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Abstract

Bat-pollinated flowers have to attract their pollinators in absence of light and therefore some

species developed specialized echoic floral parts. These parts are usually concave shaped

and act like acoustic retroreflectors making the flowers acoustically conspicuous to the bats.

Acoustic plant specializations only have been described for two bat-pollinated species in the

Neotropics and one other bat-dependent plant in South East Asia. However, it remains

unclear whether other bat-pollinated plant species also show acoustic adaptations. More-

over, acoustic traits have never been compared between bat-pollinated flowers and flowers

belonging to other pollination syndromes. To investigate acoustic traits of bat-pollinated

flowers we recorded a dataset of 32320 flower echoes, collected from 168 individual flowers

belonging to 12 different species. 6 of these species were pollinated by bats and 6 species

were pollinated by insects or hummingbirds. We analyzed the spectral target strength of the

flowers and trained a convolutional neural network (CNN) on the spectrograms of the flower

echoes. We found that bat-pollinated flowers have a significantly higher echo target

strength, independent of their size, and differ in their morphology, specifically in the lower

variance of their morphological features. We found that a good classification accuracy by

our CNN (up to 84%) can be achieved with only one echo/spectrogram to classify the 12 dif-

ferent plant species, both bat-pollinated and otherwise, with bat-pollinated flowers being

easier to classify. The higher classification performance of bat-pollinated flowers can be

explained by the lower variance of their morphology.
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Author summary

Bats orient and forage by night relying on their biosonar system. Consequently, some

plant species that are pollinated by bats evolved echo acoustic signals to attract their noc-

turnal pollinators. Only few of the more than 400 bat-pollinated neotropical plants have

been studied in this regard and it remained unclear if bat-pollinated flowers share general

echo acoustic adaptations and differ acoustically from flowers that are pollinated by other

animals (e.g. birds, insects). In our study we directly compare the acoustics and morphol-

ogy of flowers from plants belonging to different pollination syndromes. We compared

six species pairs from different families and for each species we collected 14 individual

flowers. With an automated ensonification setup we measured the echoes from 202 posi-

tions around the opening of each flower. We also took morphological measurements of

each flower. We found that the acoustic reflectivity of the flowers, measured as target

strength, was higher for bat-pollinated flowers irrespective of their size. To understand if

flowers have species-specific acoustic signatures we trained a convolutional neural net-

work to classify flowers by their echoes. We show that a high classification performance

can be achieved already with a very limited number of echoes and that bat-pollinated

flowers tend to be easier to classify. Our study not only provides new insights into the

acoustics of floral signals but also is relevant from a signal processing point of view as we

demonstrate how complex objects can be characterized with a very limited amount of

acoustic data.

Introduction

The more relevant information about the environment an animal can extract from the contin-

uous sensory information flow, the better and more efficiently it can navigate, and the more

resources it may access [1]. This applies to visual information but also to other perceptual

modalities as animals largely benefit from information acquired through all sensory channels.

In order to obtain relevant information, the stream of information is filtered, evaluated and

compared with known sensory templates. This is commonly referred to as a classification task

[2]. Besides classification, it might also be informative to assess how certain variables in the

stream of information change over time. In the case of a nectar-feeding bat searching for flow-

ers, this stream of information will not only consist of visual [3] and olfactory information [4]

but also of echo acoustic information. The latter is particularly important for detection but

also during the approach of flowers [5–8]. It has been debated to which extent plant and flower

echoes contain information about the physical form [9,10] and whether echolocating bats can

identify and classify plants and flowers by their echoes alone [9,11,12].

Insectivorous bats are able to detect and categorize flying insects echo-acoustically by evalu-

ating small modulations in the amplitude and frequency domain of an echo called “acoustic

glints”. These glints are caused by reflections of the impinging sound waves at the fluttering

wings of flying insects [13–15]. Similarly, it has been shown for nectar-feeding and omnivo-

rous phyllostomid bats that they can classify and categorize objects of different form indepen-

dent of their size, which implies that they are capable of acoustic generalizations of objects

(Glossophaga soricina [16]; Phyllostomus discolor [17]. Such capabilities were further con-

firmed by neurophysiological studies (Phyllostomus discolor [18]). Those bats are able to cor-

rectly classify different degrees of “impulse response roughness” in the echoes of ultrasound

calls reflected by different types of trees (e.g. deciduous trees and conifers; [19]). Impulse
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response roughness is an echo feature that describes the time/amplitude structure of a reflected

signal. A time signal with equally high, closely spaced peaks (as expected from conifers for

example) would be regarded as smooth, whereas a signal with peaks of different height and

larger spaced peaks (as expected from deciduous trees) is coarse. Moreover, echo-acoustic

measurements of trees and shrubs show that their echoes are complex and highly variable [12].

