding protein that has been identified as a
component of U2 snRNP.76,77 We and other researchers revealed that
RBM10 enhances exon skipping by binding to flanking intronic regions
near splice sites78,79 or to exonic regions.80 RBM10 exhibits high muta-
tion rates in multiple cancers, such as LUAD, colorectal carcinoma,
pancreatic ductal adenocarcinoma, and bladder cancer.81–83 Moreover,
RBM10 is the most frequently mutated splicing factor in lung cancers
(e.g., 8.9% in a cohort of Chinese LUAD patients, 7.3% in the TCGA LUAD
patient cohort,84 and even more frequently in early-stage or non-smoking
LUAD patients85,86). RBM10 mutations are primarily loss-of-function
[Figure 3B] and co-occur with known driver mutations, mostly EGFR
and KRAS mutations, in lung cancer.84,87,88

Functional studies have demonstrated the tumor-suppressor functions
of RBM10 in LUAD. Specifically, it was shown to repress Notch signaling
via the AS-mediated regulation of NUMB exon 979 [Figure 3C]. We also
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found that RBM10 represses lung cancer progression by controlling the
AS of eukaryotic translation initiation factor 4H (EIF4H) exon 5
[Figure 3C]. In particular, RBM10 loss was shown to enhance the inclu-
sion of exon 5 in EIF4H. Importantly, expression of the long isoform of
EIF4H containing exon 5 (EIF4H-L) is specifically upregulated in LUAD, is
critical for LUAD cell proliferation and survival, and correlates with
unfavorable prognosis, which makes it a promising therapeutic target.84

In addition, RBM10 was reported to suppress LUAD progression by
inhibiting the Wnt/β-catenin and RAP1/AKT/CREB signaling path-
ways89,90 and inhibiting the invasion and metastasis of NSCLC cells by
recruiting methyltransferase-like 3 (METTL3) to modulate the m6A
methylation of its target long non-coding RNAmetastasis-associated lung
adenocarcinoma transcript 1 (MALAT1).91 Moreover, RBM10 deficiency
in LUAD was demonstrated to confer high sensitivity to spliceosome in-
hibition,88 while compromising the efficacy of EGFR TKI therapy
partially by regulating AS of the anti-apoptotic gene Bcl-x [Figure 3C].92

Notably, RBM10-deficient LUADs were linked to higher expression of
human leukocyte antigen (HLA) and immune checkpoint molecules and
increased immune cell infiltration compared to RBM10-wild-type
LUADs.93,94 Additionally, RBM10 overexpression was found to signifi-
cantly decrease the protein expression of PD-L1, whereas RBM10
silencing was determined to increase it.95 Although most studies support
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the tumor-suppressive functions of RBM10 in lung cancer,96 controver-
sial oncogenic activities of RBM10 have been reported.97,98 Further
in-depth studies, particularly those using in vivomouse models combined
with clinical samples, are needed to corroborate the functions and ther-
apeutic value of RBM10 in lung cancer.

In addition to that in lung cancer, it was reported that RBM10
physically interacts with p53 in colon cancer and that its overexpression
disrupts the mouse double minute 2 homolog (MDM2)-p53 interaction,
subsequently repressing p53 ubiquitination.99 Further, RBM10 loss en-
hances sensitivity to BCL2 inhibitors partially through the mis-splicing of
X-linked inhibitor of apoptosis (XIAP) in acute myeloid leukemia.100

Given the mutations and altered expression of RBM10 in multiple can-
cers, it will be important to elucidate its roles in different cancer types.

U2 small nuclear RNA auxiliary factor 1 (U2AF1)

U2AF1, an essential protein component of the splicing machinery,
forms a heterodimer with U2AF2. U2AF1 interacts with the AG dinu-
cleotide of the 30 splice site through its RNA recognition motif and in-
teracts with serine- and arginine-rich proteins, such as serine/arginine-
rich splicing factor 2 (SRSF2), through its arginine–serine-rich
domain.101 U2AF1 is frequently mutated in myelodysplastic syndromes
(MDSs) and chronic myelomonocytic leukemia, as well as in several solid
tumors, including LUAD.74,102 The S34F mutation, located in the first
zinc finger domain of U2AF1, is the most pervasive hotspot in lung cancer
and predicts worse survival.103 In general, the S34F mutation influences
splicing by affecting the U2AF1-binding preference to the 30 splice site,
and it has been characterized as a change-of-function alteration.104

Intriguingly, the U2AF1 S34F mutation was shown to perturb mRNA
translation by directly binding the mRNA 50 untranslated region in the
cytoplasm to promote cancer progression, implying a non-canonical role
of splicing factors in cancer.105 Specifically, the overexpression of
U2AF1S34F was found to lead to the elevated translation of genes asso-
ciated with the epithelial–mesenchymal transition in lung cancer.105

