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Abstract: Adding virtual masses to a structure is an efficient way to generate a large number of natural
frequencies for damage identification. The influence of a virtual mass can be expressed by Virtual
Distortion Method (VDM) using the response measured by a sensor at the involved point. The proper
placement of the virtual masses can improve the accuracy of damage identification, therefore the
problem of their optimal placement is studied in this paper. Firstly, the damage sensitivity matrix
of the structure with added virtual masses is built. The Volumetric Maximum Criterion of the
sensitivity matrix is established to ensure the mutual independence of measurement points for the
optimization of mass placement. Secondly, a method of sensitivity analysis and error analysis is
proposed to determine the values of the virtual masses, and then an improved version of the Particle
Swarm Optimization (PSO) algorithm is proposed for placement optimization of the virtual masses.
Finally, the optimized placement is used to identify the damage of structures. The effectiveness of the
proposed method is verified by a numerical simulation of a simply supported beam structure and a
truss structure.

Keywords: damage identification; sensor optimization; Virtual Distortion Method (VDM); Particle
Swarm Optimization (PSO) algorithm; sensitivity

1. Introduction

Nowadays, structural damage identification becomes a significant field in Structural Health
Monitoring (SHM), and many new ideas are proposed in a growing number of studies.
Spencer Jr. et al. [1] reviewed recent advances in wireless smart sensors for multi-scale monitoring
and control of civil infrastructure. An et al. [2] proposed a novel method for computing the
curvature directly from acceleration signals without identifying the modal shapes of the structure.
Two examples were adopted to verify the effectiveness of the method, and its robustness to
measurement noise. Hu et al. [3] reported on structural health monitoring of a prestressed
concrete bridge based on statistical pattern recognition of continuous dynamic measurements over
14 years. Laflamme et al. [4] developed a soft capacitive sensor for structural health monitoring of
large-scale systems; the performance of the sensor was then characterized for applications in dynamic
vibration-based monitoring [5]. Yang et al. [6] proposed two methods for damage identification of a
bridge based on measurements by a test vehicle. Fu [7] used wireless smart sensors to identify modes of
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structures to monitor sudden events in civil infrastructure. Li et al. [8] monitored fatigue cracks in steel
bridges using a large-area strain sensing technology. Structural modes are the most basic characteristics
of structures, and the approaches based on modal information are among the most commonly used
methods of structural damage identification. Pnevmatikos et al. [9] introduced wavelet analysis for
damage detection of a steel frame structure with bolted connections, and the presented experiment
showed the effectiveness of the wavelet approach to damage detection of frame structures assembled
using bolted connections. Ubertini [10,11] proposed an automated output-only modal identification
procedure and utilized carbon nanotube cement-based sensors to identify natural frequencies of a
reinforced concrete beam. Xu et al. [12] used embedded piezoceramic transducers to identify damage
of a concrete column subject to blast loads. Zhang et al. [13] identified damage of concrete-filled
square steel tube (CFSST) column joints under cyclic loading. Ginsberg et al. [14] identified damage
parameters of framework by combining sparse solution techniques with an Extended Kalman Filter.
The measurement equation was expanded by an additional nonlinear L1-minimizing observation
to ensure sparsity of the damage parameter vector. Jiang et al. [15] monitored fatigue damage of
modular bridge expansion joints using piezoceramic transducers. Zhang et al. [16] verified a method
for concrete strength validation by smart aggregate-based stress monitoring. Most of these approaches
are related to modes of structures. However, the modes that can be identified in real application
usually do not convey enough information for full characterization of the monitored structure, and
they are practically always insensitive to local damage. Researchers have thus proposed methods
based on adding components such as mass and stiffness to the structure that can effectively increase the
amount of modal information and improve the accuracy of damage identification. Nalitolela et al. [17]
proposed a model updating method that adds various physical masses or stiffeners to the structure
and utilizes modal information of the updated structures. Then, an improved method was proposed
by adding imaginary masses to the preselected degrees of freedom (DOFs) [18]. In 2010, Dems and
Mroz [19] further added controllable parameters such as supports, loads and temperature to the
original structure, and identified the damage by modal, static and thermodynamic methods. Lu [20]
took the beam structure as an example, and comprehensively analyzed the influence of the value,
position and the number of the additional masses on damage identification in the additional mass
method. Hou et al. [21] derived the virtual mass equation using structural excitation and response
based on the VDM, and the effectiveness of the method was verified by an experiment of the frame
structure. Therefore, adding virtual masses on structures is an efficient way to obtain more information
related to natural frequencies for damage identification. However, there are few studies on the optimal
placement of masses and other physical parameters. In fact, the value, positions and the number of the
additional virtual masses can greatly affect damage identification results, so the optimal placement of
additional virtual masses is the main prerequisite for the accuracy of structural damage identification.
Therefore, the problem of optimal placement of virtual masses for the purpose of structural damage
identification is studied in this paper.

The problem of optimal placement of virtual masses is similar to the problem of optimal sensor
placement, so that similar methods might be applied for this research. In this paper, the optimization
criterion and the algorithm for the optimal placement of virtual masses are along the lines provided by
the research on the optimal placement of sensors.