Echo-acoustic classification based on the magnitude of the echoes’ spectrograms, a feature

obviously perceived by bats, are thus likely to permit species-specific assignment [11]. Being

able to acoustically recognize and categorize plant species might be beneficial for insectivorous

bats as they can be used as landmarks [20] and/or to select feeding sites. For nectarivorous and

frugivorous bats, however, recognizing plants by their echoes is of paramount importance as

they are their primary food source. There is some evidence that characteristic differences in

flower morphology lead to distinctive echoes [9] which could be recognized by bats. Moreover,

for two plant species it was shown that they have specialized reflective floral parts which make

the flowers acoustically conspicuous and facilitate detection [5,7]. Nectar-feeding bats foraging

on these flowers depend on these signals and have difficulties to find flowers when these sig-

nals are missing [5]. This raises the question why there are not more bat-pollinated plant spe-

cies that developed floral acoustic adaptations. Moreover, how do echo features of bat-

pollinated flowers compare to echo features of flowers belonging to other pollination syn-

dromes such as entomophilous (insect-pollinated) or ornithophilous (bird-pollinated)

flowers?

To approach these questions, we conducted a series of morphological and echo acoustic

measurements of 168 flowers from 12 different neotropical plant species belonging to 6 differ-

ent families. For each family we chose a bat-pollinated and a hummingbird- or insect- polli-

nated plant that were both flowering sympatrically. We acquired echo recordings of these

flowers, from different angles, and analyzed their spectral target strength for different fre-

quency bands. We trained a deep learning classifier (a convolutional neural network, CNN)

with echo spectrograms of the flowers and classified a test set of flower echoes. We predicted

that echo-acoustic properties (such as target strength) of bat-pollinated flowers differ from

those of flowers belonging to other pollination syndromes and that bat-pollinated flowers are

easier to classify.

Results

The flowers we investigated differed considerably in size and form and consequently showed

differences in their spectral directional characteristics (Fig 1). Bat-pollinated flowers did not

share a common spectral signature or a feature that was different from that of flowers not polli-

nated by bats. We took different morphological measurements of each of the flowers such as

the length of the corolla, the length of the calyx, and the inner as well as outer diameter of the

flowers opening in the horizontal and vertical plane. With these measurements, we estimated

the surface area of the flowers and compared them to the average target strength of the direc-

tional spectra. The surface area of the flowers had an influence on overall target strength, TS

(40 kHz—160 kHz). Flowers with larger surface area had a higher mean target strength

(y = 3.488 ln (x) - 32.422; F1,166 656.6; R2 = 0.797; p< 0.0001; Fig 2A). A linear mixed effect

model including an interaction between surface and pollination explained more of the vari-

ance in overall target strength than a model with only surface as fixed factor (LMM plant fam-

ily as random factor, χ2(2) = 113.29, p< 0.0001). After removing the effects of flower surface

area, bat-pollinated flowers had a significantly higher overall TS than insect- and bird-polli-

nated flowers (Independent samples T-test with residuals: t = 4.716, df = 122.64; p< 0.0001,

Fig 2B). The influence of the surface area on the overall target strength was also evident when
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Fig 1. Images and directional spectra of flowers from 6 different plant families. As a visual representation of the

flowers’ echo characteristics, the echo spectra were plotted over the angle of sound incidence, which resulted in spectral
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different frequency bands were analysed separately (see S1–S4 Figs). Interestingly, the overall

TS values for all flowers of Macrocarpea macrophylla for the highest frequency band formed a

cluster and had values well above the predicted values for this flower size (average residual 5.0

dB ± 0.6).

In addition to size, flower shape had a major influence on the directional spectra. Similar-

shaped flowers, whether on the species or the individual level, had similar directional spectra.

For example, all bell-shaped flowers (Macrocarpaea macrophylla, Symbolanthus calygonus,
Merinthopodium neuranthum, Crecentia cujete, Paragonia pyramidata and Cobaea scandens)
shared similar patterns in their directional spectra (Fig 1). They were characterized by frequent

occurrence of interference patterns, i.e. reinforced frequencies in close vicinity to cancelled fre-

quencies. The positions of these interference patterns within the spectrograms varied strongly,

depending on the angle of sound incidence. This, in turn, resulted in a “spotted” pattern of the

directional spectral plot. Moreover, it revealed that there is a relation between the size of the

bell-shaped flowers and the occurrence of interferences (left column of Fig 1, Gentianaceae,

Solanaceae, Bignoniaceae, Polemoniaceae; flowers in this column are arranged in from

directional plots. The angle of sound incidence represented the position from which the echo was acquired, 0˚

represents the opening of the flower, 90˚ represents the side, images were taken from 45˚. The target strength, or echo

intensity, is given in a colour gradation (see colour bar below). The images and directional spectra on the left are from

the chiropterophilous plant species, at the right, the flowers are from insect- or bird-pollinated species, as indicated by

the white symbols in the images. The bar in the upper left image represents 10 mm, all flower images are on the same

scale.