Splicing factor 3b subunit 1 (SF3B1)

SF3B1 is a core component of U2 snRNP that is essential for the
recognition and selection of the branch-point sequence. SF3B1mutations
have been intensively investigated in hematologic malignancies and also
explored in several solid tumors, including uveal melanoma and
LUAD.106,107 The hotspot missense mutations of SF3B1 K700 occur
within the C-terminal HEAT repeat domains, and these result in the usage
of cryptic 30 splice sites and aberrant AS.108 Recent TCGA data analysis
suggests that splicing changes induced by SF3B1 mutations share a
similar pattern with that caused by SURP and G-patch domain containing
1 (SUGP1) deficiency in lung cancer.109 Moreover, the SF3B1 K700E
mutation or a SUGP1 mutation disrupts the interaction between SUGP1
and SF3B1, leading to common splicing changes.110

Far upstream element (FUSE) binding protein 1 (FUBP1)

FUBP1 is involved in the regulation of transcription, splicing, and
mRNA stabilization by binding to a single strand of deoxyribonucleic acid
(DNA) or RNA.111,112 FUBP1 expression was found to be upregulated and
correlated with poor prognosis in several cancers, including hepatocel-
lular carcinoma, glioma, gastric cancer, ovarian cancer, and nasopha-
ryngeal carcinoma. As such, it was regarded as an oncogene.113–117 In
support of this notion, FUBP1 was shown to be required for efficient
splicing of the oncogene MDM2 in MCF7 breast cancer cells.118

Conversely, loss-of-function mutations in FUBP1 have been identified in
neuroblastoma, indicating a tumor-suppressive role.119 Interestingly, the
FUBP1 S11Lfs*43 mutation frequently occurs in LUAD (data from cBio-
Portal), but its functional significance remains to be determined. In vitro
experiments showed that FUBP1 knockdown inhibits the proliferation
and migration of lung cancer cells, suggesting its oncogenic functions in
277
lung cancer.120 Mechanistically, FUBP1 was shown to be recruited by a
novel long non-coding RNA, lung cancer-associated transcript 3 (LCAT3),
and then bind the FUSE sequence to activate MYC transcription and
promote cell proliferation.120 Another recent study indicated that FUBP1
knockdown decreases the expression of PD-L1 and inhibits LUSC tumor
growth in vivo.73 Further investigations are required to reconcile the
complex functions and underlying mechanisms of FUBP1 in lung cancer
and other cancers.

Abnormal expression of splicing factors

The best-known example of splicing factors with altered expression in
cancer is the proto-oncogene SRSF1. The expression of this protein was
found to be upregulated and promote tumorigenesis in several cancer
types, including lung cancer.121–123 Another representative example is
SRSF2, whose P95 mutations occur frequently in MDSs but not in lung
cancer.124,125 Previous studies showed that the levels of SRSF2 and
phospho-SRSF2 proteins are overexpressed in LUAD, LUSC, and neuro-
endocrine lung tumors.126,127 Moreover, SRSF2 was shown to interact
with E2F transcription factor 1 (E2F1) and positively regulate tran-
scription to control the expression of cell cycle genes in neuroendocrine
lung cancer.127 A recent study further revealed that SRSF2 expression is
transcriptionally upregulated by SRY-box transcription factor 2 (SOX2),
leading to a splicing change in vascular endothelial growth factor re-
ceptor (VEGFR) in LUSC.128 In addition, SRSF6 expression was found to
be upregulated and induce the transformation of epithelial cells in lung
cancer.129 Various splicing factors have also been found to be deregu-
lated in lung cancer,19,75 but they still need to be functionally
characterized.

Strategies to target splicing alterations in lung cancer

Owing to the fundamental roles of splicing alterations in cancer and
technological advancements in the manipulation of splicing, targeting
aberrant splicing has been considered an attractive cancer therapeutic
approach. Currently, general strategies to modulate splicing mainly
encompass targeting the spliceosome, splicing factors, and splicing iso-
forms using small-molecule inhibitors and ASOs, among others
[Figure 4A and B]. Accumulating evidence has demonstrated the potent
effects of targeting splicing in various cancers.7,9,10,17,130,131 Recently,
pre-clinical and clinical studies have provided promising results
regarding this strategy in lung cancer. Additionally, targeting splicing in
combination with current standard treatment options for lung cancer can
produce exciting results.