There are three criteria that are mainly used: the minimum transmission error criterion [22],
the modal kinetic energy criterion [23] and the model reduction criterion [24]. The basic theory
behind the minimum transmission error approach is to use the unbiased estimation of the system
parameter identification error. When the trace or the determinant of the Fisher information matrix
reaches its maximum value, the system parameter identification error reaches its minimum accordingly.
Kammer [22] applied the Fisher information matrix to the sensor placement problem for identification
of structural modal parameters, and proposed the famous Effective Independence (EI) method, which
eliminates in a stepwise manner the DOFs that contribute little to the linear independence of the
target mode vectors by maximizing the determinant of the information matrix. Zhan [25] used
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the modal strain energy method to modify the EI method and applied it to the sensor optimal
placement of the truss bridge structure. Yi [26] proposed a new multi-dimensional sensor optimization
layout criterion combined with the EI method and the mode assurance criterion, and introduced the
Wolf Group algorithm to improve the computational efficiency. Zhang [27] proposed an effective
independence–total displacement method to address the problem of optimal sensor placement in
hydraulic structures. These sensor optimization studies are in general based on modal observability.
Silvers [28] proposed an optimization method, which optimized the sensor arrangement by maximizing
the sensitivity of the natural frequency to the damage. Bruggi [29] proposed a method for sensor
placement optimization to identify the damage of flexible plates. Li [30] used Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and wavelet decomposition to analyze and optimize sensor
distribution for structural impact monitoring. The general purpose of the minimum transmission error
criterion is to make the modal matrix include as much information as possible, while the purpose of
adding masses is to improve the damage identification accuracy. Therefore, this paper draws on the
construction of the Fisher information matrix in the transmission error criterion, and it proposes an
optimization criterion based on the sensitivity information matrix in damage identification. The aim is
to obtain a sensitivity matrix that contains as much information as possible.

After establishing the sensor optimization criterion, the next step is to select the optimization
method to find the optimal solution under the corresponding criterion. The current optimization
algorithms can be classified as classical optimization algorithms and meta-heuristic algorithms.
Classical optimization algorithms utilize classical approaches like the Newton method or the conjugate
gradient method to optimize the placement of the measurement points. The optimization efficiency
of these methods is relatively high, but they perform an intrinsically local search, so that the globally
optimal solution might be difficult to find. The most known meta-heuristic algorithms include
genetic, simulated annealing, particle swarm and cross entropy optimization algorithms. They are
designed to be global and can thus effectively avoid falling into a locally optimal solution. The Particle
Swarm Optimization (PSO) algorithm belongs to the global, meta-heuristic approaches. It was
proposed by Kennedy and Eberhart [31] in 1995. The method utilizes a large number of search
points treated as particles flying through the search space (particle swarm), which attracted to the
optimal solution by changing their velocity based on the individual, local and global experiences.
The PSO algorithm has the advantages of a fast convergence, few tunable parameters and an easy
implementation. It is widely used in optimization calculations in various fields such as power design,
intelligent control, and transportation. He et al. [32] used an improved PSO algorithm to solve the
problem of multi-dimensional sensor layout based on information redundancy. The efficiency of
the method was verified by taking the Laxiwa arch dam of the upper Yellow River as an example.
Zhang [33] proposed an approach for optimal sensor placement based on the PSO algorithm for the
structural health monitoring of long-span cable-stayed bridges, and established the fitness function
to solve the optimal problem by using the root mean square (RMS) value of the non-diagonal
elements in the modal assurance criterion matrix. For applications to discrete optimization variables,
Kennedy et al. [34] proposed a binary PSO algorithm for 0–1 programming problems. The particle
position was represented by a binary variable, and the velocity of the particle meant the probability of
taking 1 as the binary variable.

This paper takes the identification of damage parameters as the ultimate goal and studies the
problem of optimal placement of the added virtual masses. It is structured as follows: Firstly,
an optimization criterion based on the volumetric maximum of the sensitivity matrix is proposed.
Secondly, due to the advantages of a low number of parameters and a small computational cost [35],
the PSO algorithm is improved and applied for the optimal placement of virtual masses. Then, the value
and the number of virtual masses is optimized. Thirdly, according to the optimization result, the virtual
masses are arranged on the considered structure and damage identification is conducted by employing
the sensitivity method. Finally, the feasibility and effectiveness of the proposed method are validated
by a numerical simulation example of a simply supported beam structure and a truss structure.
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2. The Effect of an Added Virtual Mass

In this method, the structure without additional masses is called the original structure, and the
structure with an additional virtual mass is called the virtual structure. The notion “virtual” is used to
emphasize that the influence of the additional mass is computed based on the recorded responses of
the original structure, without mounting a real mass to the system.

Let the excitation be applied and the acceleration be measured in the same structural degree of
freedom (DOF), and denote by h(ω) the corresponding (measured) acceleration frequency response
of the original structure. Let a (virtual) mass be added in the same DOF and denote by H(ω, m) the
corresponding acceleration frequency response of the virtual structure. The virtual mass is added just
in one DOF, and the other DOFs remain unmodified, therefore the inertia force is generated just in the
single involved DOF and it equals −mH(ω, m).

