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Abstract

Protein palmitoylation is the covalent attachment of the 16-carbon fatty acid palmitate to a cysteine residue. It is the most
common acylation of protein and occurs only in eukaryotes. Palmitoylation plays an important role in the regulation of
protein subcellular localization, stability, translocation to lipid rafts and many other protein functions. Hence, the accurate
prediction of palmitoylation site(s) can help in understanding the molecular mechanism of palmitoylation and also in
designing various related experiments. Here we present a novel in silico predictor called ‘PalmPred’ to identify
palmitoylation sites from protein sequence information using a support vector machine model. The best performance of
PalmPred was obtained by incorporating sequence conservation features of peptide of window size 11 using a leave-one-
out approach. It helped in achieving an accuracy of 91.98%, sensitivity of 79.23%, specificity of 94.30%, and Matthews
Correlation Coefficient of 0.71. PalmPred outperformed existing palmitoylation site prediction methods – IFS-Palm and
WAP-Palm on an independent dataset. Based on these measures it can be anticipated that PalmPred will be helpful in
identifying candidate palmitoylation sites. All the source datasets, standalone and web-server are available at http://14.139.
227.92/mkumar/palmpred/.
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Introduction

S-Palmitoylation (hereafter termed as palmitoylation) is a

eukaryote specific [1], reversible post-translational protein mod-

ification, which covalently adds palmitate moiety (C16:0) to a

cysteine residue through a thioester linkage [2,3]. It plays an

important role in a number of cellular processes such as

membrane-protein interaction [4], signal transduction [5], neuro-

nal development [6], apoptosis [7], lipid raft targeting [8,9] and

subcellular localization [10]. Thus accurate identification of

palmitoylation sites may provide important clues to decipher the

underlying mechanism in the above-mentioned processes. Exper-

imental techniques employing proteomics and imaging methods

can be used for detection of palmitoylation sites. However time

and resources required to search palmitoylation sites in the huge

number of protein sequences present in different databanks, limit

their usage. Due to this reason, only a small number of

palmitoylation sites have been identified experimentally to date.

Therefore an effective and highly accurate in silico prediction

method can be very useful in rapid identification of candidate

palmitoylation site which can be targeted for further experimental

verification.

In recent years a few computational methods have been

reported to find out palmitoylation sites by using information

carried in protein sequences. Zhou et al. [11] developed the first

predictor CSS-Palm by adopting clustering and scoring strategy on

the dataset containing 210 palmitoylation sites with Jack-Knife

sensitivity of 82.16% and specificity of 83.17%. Another predictor

NBA-Palm was created by Xue et al. [12] using Naive Bayes

method which achieved the overall prediction accuracy of 86.74%

in Jack-Knife cross-validation. Ren et al. [13] proposed version 2.0

of CSS-Palm and claimed significant improvement in performance

over previous version. Wang et al. [14] added a new algorithm

CKSAAP-Palm to this list which used composition of k-spaced

amino acid pairs as the encoding scheme. Later Hu et al. [15]

proposed another predictor, named IFS-Palm, based on the

features of amino acid sequences using Nearest Neighbor

Algorithm and successfully showed that the IFS-Palm achieved a

significantly better performance over CKSAAP-Palm on an

independent dataset. Recently one more predictor WAP-Palm

[16] was reported having accuracy 85.99% and Matthews

Correlation Coefficient (MCC) of 0.72 in 10 fold cross-validation.

Here we report a new support vector machine (SVM) based

approach for palmitoylation site identification by using features

extracted from the primary amino acid sequence information only.

In order to build SVM model we extracted palmitoylated peptides

of different window size and encoded the same with different input

features namely sequence conservation (PSSM), secondary struc-

ture and disorder. The best result was achieved with the sequence

conservation encoding on 11-mer peptide. Benchmarking results

on independent datasets confirmed that the proposed method is

more efficient than the recent predictors, IFS-Palm and WAP-

Palm. A web-server and standalone package, termed PalmPred is
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also available at http://14.139.227.92/mkumar/palmpred/, to

enable high throughput annotation of new palmitoylation sites.