https://doi.org/10.1371/journal.pcbi.1009706.g001

Fig 2. Overall target strength of flowers compared to their surface area and pollination syndrome. (a) Dependence of the overall spectral target strength of a broad

frequency band (40–160 kHz) on the flower surface area. Bat-pollinated species are indicated with circles with black filling. Bt = Burmeistera tenuiflora, Cc = Condaminea
corymbosa, Cj = Crescentia cujete, Cq = Cantua quercifolia, Cc = Centropogon costaricae, Cs = Cobaea scandens, Mm =Macrocarpea macrophylla, Mn = Merinthopodium
neuranthum, Pg = Palicourea guanensis, Pp = Paragonia pyramidata, Sc = Symbolanthus calygonus, Ws = Witheringia sp. (b) Residuals in target strength from the

estimated linear model (see regression line in A) for flowers grouped by their pollination syndrome. The category ‘other’ contains insect- and bird-pollinated flowers.

https://doi.org/10.1371/journal.pcbi.1009706.g002
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smallest to largest). The larger the flower, the more interferences occurred. This led to a more

blurred or noisier appearance of the directional spectral plots.

Morphological flower features

For all individual flowers we deduced morphological features, such as length of the corolla and

calyx, depth, and inner and outer diameter of the corolla in the horizontal as well as in vertical

plane. As the flowers from different species differed considerably in size, we chose the coeffi-

cient of variation (cV) for an interspecific comparison of variability for different morphological

features. cV is the ratio of standard deviation (σ) to the mean (μ), and hence is dimensionless.

cV ¼
s

m
ð1Þ

To quantify the morphological variation within the 14 flowers we collected for every spe-

cies, we determined the cV for each of the morphological features, such as length of corolla,

length of calyx, depth, and inner as well as outer diameter of the flowers opening in the hori-

zontal and vertical plane. In all taxa, coefficients of variation were always higher for insect- and

bird-pollinated species than for bat-pollinated species (Fig 3).

The cV of bat-pollinated flowers was significantly lower than the cV of insect- and bird-polli-

nated species (Linear Mixed Model [LMM] with pollination syndrome as fixed factor and

plant family as random factor, χ2(1) = 24.085, p< 0.0001). The mean cV of bat-pollinated flow-

ers was 0.08 whereas flower morphology of insect- and bird-pollinated species was more vari-

able, as revealed by a cV of 0.16.

Classification with a convolutional neural network

Our CNN classifier was evaluated on a testing set derived from individual flowers which had

not been used at any point in time during training (Fig 4A). In all cases models trained on

Fig 3. Coefficients of variation for the different morphological flower features for twelve plant species from six different

families. Orange: bat-pollinated species. Petrol: bird-or insect-pollinated species. For each species, the coefficients of

variation of the length of the corolla, the length of the calyx, and the inner as well as outer diameter of the flowers opening (in

the horizontal and vertical plane) was calculated.

https://doi.org/10.1371/journal.pcbi.1009706.g003
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echoes sampled randomly performed better than respective implementations trained with the

interval sampling, especially when classifying between 3 to 7 echoes, with 10 echoes the differ-

ence being negligible. The CNN was generally able to distinguish between any of the 12 classes

well. Across the different number of inputs classification performance of plant species based

on the echoes was between 84 and 98%. There was a positive correlation between the number

of inputs and classification accuracy, with the largest gain when increasing the number of

Fig 4. Echo classification using convolutional neural networks. (a) Architecture of the neural network. (b) Results of the CNN model on two different

iterations of the data and different amounts of echoes as the input. (c) The confusion matrix of a trained 10-input CNN on the testing set.

https://doi.org/10.1371/journal.pcbi.1009706.g004
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echoes from 1 to 3. When the input to the CNN was just a single echo, the classification accu-

racy was 84%, and rose as high as 98% with 10 echoes (Fig 4B).

The classifier’s confusion matrix (Fig 4C) showed some compelling characteristics. The

convolutional neural network performed considerably better in recognizing classes represent-

ing species pollinated by bats, than those pollinated by insects and hummingbirds, and this dif-

ference showed especially in earlier stages of training. When evaluated on 10 echoes the

species classification accuracy for bat and non-bat-pollinated flowers was as follows: After 10

epochs 73% for bat-pollinated and 51% for non-bat-pollinated (95% confidence intervals,

using binomial method for classification correct detection rate [21]: 69.3–77.5% versus 46.9–

55.9%). After 40 epochs 97% for bat-pollinated and 93% for non-bat-pollinated (confidence

intervals 95.8–99.0% versus 91.1–95.7%). The network’s convergence depends on amount of

inputs and takes longer the more inputs are processed simultaneously. With 1–5 inputs, the

network achieved good results only after approximately 20 epochs, and around 40 epochs with

10 inputs.

Discussion

Nectar-feeding bats have to find and revisit hundreds of flowers every night to fulfil their ener-

getic needs. Species-specific acoustic information may help them to decide which flowers they

should exploit. It will facilitate recognition of suitable, bat-pollinated and thus nightly nectar

secreting flowers. Moreover, species-specific echo sequences will inform the bats about flower

morphology and how to get to the nectar. Therefore, acoustic information on floral shape, in

addition to the olfactory and visual cues, provides crucial support for efficient foraging.

How much information do nectar-feeding bats acquire during their

approach?