According to the basic theory of VDM [21], the influence of the additional mass can be equivalently
modeled by its inertia force. Therefore, H(ω, m) can be expressed as the following sum of the original
frequency response and the effects of the inertia force:

H(ω, m) = h(ω)−mH(ω, m)h(ω) (1)

This formula can be rearranged as:

H(ω, m) =
h(ω)

1 + mh(ω)
(2)

In actual engineering projects, the frequency response is usually calculated by the Fourier
Transform of time-domain excitations and responses. If the time-domain excitation is denoted by
f (t), and the corresponding acceleration response in the same DOF is denoted by y(t), let A(ω) and
F(ω) denote the corresponding frequency-domain signals obtained by the Fourier Transform. Then,
by substituting h(ω) = A(ω)/F(ω) into Equation (2), one obtains the following simple formula for
the acceleration frequency response of the virtual structure:

H(ω, m) =
A(ω)

F(ω) + mA(ω)
(3)

Equation (2) can be used to determine the natural frequencies of the virtual structure, which can
be then utilized for damage identification. It should be emphasized that the position and the direction
of the applied excitation F(ω) and the measured acceleration response A(ω) should be the same, and
that the virtual mass also must be added in the same position and direction. In other words, the virtual
mass is constructed and added in the position where the sensor is.

3. Optimal Sensor Placement for Virtual Masses

In this section, the sensitivity information matrix is constructed by using the natural frequencies
of the virtual structure with respect to the damage factor. Then the virtual mass optimization criteria
are established based on the sensitivity information matrix. Finally, an optimization method for the
virtual mass placement is proposed.

3.1. Sensitivity Information Matrix

It is assumed that there are n substructures in the structure to be identified, and that the damage
factor µl of the l-th substructure represents its stiffness reduction ratio: it is equal to the stiffness ratio
of the l-th substructure after damage to that of l-th substructure before damage. The global structural
stiffness matrix after damage is expressed as K(µ), where:

µ = {µ1, µ2, . . . , µn} (4)
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As shown in Figure 1, it is assumed that there are nm available locations for virtual
masses in the structure. And it is supposed that when the mass m is placed at the position i
(i = 1, 2, . . . , nm), then the first k natural frequencies of i-th virtual structure can be identified as
ω1i(µ, m), ω2i(µ, m), . . . , ωki(µ, m). The j-th natural frequency and the mass normalized mode of the
i-th virtual structure are denoted thus by ωji(µ, m) and Ψji(µ, m), respectively.
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Because the larger order of the natural frequency is, the larger its absolute identification error
will be, the relative sensitivity is adopted for analysis. The relative sensitivity rji,l is the normalized
gradient of ωji(µ, m) with respect to the damage factor µl :

rji,l(µ, m) =
1

ωji(µ, m)

∂ωji(µ, m)

∂µl
=

ΨT
ji(µ, m)KlΨji(µ, m)

2ω2
ji(µ, m)

(5)

When the mass m is added in the i-th measuring point, the relative sensitivity of the j-th natural
frequency to all n substructure damage factors µ can be arranged as the following vector:

rji(µ, m) =
1

ωji(µ, m)

∂ωji(µ, m)

∂µ
=
{

rji,1, rji,2, . . . , rji,n
}T (6)

Furthermore, for the i-th measurement point, the relative sensitivity information of all k natural
frequencies with respect to all n substructure damage factors can be arranged as a single vector
Λi =

{
rT

1i, rT
2i, . . . , rT

ki
}T, which is a column vector with kn elements. The sensitivity information matrix

R of the structure is arranged as shown in Equation (7), and it contains kn rows and nm columns:

R = {Λ1, Λ2, . . . , Λnm} (7)

In the conventional sensitivity matrix, generally, each column vector represents the sensitivities of
all modal information with respect to one considered parameter. In this paper, each column vector
of the sensitivity matrix R represents the sensitivities of all modal information with respect to all
considered parameters obtained by adding a virtual mass in one point. This new arrangement is more
conducive to the analysis of the correlation between points.

3.2. Optimization Criterion

The optimal placement of virtual masses is to ensure the accuracy of damage identification, so the
optimization criterion should assess two conditions: first, the sensitivity for each measurement point
should be relatively high; second, sensitivity information for different measurement points should
be as irrelevant as possible. The Volumetric Maximum Criterion can guarantee both of the above
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conditions. The geometric meaning of the optimization criterion based on the volumetric maximum
criterion of the sensitivity matrix is described below.

As shown in Figure 2, the vectors Λi, Λj and Λk represent the sensitivity information vectors
of the i-th, j-th and k-th measurement points in the sensitivity matrix R, respectively. In this figure,
the modulus of the i-th measurement point sensitivity information vector Λi is maximum. Λi can
be regarded as the vector of first selected point. To determine the next point, the vector that is the
most irrelevant to the i-th vector is selected from among the j-th and k-th vectors. Figure 2 shows
that the irrelevance between the vectors Λi and Λj is obviously greater than that between the vectors
Λi and Λk.