Targeting the spliceosome and splicing factors

Various small-molecule inhibitors have been designed to inhibit the
spliceosome and splicing factors, which have been tested in cancer. The
classical small-molecule inhibitors of the spliceosome, namely the natu-
ral compound pladienolide B and its derivatives, E7107 and H3B-8800,
were designed to target the SF3B1 complex.132–134 These
small-molecule inhibitors bind to the branch-point-binding pocket of the
SF3B complex, thereby preventing splicing [Figure 4A]. They also
exhibited potent anti-tumor effects on lung cancer in pre-clinical
studies;135,136 however, clinical evidence supporting their effectiveness
is lacking. Two phase I clinical trials reported ocular complications
caused by E7107 with unclear mechanisms, which hindered its further
clinical application for advanced solid tumors.137,138

In addition to spliceosome inhibitors, small-molecule inhibitors tar-
geting splicing factors, such as protein arginine methyltransferase 5
(PRMT5) and RBM39 have been developed, and their anti-tumor effects
on lung cancer were tested in vitro and in vivo [Figure 4A].63,139–142 For
example, indisulam, a sulfonamide agent, can bind and bridge the
splicing factor RBM39 with the CUL4–DDB1–DDA1–DCAF15 E3 ubiq-
uitin ligase complex, leading to the polyubiquitination and proteasomal



Figure 4. Strategies to target RNA splicing alterations in lung cancer. (A) Approaches targeting spliceosomes and splicing factors mainly include small-molecule
inhibitors and the PROTAC system. (B) Approaches to target aberrant splicing events in lung cancer, mainly including splice-switching ASOs and small molecules.
(C) Schematic of targeting splicing in combination with standard treatments for lung cancer. ASO: Antisense oligonucleotide; ICB: Immune checkpoint blockade;
PROTAC: Proteolysis-targeting chimeric molecule; TKI: Tyrosine kinase inhibitor.
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degradation of RBM39 and the inhibition of tumorigenesis in lung cancer
[Figure 4A].63,143 In addition, proteolysis-targeting chimeric molecules,
heterobifunctional compounds that utilize the ubiquitin-proteasome
system to achieve specific protein degradation, can be applied to
degrade abnormal splicing factors and have great potential for cancer
therapy.142

Targeting aberrant splicing events

ASOs are short, artificially synthesized single-stranded nucleic acids
with different modifications, which can directly bind to the splicing
regulatory element in precursor mRNA to regulate splicing or pair with
target mRNA to induce its degradation or repress translation. Further,
they comprise an effective means to directly interfere with splicing ab-
normalities.18,144,145 The efficacy of ASOs targeting splicing alterations
has been demonstrated in clinical trials for various cancers but not yet for
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lung cancer.146 Nonetheless, pre-clinical studies showed the significant
anti-tumor effects of several ASOs targeting specific AS events in
cancer-associated genes, such as EIF4H, BCLX, and MAPK interacting
serine/threonine kinase 2 (MNK2), in lung cancer [Figure 4B].92,147,148

In addition to the splicing switch, it is worth noting that ASO-based RNA
therapy has broad prospects in lung cancer. AZD9150, an ASO targeting
STAT3, was shown to directly decrease the expression of STAT3 and exert
anti-tumor effects on lymphoma and lung cancer in a phase I clinical
trial.149 Further, AZD4785, a high-affinity ASO targeting KRAS, was
found to exert prominent anti-tumor effects on KRAS-mutant NSCLC
patient-derived xenografts by inhibiting KRAS expression.150 These
studies provide foundations for the application of ASOs targeting aber-
rant splicing events in lung cancer.

Small-molecule inhibitors have also been pursued tomodulate specific
splicing isoforms. The most representative example is the MET TKIs
mentioned previously herein. Capmatinib was tested in multiple clinical
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trials and resulted in optimistic outcomes for NSCLC patients with MET
exon 14 skipping [Figure 4B].33,46,47 Salazosulfapyridine is a
small-molecule compound that directly inhibits the splicing of isoforms of
CD44 and prolongs progression-free survival in lung cancer.151 Another
study showed that vorinostat could effectively target the oncogenic BIM
splicing isoforms resulting from a deletion polymorphism.152,153

Targeting splicing in combination with standard treatment

According to NCCN guidelines, the standard treatment for NSCLC
mainly consists of chemotherapy, radiotherapy, targeted therapy, and
immunotherapy, beyond surgical approaches. However, therapy resis-
tance is a major challenge encountered with these treatment options.
Aberrant RNA splicing has been linked to therapy resistance in lung can-
cer. For example, the AS of the gene encoding caspase 9was found to cause
chemotherapy resistance in NSCLC.154 Further, SGOL1-B, a splice variant
of shugoshin-like 1 (SGOL1), induces aberrant mitosis and resistance to
taxane in LUAD.155 In addition, dysregulation of the splicing factor small
nuclear ribonucleoprotein polypeptides B and B1 (SNRPB) was found to
lead to platinum-based chemotherapy resistance in NSCLC.156