Nectarivorous and frugivorous phyllostomid bats emit echolocation signals during search

flight at a rate of 15 ± 5 calls per second, which increases up to 32 ± 11 calls per second when

approaching a target [22,23]. Our own observations with the species Glossophaga soricina
showed that during behavioural experiments, when bats had to accomplish echo-acoustic dis-

crimination tasks, repetition rate increases to up to 51 calls per second. As flying bats continu-

ously change their position between echolocation call emissions they will receive target echoes

from many different directions. Moreover, bats are known to investigate flowers of interest by

hovering briefly in front of them [6]. They may actively acquire important echo information

from the respective object and are likely to perform an “auditory scene analysis” where echo

information is integrated over several calls [24]. Thus, spectral information similar to the

information of the directional spectra, which consisted of 101 single spectra acquired from dif-

ferent directions (Fig 1), should be available to the bats within 2 to 3 seconds of an approach

flight assuming repetition rates of 32 to 51 calls per second.

Such an “auditory scene analysis” can be based on different echo features, but is a spectro-

gram based auditory scene, like we assumed it for our CNN, realistic? Bats are able to deduce

many aspects of the impulse response from the echoes and thus can use highly resolved tempo-

ral information i.e. range profile information [25]. Bats can clearly perceive spectral echo

information [26], and they are known to use both spectral and temporal information [27,28]

and may have spectrogram-like representations [10]. This is supported by many target dis-

crimination tasks where spectral echo information was found to be a decisive cue for bats

[16,26,29–33]. Moreover, our results suggest that spectral echo sequences acquired from differ-

ent directions are particularly informative, and even single flower echoes or small sequences

contain species-specific information.
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Are echoes of bat-pollinated flowers louder?

After removing effects of flower surface area, we found a higher overall target strength for bat-

pollinated flowers than for flowers pollinated by insects or birds. The maximum distance at

which an object can be detected echo acoustically by a bat depends on the target strength of

the object [34]. Increased target strength of bat-pollinated flowers will increase echo acoustic

detection distance. Furthermore, separation of target echoes and clutter echoes should also be

favoured when the target echo is of higher intensity. What could be the reason for the

increased target strength of bat-pollinated flowers? Sound waves are reflected at the border of

two media, for example at the border between water and air. In case of flowers it would be the

border of air and the waxy cuticle of the flowers’ petals. Sound waves will be mainly reflected

when the two media have different acoustic impedances [35,36] and will enter the medium if

the acoustic impedances are equal or similar. The greater the difference in acoustic impedance

of the two media, the greater is the magnitude of the reflected echo [35]. The acoustic imped-

ance is determined by the product of speed of sound and the density of the medium, thus the

magnitude of the reflected echo (i.e. target strength) increases when density of the medium

increases. The stiff and waxy surfaces of many bat-pollinated flowers [37,38] might be an adap-

tation to increase density and thereby their acoustic impedance with respect to the acoustic

impedance of air. This would be a mechanism to enhance flowers’ target strength and increase

their echo acoustic detection distance.

Bat-pollinated flowers show less variance in their morphological features than entomophi-

lous or ornithophilous flowers. Although the present study, with a total of 32320 flower echoes,

from 168 individual flowers, is one of the most extensive studies on echoacoustic adaptions of

flowers, the amount of species covered is still rather limited (n = 12). However, as we consis-

tently found a more conserved flower morphology and a better classification performance by

our CNN for bat-pollinated flowers, we suggest that the conserved flower morphology is an

acoustic adaption. Conserved morphology will lead to less variant echo characteristics, which

in turn favours classification performance. To test if the lower variance in morphological fea-

tures is directly resembled in a lower variability of echo features we determined the coefficient

of variation (cV) for the target strength (TS) values of the different frequency bands.

We found that the cV of the TS of bat-pollinated flowers was significantly lower than the cV
of the TS of insect- and bird-pollinated species (Linear Mixed Model [LMM] with pollination

syndrome as fixed factor and plant family as random factor, χ2(1) = 33.821, p< 0.0001, Fig 5).

This indicates that a high morphological variance is directly related to higher acoustic vari-

ance. An explanation could be that bird- or insect-pollinated flowers are less constrained

regarding their morphology as they lure their pollinators by conspicuous colours and slight

differences in morphology will not influence their detectability. For bat-pollinated flowers the

morphological fit between pollinator and flower is more important, moreover, the lower mor-

phological variance facilitates echo acoustic detection.

Our deep learning study is in a similar spirit as prior work which used machine learning to

classify objects based on their acoustic reflections. Support vector machines (SVM) have been

used to classify plants [11], and multi-layer perceptron (MLP) to classify Platonic shapes [39].