Moreover, the component λji of the vector Λj in the subspace perpendicular to Λi is larger than
λki, which is the component of Λk in the subspace perpendicular to Λj. Obviously, the area formed
by the vectors Λi and Λj is larger than that formed by Λi and Λk. Therefore, the area can be used
to describe the irrelevance between two vectors. If this situation is extended to a 3-dimensional or
a higher dimensional space, it can be concluded that the greater the irrelevance of the vectors, the
larger the volume. Therefore, the volume of the formed parallelogram can be used as the criterion for
evaluating the irrelevance of the vectors in the matrix. Consequently, maximization of the volume of
the sensitivity matrix can be used as the criterion for the optimal placement of the virtual masses.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 18 

 

most irrelevant to the i-th vector is selected from among the j-th and k-th vectors. Figure 2 shows that 

the irrelevance between the vectors 𝚲𝑖 and 𝚲𝑗 is obviously greater than that between the vectors 𝚲𝑖 

and 𝚲𝑘.  

Moreover, the component 𝜆𝑗𝑖  of the vector 𝚲𝑗  in the subspace perpendicular to 𝚲𝑖  is larger 

than 𝜆𝑘𝑖, which is the component of 𝚲𝑘 in the subspace perpendicular to 𝚲𝑗. Obviously, the area 

formed by the vectors 𝚲𝑖 and 𝚲𝑗 is larger than that formed by 𝚲𝑖 and 𝚲𝑘. Therefore, the area can 

be used to describe the irrelevance between two vectors. If this situation is extended to a 3-

dimensional or a higher dimensional space, it can be concluded that the greater the irrelevance of the 

vectors, the larger the volume. Therefore, the volume of the formed parallelogram can be used as the 

criterion for evaluating the irrelevance of the vectors in the matrix. Consequently, maximization of 

the volume of the sensitivity matrix can be used as the criterion for the optimal placement of the 

virtual masses. 

 

Figure 2. Schematic diagram of the optimization criterion. 

To meet the two above conditions, the corresponding objective function based on the volumetric 

maximum criterion of the sensitivity matrix can be expressed as: 

𝑓1(𝜋, 𝑚) = 𝑉(𝐑(𝜋, 𝑚)) (8) 

where  𝜋  represents the location layout scheme of the virtual masses, 𝐑(𝜋, 𝑚)  represents the 

structural sensitivity matrix under the corresponding placement scheme of the virtual masses, and V 

represents the volume formed by the column vectors of measurement points in the sensitivity matrix. 

When the sensitivity matrix 𝐑 contains only one vector, V is the length of that vector; when 𝐑 

contains 2 vectors, V is the area formed by two vectors; and when 𝐑 contains three or more vectors, 

V can be understood as the volume or the generalized volume formed by the vectors, and its volume 

can be obtained by Equation (9), where det(𝐑T𝐑) represents the determinant of matrix 𝐑T𝐑: 

𝑉(𝐑) = √det(𝐑T𝐑) (9) 

In the application of this method, if det(𝐑T𝐑) > 0, then the number 𝑛𝑚 of the measurement 

points should meet the condition 𝑛𝑚 ≤ 𝑘𝑛, where k is number of the identified modes and n is the 

number of the substructures. Given 𝐅 = 𝐑T𝐑, then 𝐅 is defined as the Fisher information matrix in 

this method. Therefore, finding the volume of the sensitivity matrix 𝐑 is the problem of finding the 

determinant of the Fisher information matrix 𝐅.  

In the process of optimization, it is actually the process of finding the extreme minimum value 

of the objective function, so Equation (8) can be revised to Equation (10): 

𝑓2(𝜋, 𝑚) = −√det(𝐅) (10) 

Figure 2. Schematic diagram of the optimization criterion.

To meet the two above conditions, the corresponding objective function based on the volumetric
maximum criterion of the sensitivity matrix can be expressed as:

f1(π, m) = V(R(π, m)) (8)

where π represents the location layout scheme of the virtual masses, R(π, m) represents the structural
sensitivity matrix under the corresponding placement scheme of the virtual masses, and V represents
the volume formed by the column vectors of measurement points in the sensitivity matrix. When the
sensitivity matrix R contains only one vector, V is the length of that vector; when R contains 2 vectors,
V is the area formed by two vectors; and when R contains three or more vectors, V can be understood
as the volume or the generalized volume formed by the vectors, and its volume can be obtained by
Equation (9), where det(RTR) represents the determinant of matrix RTR:

V(R) =
√

det(RTR) (9)

In the application of this method, if det(RTR) > 0, then the number nm of the measurement
points should meet the condition nm ≤ kn, where k is number of the identified modes and n is the
number of the substructures. Given F = RTR, then F is defined as the Fisher information matrix in
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this method. Therefore, finding the volume of the sensitivity matrix R is the problem of finding the
determinant of the Fisher information matrix F.

In the process of optimization, it is actually the process of finding the extreme minimum value of
the objective function, so Equation (8) can be revised to Equation (10):

f2(π, m) = −
√

det(F) (10)

3.3. Placement Optimization of Virtual Masses

The variables to be optimized in this paper include the value, the number, and the positions of the
virtual masses. It is difficult to simultaneously optimize three variables of different characters, so they
are optimized separately. Firstly, the sensitivity analysis and error analysis are used to optimize the
value of the virtual mass, and then the positions are optimized. Finally, the number of virtual masses
is discussed.