Currently, targeted therapies based on driver mutations, particularly
TKIs, have brought about great benefits for patients with NSCLC, but
resistance is almost inevitable. The mechanisms of resistance to TKIs
include genomic alterations and other molecular and cellular changes.157

As such, the aberrant splicing of cancer-associated genes, such as HER2,
BIM, and ATG16, was found to contribute to TKI resistance.158–160 In
addition, deficiency of the splicing factor RBM10 was recently reported
to limit the response to osimertinib in EGFR-mutant LUAD partially due
to a splicing alteration in Bcl-x.92 Importantly, the combination of a Bcl-x
inhibitor with osimertinib was found to synergistically inhibit LUAD
[Figure 4C].92 Moreover, a phase I clinical trial led to the approval of the
combination of vorinostat and gefitinib in BIM-deletion poly-
morphism/EGFR mutation-double positive LUAD [Figure 4C].152,153

Hence, targeting aberrant splicing in combination with conventional
treatment options could be a very promising strategy to improve therapy
efficacy and overcome resistance in lung cancer [Figure 4C].

The development of immunotherapy has revolutionized the treat-
ment of lung cancer. The a-PD1 antibodies, represented by nivolumab
and pembrolizumab, are a standard treatment strategy for advanced-
stage NSCLC, especially those lacking driver mutations for targeted
therapy. However, the ORR of a-PD1 was found to be approximately 20%
in NSCLC due to primary or acquired resistance. Aberrant splicing has
also been shown to affect the tumor's immune microenvironment.161–163

On one hand, the aberrant splicing of genes encoding immune checkpoint
molecules could interfere with their normal functions, which in turn
confers resistance or sensitivity to ICBs.69,72 Accordingly, ASOs designed
to target those aberrant splicing events should be able to enhance the
effects of ICBs in lung cancer. On the other hand, AS can generate neo-
antigens that reprogram the tumor immunemicroenvironment, similar to
the tumor mutation burden, which correlates with the ORR of a-PD1
immunotherapy.164,165 The modulation of exon skipping and intron
retention was predicted to generate numerous aberrant peptides, four
times more than mutation-derived neoantigens,166,167 highlighting their
important roles in anti-tumor immune responses. Interestingly, the
splicing factor inhibitors indisulam and MS-023, targeting RBM39 and
PRMTs, respectively, were found to significantly enhance sensitivity to
ICBs in a pre-clinical study [Figure 4C].166 These studies provide direct
evidence for combining the targeted modulation of splicing with ICBs as
a promising therapeutic option for lung cancer [Figure 4C].

Conclusion and perspective

In this review, we summarized recent progress on the key splicing
events and splicing factors that are altered in lung cancer. We also
described the general strategies used to target splicing alterations in lung
cancer and proposed a combination of splicingmodulationwith currently
279
existing therapeutics as a promising direction to improve treatment
outcomes. This review highlights the critical roles of RNA splicing al-
terations in the pathogenesis and treatment of lung cancer, providing
new insights into cancer-related splicing dysregulation.

Despite encouraging advancements, there are pressing challenges
that need to be addressed. First, many splicing events and splicing factors
that are altered in lung cancer have not been functionally elucidated.
Since splicing factors often regulate many RNA splicing events, it is
difficult to determine whether a few key splicing alterations or many
changes in combination are responsible for splicing factor dysregulation
in cancer. Hence, efficient functional screening methods are important
for elucidating splicing aberrations in lung cancer. Currently, several
high-throughput screening libraries based on clustered regularly inter-
spaced short palindromic repeats (CRISPR)-associated (Cas) systems
have been developed and used to systematically interrogate cancer-
related splicing factors and events.168–170 Such screening strategies
have been applied to identify functional splicing alterations in lung
cancer.171–174 Second, splicing changes can be used as invaluable diag-
nostic biomarkers and therapeutic targets for lung cancer patients, yet
these have not been translated to the clinic. Therefore, it is urgent to
implement rationally designed clinical trials to test the efficacy of various
splicing-modulating drugs, including large-scale, multi-institutional tri-
als combining splicing modulation with targeted or immune therapy. It is
also critical to develop sensitive, specific, and low-cost technologies to
detect splicing changes in clinical samples, improve the delivery effi-
ciency of ASOs to tumor sites, and limit the potential toxicity of spli-
ceosome inhibitors. Such efforts will provide a foundation for the clinical
application of splicing modulators in lung cancer treatment. Third, in
stark contrast to knowledge on NSCLC, few studies have focused on
splicing alterations in SCLC, for which more investigations are needed.
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