In these prior works, the acoustic excitations were bat-inspired but synthetic frequency sweeps,

whereas we used recorded bat echolocation calls (synthetically, via impulse responses). Per-

haps more importantly, our deep learning method has a particular advantage over the machine

learning algorithms previously used: a CNN can use a high-dimensional “image” such as an

echolocation spectrogram as direct input to the algorithm, and does not require the data to be

preprocessed by feature extraction or dimension reduction. The machine learning algorithm is

thus able to make use of subtle discriminative cues in the signal which might otherwise be
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discarded. Further, we designed a custom CNN architecture that integrates the information

from multiple echoes processed in parallel, allowing that the information can be combined

holistically and non-linearly to produce the final decision. In these ways, our machine learning

method moves closer to being a proxy for the type of inferences that an echolocating bat may

be making. Moreover, our method might be an approach to classify artificial shapes and

objects. Acoustic reflector shapes inspired by floral reflectors have already been shown to be

useful as sonar landmarks for autonomous navigation [40]. Therefore, our approach might

also be relevant for autonomous systems which are equipped with technical sonar systems.

Our CNN is not directly modelled on biological neural organisation, and the analogy is still

highly heuristic. In particular, our CNN input is simply a set of acoustic echo spectrograms,

presented in parallel, without contextual information such as (relative) angle. Bats do not emit

10 calls at once but in sequence, and may produce/analyse them dependently on each other:

previous echoes can influence the interpretation of the current ones. Bats also presumably

make use of timing and (relative) angle of echoes in their decisions. These observations could

perhaps facilitate future work in implementing an ‘angle aware’ network, which, in addition to

receiving an echo, would receive the angle from which this echo comes from and process the

echoes sequentially (e.g. via a recurrent neural network). The production of further calls, or

even the next choice of observation angle, could depend on the previous measurements. This

online problem-solving setting would then be of the kind studied in reinforcement learning.

These avenues offer future ways to study echolocation as an information-gathering strategy, by

using machine learning to emulate real-time echolocation behaviour.

Materials and methods

Plant species

A total of 168 flowers from six families and twelve species were collected and measured. For

each family, we collected 14 flowers of a bat-pollinated species and 14 flowers of a species

Fig 5. Coefficients of variation of acoustic features of the echoes of flowers from twelve plant species from six different

families. Orange: bat-pollinated species. Petrol: bird-or insect-pollinated species. For each species, we analysed the variation

of the average target strength of four frequency bands for two scans (each with 101 measurements). We analysed a 45 kHz, 68

kHz, 102 kHz and a 153 kHz frequency band. Upper and lower boundary of the bands where ±20% around these centre

frequencies.

https://doi.org/10.1371/journal.pcbi.1009706.g005
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pollinated by insects or birds and we tried to collect flowers not only from one individual plant

but from at least 3 and up to 14 different plants (Table 1). With the exception of the species

pair belonging to the family Polemoniaceae, all pairs of species occurred and flowered syntopi-

cally (in the same habitat). The Polemoniaceae pair flowered sympatrically (in the same geo-

graphic region) around 100 km apart. Flowers were collected in the field, kept fresh with wet

cellulose tissue and brought to the laboratory at nearby field stations for immediate measure-

ment. Studies were conducted at two locations in the mountain rainforest of south-east Ecua-

dor at the Estación Cientı́fica San Francisco (ECSF) situated at 1820 m, halfway between Loja

and Zamora (Longitude: 79˚ 4’41.56”W; Latitude: 3˚58’22.52”S) and in the lowland rainforest

of central Costa Rica at La Selva Biological Station (Organization for Tropical Studies; Longi-

tude: 84˚ 0’12.92”W; Latitude: 10˚25’52.61”S). All experiments were approved by the local

authorities (Ecuador: Ministeria del Ambiente, autorizacion para investigación cientı́fica N.

035-DPA-MA-2012; Costa Rica: Ministerio del Ambiente y Energia, RESOLUCIÓN No 102-

2009-SINAC).

Echo measurements

The setup to measure ultrasonic echoes reflected from targets, here flowers, consisted of two

main components: the biomimetic sonar head (Fig 6A) and the unit where objects could be

fixed and rotated. Both were installed on aluminum guides made out of aluminum profiles

(item Industrietechnik GmbH, Solingen, Germany). To turn the objects and ensonify them

from different directions, we used a high precision stepping motor (Faulhaber GmbH, Schö-

naich, Germany). We used a U-formed metal frame, which allowed fixing the objects from

their hind side and freely adjusting the center of rotation. The high precision stepping motor

was controlled by a computer and turned the flowers in 1.8˚ steps. The biomimetic sonar head

(representing a “bat head”) consisted of a loudspeaker and microphone, which were installed

in a solid aluminum body on a vertical guide (Fig 6B). To mimic the movement of a bat’s head

during approaches to a target, the aluminum body had two fixtures for a microphone to the

left and right (45˚) of the centrally located loudspeaker at a distance of 25 mm between the

centre of the microphone and the centre of the loudspeaker (Fig 6A). For most of the measure-

ments, we only used the right microphone which was a ¼” free-field microphone type 40BF in

combination with the preamplifier 26AB connected to the power module 12AA (all from G.R.

A.S. Sound & Vibration, Holte, Denmark). We used a custom-built EMFit (Electro Mechanical

Table 1. Plant families, species, number of individual plants the flowers were collected from and the corresponding pollinators described in the literature. For each

of the species we collected 14 individual flowers.