3.3.1. Preliminary Optimization of the Value of the Additional Virtual Mass

The purpose of adding virtual masses is to improve the sensitivity of the modal information to
local damage. Therefore, the sensitivity analysis of the finite element model is used to determine the
value of the additional masses, and Equation (3) shows that the additional virtual masses may cause
errors of the frequency response. It may in turn result in errors of the identified natural frequency,
thereby reducing the accuracy of the damage identification. Therefore, two factors in the selection of
the virtual masses should be considered: the sensitivity and the frequency identification error.

The influence of the additional virtual mass value on the frequency identification error is studied
by adding mass to the SDOF (single-degree of freedom) structure. The physical parameters of the
structure are assumed as follows: M = 1, K = 1, C = 0. Then the natural frequency of the original
structure ω0 = 1. Measurement error of frequency response are denoted by ∆. When a unit impulse
excitation is applied to the original structure, the acceleration frequency response can be expressed as
Equation (11):

h(ω) =
ω2

ω2 − 1
+ ∆ (11)

Substituting h(ω) into Equation (2), the acceleration frequency response H(ω, m) of the virtual
structure with the additional virtual mass m can be easily obtained, and then the corresponding natural
frequency ωe can be estimated by peak-picking, which is shown in Equation (12):

ωe =

√
1 + m∆

1 + m + m∆
(12)

After adding mass m, the accurate natural frequency ωa is preliminarily estimated using the
stiffness and mass of the structure, which is shown in Equation (13):

ωa =

√
1

1 + m
(13)

The relative error of the estimated natural frequency with respect to the accurate natural frequency
can be expressed by substituting Equations (12) and (13) into Equation (14):

δ =
ωe −ωa

ωa
(14)

By considering an example value ∆ = 0.1, the curve of the estimated relative error of the natural
frequency of the SDOF system with the additional virtual mass m is drawn in Figure 3. It can be seen
that the frequency identification error increases with the increase of mass.
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In conclusion, from the view of sensitivity analysis, additional masses can improve the sensitivity
of the frequency information to local damage. From the view of errors, the greater the added mass is,
the greater the error of the estimated natural frequency is. Therefore, the choice of the virtual mass
should balance between these two factors, i.e., frequency sensitivity and estimated frequency error.
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3.3.2. Optimization Method for Virtual Masses Placement

There are many algorithms that can solve the considered optimization problem. Often, the PSO
requires fewer parameters to be tuned and it takes less computational effort in comparison to other
meta-heuristic algorithms. The PSO also has the advantages of a fast convergence and an easy
implementation. The discrete PSO algorithm can find the global optimal solution in a straightforward
procedure, and the calculation results are stable. In this paper, the PSO algorithm is modified and
applied for the optimization of virtual masses.

In the PSO algorithm, a search point is treated as a particle that travels through the search
space. Each such particle has its own position and velocity, which are modified in the successive
optimization steps according to the corresponding fitness value. The PSO algorithm takes fitness
function as the criterion to evaluate the quality of the solution in the process of searching for the
optimum. Therefore, the selection of the fitness function directly affects the determination of the
optimal solution. The optimization criterion based on the volumetric maximum of the sensitivity
matrix ensures the maximum irrelevance between the sensitivity information of each measurement
point by maximizing the volume of the sensitivity matrix, so that it contains as much information
as possible.

The PSO algorithm with a linearly decreasing inertial weight is applied in this paper, and the
iterative velocity update equation is as follows:

vt+1
id = wvt

id + c1r1
(

pt
id − xt

id
)
+ c2r2

(
pgd − xt

id

)
(15)

where w is the inertial weight, vt
id is the velocity in the d-th dimension of the i-th particle during the t-th

iteration; c1 and c2 are the acceleration coefficients (usually positive constants); r1 and r2 are random
numbers uniformly distributed on [0,1]; pt

id is the position in the d-th dimension of the past individual
best point of the i-th particle during the t-th iteration; pgd is the position in the d-th dimension of the
best global extremum point (of the entire particle swarm).

The standard PSO algorithm is mainly applied to the optimization problem of continuous space
functions. In this paper, the optimization problem of virtual mass placement is how to choose nm

positions from N possible positions, which is a discrete problem. Therefore, this paper uses the discrete
PSO algorithm to optimize the virtual mass placement [31]. The velocity update equation of the
discrete binary algorithm is the same as in the original PSO algorithm, but the position update in this
method is different and should be studied.
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The location of the virtual masses is encoded in the binary code, and xt
i indicates the position

of the i-th particle in the t-th generation. Each xt
i represents a solution to the optimization problem,

xt
i =

{
xt

i1, xt
i2, . . . , xt

iN
}

, where N is the number of possible positions. If xt
ij = 0, the i-th particle does not

arrange the virtual mass at the j-th position in the t-th iteration. Otherwise, when xt
ij = 1, it indicates

that the j-th position is used to place the virtual mass. The velocity vt
ij represents the probability that

the j-th binary bit is 1, therefore it is mapped to the interval [0,1]. The mapping method generally uses
the sigmoid function as shown in Equation (16):

s(vid) =
1

1 + exp(−vid)
(16)

where s(vid) is the probability that the position xid equals 1. In the traditional PSO algorithm, the
selection of xid is based on Equation (17):

xid =

{
1 if rand( ) ≤ s(vid)