Family Species Number of plants Pollinator Literature

Bignoniaceae Crescentia cujete 4 Chiroptera [37]

Bignoniaceae Paragonia pyramidata 3 Insecta/Xylocopa sp. [41]

Campanulaceae Burmeistera tenuiflora 10 Chiroptera [42]

Campanulaceae Centropogon costaricae 9 Trochilidae [43]

Gentianaceae Macrocarpea macrophylla 5 Chiroptera [44]

Gentianaceae Symbolanthus calygonus 14 Trochilidae [45]

Polemoniaceae Cobaea scandens 7 Chiroptera [38]

Polemoniaceae Cantua quercifolia 5 Sphingidae [46]

Rubiaceae Condaminea corymbosa 10 Chiroptera [38]

Rubiaceae Palicourea guianensis 4 Trochilidae [47]

Solanaceae Merinthopodium neuranthum 8 Chiroptera [48]

Solanaceae Witheringia sp. 4 Insecta [49]

https://doi.org/10.1371/journal.pcbi.1009706.t001
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Film) transducer as loudspeaker. The EMFit—transducer and the appropriate amplifier were

built in cooperation with the Department of Sensor Technology at the Friedrich-Alexander

University Erlangen-Nuremberg, Germany. The transducer had a membrane diameter of 16

mm and was supplied with a voltage of U = 600 Vpp. This resulted in sound pressure levels of

approximately 80 ± 6 dB (frequency range: 40 kHz to 160 kHz) at a distance of 1 m. Loud-

speaker and microphone were connected to a multifunction data acquisition (DAQ) device Ni

PCIe-6251 (16 bit, up to 1,25 MS/s) through a BNC terminal BNC-211 0 (both from National

Instruments, Austin, Texas). The DAQ device was integrated into a custom built Mini-ITX PC

(MoDT Flex 945, AOpen, Taipeh, Taiwan) and was controlled by the program ECHOlab ver-

sion 1.0–4.3 (written in LabVIEW by Ralph Simon and Benjamin Fink). The whole setup was

constructed for mobile use during field trips and was run with 12 V or 110–240 V,

respectively.

For the measurements the distance between the front edge of the blossom and the front

edge of the transducer was adjusted to 20 cm. Flowers were fixed at their back with a thin

metal needle. This needle was mounted on the U-shaped holder (see Fig 6B), which was fixed

on the extended axis of a stepper motor that permitted exact and reproducible rotation with

defined increments. As the U-shaped holder was adjustable, the center of rotation for the

objects could be varied. We always chose the front edge of the flowers’ corolla as center of rota-

tion so that the sound propagation direction was perpendicular to the plane of flower opening

(0˚).

We ensonified the flowers with a constantly repeated MLS (maximum length sequence),

which is a periodic pseudorandom binary sequence of zeros and ones (for example:

0001101001110. . .). It is basically a predetermined noise signal and an important property of

any MLS is that its autocorrelation is a very short impulse (Dirac impulse). This means that if

the recorded echo is combined with the original MLS in a deconvolution process (similar to a

cross-correlation), the impulse response (IR) from the object is obtained. The impulse

response can be thought of as an echo of a very short, broadband click and it fully characterizes

the transmission properties of any linear and time-invariant (LTI) system. Actual echoes of bat

echolocation calls can be derived from the impulse responses by convolution with calls. The

advantage of using MLS instead of short impulses is that MLS has a longer duration and thus

contains more energy. This results in a much better signal-to-noise ratio (for more

Fig 6. The setup used to measure ultrasonic echoes. (a) The biomimetic sonar head with the ¼” G.R.A.S. microphone and the

custom build EMFI- transducer. (b) Schematic illustration of the measuring setup.

https://doi.org/10.1371/journal.pcbi.1009706.g006
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information regarding MLS method see Cho, 1990). We used a MLS containing 16 383 sam-

ples, which was continuously played at a sampling rate of 500 kHz resulting in a duration of 33

ms. The analogous microphone signal was digitized with a sampling rate of 500 kHz at 16 bit

resolution.

Acoustic measurements or scans were taken over a 180˚ angle from -90˚ to 90˚ with regard

to the center of the corolla in 1.8˚ increments. This led to 101 measurements per flower. We

scanned most the 168 flowers both in the horizontal as well as in the vertical plane. Thus, we

received 202 individual echoes (to recover 202 impulse responses) for each flower acquired

from different directions. 15 individual flowers from various species were only measured in

one plane, or measurements had to be discarded respectively because the measurement was

interrupted mainly due to an overheated amplifier. Replay and recording were sample syn-

chronous. We made sound recordings of the MLS-signal which was backscattered at the

objects surface. The raw recordings had a duration of two seconds each and we deduced the

impulse response (IR) by deconvolution with the original MLS as described above. As the

sequence length of the MLS was 33 ms the 2 s recording consisted 60 identical IRs. To further

increase the signal to noise ratio of the IRs we averaged over 50 sequences. In this averaged IRs

we searched for the peaks originated from the flowers, we cut them out (rectangular window,

1024 samples) and calculated the power spectral density.

To obtain spectra independent of the frequency response of the loudspeaker, an additional

measurement was performed for calibration. We installed a 25 cm x 25 cm plexiglass plate in

place of the flowers and measured its echo. To obtain the flowers’ spectral characteristics

regardless of the frequency response of the loudspeaker we used this ‘plate measurement’ to

calculate the difference between its spectrum and the spectrum of the recorded flower. This

permitted us to assess the flowers‘spectral target strength. The values we obtained with our

method resemble the spectral target strength (TS) at a reference distance of 10 cm. We ana-

lyzed the spectral target strength for 5 different frequency bands. One frequency band (40

kHz– 160 kHz) was very broad, thus covering the typical bandwidth of a glossophagine bat’s

echolocation call. The others had a lower bandwidth: we choose 45 kHz, 68 kHz, 102 kHz and

153 kHz as center frequencies, upper and lower boundary of the bands where ±20% around

these center frequencies. To determine TS values for each flower for these frequency bands, we

averaged TS (after delog) for the azimuth and also for the elevation measurements (each con-

sisted of 101 measurements) and then used the mean of azimuth and elevation for statistical

comparisons between flower types.

Classification with a convolutional neural network (CNN): For each species we had 14 dis-

tinct scans of different individual flowers. The distinct scans of each class were separated into

training, validation and testing subsets, stratified per individual flower to avoid the risk of

overestimating classification performance due to any “overfitting” in the training process. The

validation and testing set covered all 12 species, but contained echoes only from individual

flowers that had not been used for training. Two instances of each class were put in the test set,

eight instances in the train and two in the validation set, equivalent to a split of approximately

58% / 21% / 21%. We derived flower echoes by convolution of a typical echolocation call of

Glossophaga soricina with the impulse responses we measured from the different angles (see

Fig 7). The call was filtered prior to the convolution with a high pass filter with a cutoff of

5kHz, to ensure that no low frequency noise leakage was present. The spectrograms of each

echo were calculated with a Hann window of size of 256 samples and a hop size of 90%. This

allowed for a good trade-off between time and frequency resolution for this task [50].

Our classifier would use a small number of synthetic echoes to make a prediction, designed

as a simplified analogy of a bat using multiple calls on approach to a flower. Only the echo

spectrograms were used as input, without any information on the chosen angles or their
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relation. We studied groups of 1, 3, 5, 7 and 10 echoes. Further, for multi-echo situations we

evaluated two ways to select groups of echoes, following different assumptions about a bat’s

physical approach.

1) Random split (assumption: bats randomly receive echoes from different positions

during approach): Impulse responses from each single instance of all flowers were randomly

shuffled along the angle axis, and separated into sets of 3, 5, 7 and 10. This procedure

resulted in 4 different sets—each containing all available data in chunks of respectively 3, 5, 7,

and 10.

2) Interval split (assumption: bats approach in a narrow trajectory and receive echoes from

certain consecutive sequences): Again impulse responses were taken from each instance in

chunks of X = (3; 5; 7; 10). This time however, the IRs were selected in structured sequences. A

random interval n between 2 and 8 was selected and every nth impulse response was picked—

up to length X. This allowed for a more realistic approximation of an actual bat’s approach,

which would include multiple echoes, coming in succession from one direction. Note that this

option might result in less diversity within a chunk (increased redundancy of information

between echoes) and thus is expected to reduce recognition performance.

The architecture of the CNN is inspired by experiments on classification of plant appear-

ance qualities for flower grading [51]. 1, 3, 5, 7 or 10 echo spectrograms together constitute

one simultaneous input sample to the network. Independently of the number of inputs, each

echo goes through a ‘preprocessing layer’—consisting of a convolutional layer with 16 chan-

nels and a max pooling layer, in which the weights are shared, i.e. the same preprocessing

Fig 7. Example spectrograms used as input to the convolutional neural network. (a) Echolocation call from Pallas’s long-tongued bat (Glossophaga
soricina). (b) Example impulse response of a flower recording. (c-e) Example spectrogram sequence used as input.

https://doi.org/10.1371/journal.pcbi.1009706.g007
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for each spectrogram in the chunk. The results of this preprocessing are then concatenated

into one tensor and processed further through another set of convolutional (32 channels)

and max pooling layers. Then, three dense layers, and finally output of probabilities for each

of the 12 classes. Each convolutional layer has a kernel size of 3x3, with stride 1, and each

max pooling layer a kernel of size 3x3 with stride 2. A detailed overview of the architecture

can be seen in Fig 3. Note that one scan of one flower in the dataset had been mis-identified

during manual labelling: it was labelled as Cc_e_01 but should have been Cs_e_10 (both

bat-pollinated). The data of this scan has been removed from plots and analysis. It was

included in training of the classifier but not in testing; hence classification results are not

over-estimated.

We followed standard good practice to train a CNN deep learning classifier, as follows.

Cross-entropy was used as the loss function to measure model performance during training.