0 otherwise
(17)

where rand( ) is a random number uniformly distributed in [0,1]. However, the number of selected
positions obtained this way (that is, the number of 1 s) is possibly not equal to the required number nm.
In this paper, the above methods is modified by ranking the difference value between s(vid) and the
vector of all N random numbers rand( ) from large to small, and assigning 1 to the largest nm of them,
so that always exactly nm measurement points are selected to place the virtual masses. As shown in
Equation (18):

xid =

{
1 if R(s(vid)− rand( )) ≤ nm

0 otherwise
(18)

where R(·) represents the position number of the argument in the list of all arguments sorted in the
descending order. For example, let zi = s(vid)− rand( ), the variables z1, z2, . . . , zN are sorted in the
descending order, and R(zi) is the position of zi in the sorted list.

The main steps of discrete PSO algorithm is as follows:

(1) Set algorithm parameters;
(2) Initialize the position and the velocity of all particles. The position of each particle x0

ij is randomly

generated to be 0 or 1, where i = 1, 2, . . . , N and i = 1, 2, . . . , N and N is the number of particles
in the swarm. The velocity of the particle is generated as a random number between 0 and 1;

(3) Calculate the fitness value of each particle in the population, and compare the particle fitness
value with its individual best value Pi. If it is better than Pi, then store the current position as Pi;

(4) Compare the best individual extremum value Pi with the global extremum value Pg. If it is better
than Pg, it is stored as an updated value of Pg;

(5) Update the velocity and the positions of the particle. The velocity of the particle can be updated
according to Equation (15), and s(vid) can be calculated from Equation (16). The positions with
the first nm maximum differences between s(vid) and rand( ) are be selected to place the virtual
mass (Equation (18)), that is the corresponding bits are set to 1, while the others remain 0;

(6) Stop the operation when the number of iterations reaches a pre-set maximum number of iterations,
and output Pg and the corresponding fitness value, otherwise go to step 3.

3.3.3. Determination of the Number of the Virtual Masses

The number of the virtual masses affects the accuracy of damage identification, so it is determined
by analyzing and comparing the accuracy of the identified structural damage. The specific method is
introduced in the numerical simulation.
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4. Numerical Simulation

4.1. A Simply Supported Beam

A simply supported beam is used to verify the effectiveness of the proposed virtual mass
optimization method, see Figure 4. The span of the simply supported beam is 1 m, the width of
the section is 0.05 m, the thickness of the section is 0.005 m, the elastic modulus of steel used in the
structure is 2.1× 1011 Pa, and the density of steel is used as 7.85× 103 kg/m3. The structure is divided
into 20 finite elements. As shown in Figure 4, there are 19 vertical DOFs for candidate position of
virtual mass, which are numbered as 1–9.
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Figure 4. Finite element model of simply supported beam.

The structure is divided into 10 substructures, each substructure contains two finite elements.
Structural damage is considered as follows: Substructure 3 and substructure 8 are damaged
simultaneously, and their stiffness decreases by 20% and 30%, respectively. This damage scenario can
be expressed as µ3 = 0.8, µ8 = 0.7.

Firstly, sensitivity analysis and frequency error analysis are used to preliminarily determine the
value of the virtual masses. Then, an example of eight virtual masses placement is analyzed, and the
improved discrete PSO algorithm is used to search for the optimal positions of virtual masses. Finally,
the influence of the number of the masses on the variance of the identified damage factors is studied
under 10 groups of noise, and the number of virtual masses is determined.

4.1.1. Determination of Virtual Masses Value

The influence of sensitivity and frequency identification error should be considered in determining
the value of virtual masses.

Firstly, relative sensitivity analysis of the simple supported beam model shown in Figure 4 is
performed. Different virtual masses are added to an arbitrary node of the structure (the 6th position is
taken here as an example). By using Equation (5), the relative sensitivity of the first natural frequency of
the structure with different virtual masses is obtained, and the result is shown in Figure 5. The relative
sensitivity of the first natural frequency increases with the increase of the additional virtual mass.
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Figure 5. Relationship between the relative sensitivity of the first natural frequency and the
additional mass.

The simply supported beam structure used in this paper is a multi-degree freedom (MDOF)
system, and the relationship between the frequency identification error of the SDOF system and the
additional virtual masses shown in Figure 3 is no longer applicable to the model. For the simply
supported beam shown in Figure 4, the virtual masses are added to the 6th node of the structure,
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and the variance of the identified natural frequency is calculated after applying 20 groups of noise
(5% white noise) on the test frequency response. After the structure is attached with different virtual
masses, the variance of the identified natural frequency is shown in Figure 6. It shows that the error of
the identified natural frequency increases as the virtual mass increases. When the mass is about 3 kg,
the variance of the identified natural frequency is still relatively small, and the relative sensitivity is
already high, so the virtual mass value is selected to be 3 kg.
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Figure 6. Variance of the identified natural frequency under different virtual mass.

4.1.2. Virtual Masses Placement Optimization Using PSO Algorithm

The following presents the arrangement optimization of the virtual mass locations for 3 kg virtual
mass. Firstly, the sensitivity matrix of the structure is calculated by Equation (5). Then the sensitivity
values of the first 3 natural frequencies with respect to the damage factors of the 10 substructures are
calculated when successively placing 3 kg mass in the 19 vertical DOFs. Finally, the sensitivity matrix
is obtained according to Figure 1.

The basic parameters of the PSO algorithm are shown in Table 1. Due to the randomness of the
method, the optimization results might be different each time. In this paper, four random trials have
been carried out and the results are shown in Table 2:

Table 1. PSO Algorithm Parameter Settings.

Population
Size

Particle
Dimension

The Maximum
Number of
Iterations

Inertia Factor Learning Factor Random Number Particle Velocity

wmax wmin c1 c2 r1 r2 vmax vmin

40 19 100 0.9 0.4 1.496 1.496 [0–1] [0–1] 4 4

Table 2. Random optimization results of discrete PSO.

Random Test Number The Optimal Value Optimal Fitness Value Optimization Time

1~4 times 1, 3, 5, 8, 13, 15, 17, 19 −0.022 0.697 s~1 s

It can be seen from Table 2 that the optimized placements of the virtual masses and the best
fitness values (Equation (10)) obtained in the 4 tests are exactly the same, but the optimization time
differs slightly. To represent the iterative process of a particle, the relationship between the number
of iterations and the fitness value for a test particle is drawn in Figure 7. The position distribution
diagram of the eight measuring points in the optimized placement is shown in Figure 8. In Figure 7,
the fitness function value decreases as the number of iterations increases. Past the 40th iteration, the
fitness function value remains stable and no longer changes, which indicates that the improved PSO
algorithm has converged. As seen in Table 2, the optimal values and the fitness values obtained in four
random trials are identical, which indicates that the algorithm has found the global optimal solution,
and thus proves the feasibility and efficiency of the improved PSO algorithm again. It can be seen from
Figure 8 that the optimized positions of the measurement points are quite evenly dispersed, and the
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left and right symmetrical distribution form is centered on the mid-span, indicating that the results
obtained by the PSO algorithm based on the maximum of the sensitivity matrix volume are reasonable.Sensors 2018, 18, x FOR PEER REVIEW  12 of 18 
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The proposed algorithm required only 1 s to complete the search on a typical desktop hardware
configuration. The discrete PSO algorithm can find the global optimal solution easily, and the
calculation results are stable.

4.1.3. Damage Identification

The excitation shown in Figure 9a is used to apply an impulse load. The load duration is 5 ms
and the sampling frequency is 5000 Hz.
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The influence of 5% white noise is considered. The excitation is applied to the 6-th position,
and the corresponding acceleration response is shown in Figure 9b.

(1) Identification of the Natural Frequency with Added Virtual Masses

If the number of the added virtual masses is six, the positions can be optimized by the improved
PSO algorithm, which is {1, 3, 8, 12, 17, 19}. The impulse excitation as shown in Figure 9a is applied to
these six DOFs, and the acceleration responses in the same DOFs are calculated. The excitation and the
response containing 5% noise are substituted into Equation (3), and the amplitude of the frequency
response of each DOF is calculated after adding 3 kg of virtual mass. By using the Fourier transform
and extracting the peak value, the first three natural frequencies of each DOF with added mass are
obtained, as shown in Table 3. The finite element frequencies of the theoretical undamaged model after
adding mass are shown in Table 4.

Table 3. First identified three natural frequencies when six virtual masses are arranged on the damaged
structure/Hz.

DOF 1 3 8 12 17 19

First natural frequency 3.900 3.899 3.900 3.899 3.899 3.899
Second natural frequency 23.899 24.099 23.900 24.300 24.399 24.099
Third natural frequency 91.298 90.498 91.098 91.098 91.398 90.798

Table 4. First three theoretical frequencies when six virtual masses are added to the undamaged finite
element model/Hz.

DOF 1 3 8 12 17 19

First natural frequency 3.899 4.199 4.000 3.999 3.900 3.899
Second natural frequency 23.900 23.999 23.899 23.899 24.399 24.399
Third natural frequency 92.398 92.398 92.398 92.398 91.898 92.498

(2) Damage Identification

The objective function for damage identification is easily built using the natural frequencies
identified with added virtual masses and the frequency of the corresponding theoretical finite element
model. The result of damage identification is shown in Figure 10, in which the abscissa is the
substructure number and the ordinate is the damage factor.
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The optimized virtual mass placement obtained by the discrete PSO algorithm can accurately
identify the damage location and damage extent. Even in the case of 5% measurement noise,
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the identification results maintain good accuracy. The optimized arrangement scheme obtained
by the discrete PSO algorithm based on the maximum volume of the sensitivity matrix is used for
damage identification. Damage identification errors of substructure 3, substructure 8 and substructure
10 are 2.68%, 0.5% and 4.08%, respectively. This method has a high computational efficiency and can
find the global optimal solution with a great probability. Moreover, the results fully meet engineering
accuracy requirements.