The Adam optimizer [52] was used for training, with a learning rate of .0001, and batch size of

16. During each epoch training was done over the entire train split in shuffled batches, and

then the model was run with validation data, in not shuffled batches, to monitor performance.

The final evaluation was done over the test set, after training was finished. Completion of

training was decided by early stopping, as well as manual inspection of loss values for train and

validation splits. Early stopping is a technique that prevents overfitting by stopping the training

process if performance on the train set improves, but performance on the validation set stag-

nates, or degrades, over a predefined amount of epochs. The creation of an echo spectrogram

occurred on-demand in the deep learning system, by convolving a selected impulse response

with a bat call and then calculating the resulting spectrogram. This approach slows down pro-

cessing to some degree, since the spectrograms are not pre-calculated, but allows for quick and

convenient changes to the window/hop sizes during training and hyperparameter tuning. An

example input to the CNN can be seen on Fig 6C–6E.

Morphological data

We collected morphological data for each flower including length of the corolla, inner

depth, calyx length, inner and outer diameter of the corolla opening for both, the horizontal

and vertical axis, see Fig 8. These characteristics were measured with a metal ruler (0.5 mm

precision). To estimate the reflective flower surface area Fsur, we calculated the area of a bell

like form consisting of a circle surface (resembling the corolla opening) and a paraboloid

surface (resembling the corolla chalice). We used half of the mean outer corolla diameter as

radius rc to calculate the area of the corolla opening and we used half of the mean inner

corolla diameter as radius rp and the corolla length as height h to calculate the outer corolla

surface area. The mean corolla diameter was the average of the vertical and horizontal mea-

surements.

Fsur ¼
prp
6h2
� ðr2

p þ 4h2Þ
3
2 � r3

p

h in o
þ pr2

c ð2Þ

As Witheringia sp. had a morphology that was very different from the rest of the flowers

(Fig 1), we took the following measures for this species: length and width of the petals, length

of the calyx, length and width of the anthers. For the species Condaminea corymbosa we did

not measure calyx length, because it is reduced in this species and hard to measure. As flowers

of Cantua quercifolia showed radial symmetry we measured inner and outer diameter of the

corolla opening only in one plane rather than both horizontal and vertical. For the two latter

species we adapted the surface calculation accordingly.
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Supporting information

S1 Fig. Dependence of the overall spectral target strength of the 45 kHz frequency

band (±20%) on the flower surface area. Bt = Burmeistera tenuiflora, Cc = Condaminea
corymbosa, Cj = Crescentia cujete, Cq = Cantua quercifolia, Cc = Centropogon costaricae,
Cs = Cobaea scandens, Mm =Macrocarpea macrophylla, Mn =Merinthopodium neuranthum,

Pg = Palicourea guanensis, Pp = Paragonia pyramidata, Sc = Symbolanthus calygonus,
Ws =Witheringia sp.

(TIF)

S2 Fig. Dependence of the overall spectral target strength of the 68 kHz frequency

band (±20%) on the flower surface area. Bt = Burmeistera tenuiflora, Cc = Condaminea
corymbosa, Cj = Crescentia cujete, Cq = Cantua quercifolia, Cc = Centropogon costaricae,
Cs = Cobaea scandens, Mm =Macrocarpea macrophylla, Mn =Merinthopodium neuranthum,

Pg = Palicourea guanensis, Pp = Paragonia pyramidata, Sc = Symbolanthus calygonus,

Fig 8. Schematic of the flower morphology measurements. For most of the flowers we took inner and outer diameter

of the corolla, inner depth, corolla length and calyx length. If flowers were not axial symmetrical we took corolla

diameters in the vertical and in the horizontal plane. The radii (rp and rc) and corolla length h indicated in the

schematic were used to estimate flower surface area, see formula (2).

https://doi.org/10.1371/journal.pcbi.1009706.g008
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Ws =Witheringia sp.

(TIF)

S3 Fig. Dependence of the overall spectral target strength of the 102 kHz frequency

band (±20%) on the flower surface area. Bt = Burmeistera tenuiflora, Cc = Condaminea
corymbosa, Cj = Crescentia cujete, Cq = Cantua quercifolia, Cc = Centropogon costaricae,
Cs = Cobaea scandens, Mm =Macrocarpea macrophylla, Mn =Merinthopodium neuranthum,

Pg = Palicourea guanensis, Pp = Paragonia pyramidata, Sc = Symbolanthus calygonus,
Ws =Witheringia sp.

(TIF)

S4 Fig. Dependence of the overall spectral target strength of the 153 kHz frequency

band (±20%) on the flower surface area. Bt = Burmeistera tenuiflora, Cc = Condaminea
corymbosa, Cj = Crescentia cujete, Cq = Cantua quercifolia, Cc = Centropogon costaricae,
Cs = Cobaea scandens, Mm =Macrocarpea macrophylla, Mn =Merinthopodium neuranthum,

Pg = Palicourea guanensis, Pp = Paragonia pyramidata, Sc = Symbolanthus calygonus,
Ws =Witheringia sp.

(TIF)
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