4.1.4. Determination of Virtual Masses Quantity

When different number of virtual masses is placed on the beam, the identified results are different,
as shown in Figure 11. It can be seen from Figure 11 that the larger the number of the virtual masses is,
the closer the identified damage factor approaches the theoretical value. The identification error is the
largest when four masses are arranged, and it decreases gradually with the increase of the number of
virtual masses.
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Then, in the case of applying 10 groups of noise (5% white noise), when 4–10 virtual masses are
optimally placed, the variance results of the damage factors are shown in Figure 12.
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The variance of the damage factors decreases with the increasing number of the virtual masses.
When there are more than six masses, the variance of the damage factors tends to be stable and
fluctuates only slightly. Overall, the number of the virtual masses is selected as six, the mass value is
3 kg, and the optimized placement is {1, 3, 8, 12, 17, 19}.
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4.2. A Truss Structure

Figure 13 shows a truss structure model consisting of 15 members and nine nodes. The length of
every member is 3 m, the height of the truss is 2.6 m, the elastic modulus of the rod is 2.0× 1011 Pa,
the density is 7.8× 103 kg/m3; the members are round steel tubes, the diameter of the steel tubes is
0.1 m, and the wall thickness is 0.05 m. Each member of the truss structure is a single element, so there
are 15 elements and 15 DOFs.
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Figure 13. Truss structure model.

Figure 13 shows the numbers of elements and DOFs. It is assumed that the members numbered
2 and 13 are damaged, and the damage factors are 0.6 and 0.7, respectively. The first four natural
frequencies of structure with added masses are used as the basis for damage identification. The natural
frequencies of the original structure and the damaged structure are shown in Table 5:

Table 5. The first four natural frequencies of the undamaged and the damaged structure/Hz.

Frequency Order 1 2 3 4

Undamaged structure 37.7299 65.6261 120.2154 192.8448
Damaged structure 34.9979 63.8086 119.3401 188.4917

Firstly, the additional virtual mass of this truss structure is determined to be 200 kg based on
the structural sensitivity analysis. The truss structure has a total of 15 DOFs, and they are all used as
candidate positions for additional masses. Seven cases are considered by adding 4–10 virtual masses
in the structure. The improved PSO algorithm is used to determine the optimum placements of the
virtual masses, which are shown in Table 6.

Table 6. Number and optimized locations of additional virtual masses.

Case Number Locations

1 4 7,8,9,13
2 5 7,9,10,13,15
3 6 7,8,9,13,14,15
4 7 7,9,10,11,13,14,15
5 8 7,8,9,10,11,13,14,15
6 9 1,7,8,9,10,11,13,14,15
7 10 1,5,7,8,9,10,11,13,14,15

The basic parameters in the PSO are the same as in Section 4.1.2. From the optimized results,
all cases include lateral DOFs and longitudinal DOFs, and the positional arrangement is relatively
scattered, which seems reasonable as assessed using the engineering common sense.

Numerical simulations are performed for each of the seven cases listed in Table 6, and 5% white
noise is considered in dynamic simulation. The natural frequencies of the damaged structure with
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added virtual masses are used for damage identification, and the identified damage factors are shown
in Figure 14.
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It can be seen from Figure 14, that when only four masses are added to the structure, there are
some relatively large errors in the results of damage identification. This is because once a mass is
added, four natural frequencies can be obtained. Therefore, four masses correspond to 16 natural
frequencies used for damage identification. However, the structure has a total of 15 damage factors to
be identified, and 15 parameters cannot be identified accurately by using only 16 natural frequencies
due to the influence of measurement noise. When five masses are added to the structure, the damage
can be relatively accurately localized. As the number of the added masses increases, more frequency
information can be obtained, and the accuracy of damage identification is relatively high. When
the number of the added masses is greater than seven, the identified damage factors have a slight
fluctuation, but tend to be stable. The identified damage factors are very close to the actual values,
which is enough to meet the engineering accuracy.

5. Conclusions

This paper proposes an optimal placement method of virtual masses for the purpose of damage
identification. Firstly, a specific form of the sensitivity matrix is established, which is more conducive
to the analysis of the correlation between points. Then, an optimization criterion called Volumetric
Maximum Criterion is proposed, which is based on the volumetric maximum of the sensitivity matrix.
This criterion promotes sensitivity matrices (and the corresponding placements) that contain more
information that can be used to identify structural damage. Thereupon, an improved version of the
PSO algorithm is proposed for optimization. Finally, the optimal placement of virtual masses is verified
in numerical examples of a simply supported beam and a truss structure. It can be concluded that:

1. The Volumetric Maximum Criterion uses volume to quantify the information contained in
the sensitivity matrix. It can ensure that the sensitivity matrix contains as much sensitivity
information as possible, thereby ensuring the accuracy of damage identification;

2. The improved PSO algorithm is accurate and efficient for optimization of virtual mass placements,
and it can find the global optimal solution;

3. A method of sensitivity analysis and error analysis is proposed and discussed for the purpose of
determination of virtual mass value. The method guarantees that natural frequencies used for
damage identification have high sensitivities to damage and a small identification error;

4. The problem of optimal sensor placement is similar to the optimal arrangement of virtual masses,
so the basic theory of the proposed methods in this paper, including the arrangement of sensitivity
matrix, Volumetric Maximum Criterion and improved PSO algorithm, can be studied further for
optimal sensor placement of modal identification.
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