Materials and Methods

Data Source
In this study, we used the dataset constructed for the

development of IFS-Palm [15]. It is compiled from the Uniprot

database [17] (Release: 15.9, 13-Oct-2009) by searching the

keywords ‘‘Field’’ for ‘Sequence annotation [FT]’, ‘‘Topic’’ for

‘Lipidation’, ‘‘Term’’ for ‘Palmitoyl cysteine’, and ‘‘Confidence’’

for ‘Experimental’. The dataset consists of 151 proteins, which

include 1537 cysteine residues in total, of which 234 residues were

experimentally verified, as palmitoylation sites and remaining

1303 were not palmitoylated. The dataset was further divided into

training and independent test datasets, similar to the strategy

adopted in IFS-Palm.

Training dataset. Out of the total of 151 proteins, 132

proteins having 207 experimentally verified palmitoylated cyste-

ines and 1140 non-palmitoylated cysteines were used as training

dataset (Dtrain).

Independent test datasets. Remaining 19 proteins having

27 experimentally verified palmitoylated cysteines and 163 non-

palmitoylated cysteines were used as an independent dataset

(D1ind).

It was clear that proteins of D1ind were not present in training

dataset of IFS-Palm and our method but for other predictors this

may not be the case. In order to benchmark the performance of

our method vis-à-vis other, we created another independent dataset

(D2ind). For this, we used 54 yeast proteins in which palmitoylation

sites were identified and described in [18]. Eight proteins, also

present in training dataset Dtrain were excluded from the D2ind.

The resulting D2ind dataset contains 46 proteins in which

palmitoylation sites have been identified experimentally. This

dataset was also used for independent evaluation of our method.

To include any recent addition of palmitoylation sites, proteins of

D2ind were also searched in Uniprot from Field ‘‘Sequence

annotation (FT)’’, Topic ‘‘Lipidation’’ and Term ‘‘S-palmitoyl

cysteine’’.

We also compiled two more datasets for assessing the

performance of our method – D3ind and D4ind containing 10

and 17 proteins respectively in which several palmitoylation sites

were experimentally confirmed. The dataset D3ind was collected

from [19]. The dataset D4ind was taken from [20] and consists of

synaptic, motor, channels, G-protein coupled receptor, focal

adhesion and tight junction proteins. We did not find any Uniprot

annotation for palmitoylation in D3ind and D4ind proteins.

Pattern Size for Feature Encoding
The first step of our work was to determine the optimal window

length, W of the cysteine containing peptide which can give

maximum performance for palmitoylation site prediction. In order

to do this, we extracted peptide segments of different window sizes

from each protein such that each W-mer peptide contained a

cysteine, symmetrically flanked by (W-1)/2 residues. For terminal

cysteine residue, where the flanking region had less than (W-1)/2

residues, appropriate number of dummy residue ‘X’ was added to

complete the window.

Each peptide segment was assigned a label depending on the

nature of central cysteine residue. The peptide segment having a

palmitoylated central cysteine residue was labeled positive and a

non-palmitoylated central cysteine residue was labeled as negative.

Thus for each window we extracted a total of 207 and 27 positive

labels from Dtrain and D1ind respectively. Similarly the number of

negative labels in Dtrain and D1ind were 1140 and 163.

Feature Encoding
Conservation feature. This was obtained from position-

specific scoring matrix (PSSM) generated during PSI-BLAST [21]

search against NR90 by three iterations of searching at e-value

cut-off of 0.001 for inclusion of sequences in next iteration. The

NR90 database was constructed from NR protein sequence

database clustered at 90% sequence identity by using CD-HIT

[22–24]. The PSSM contains the probability of occurrence of each

type of amino acid residues at each position and hence can be

considered as a measure of residue conservation at a given

position. This means that evolutionary information for each amino

acid is encapsulated in a vector of 20 dimensions and the size of

PSSM for a protein with N residues is 20 x N. In the present work,

since we were using a peptide of fixed length ‘W’ to encode a

palmitoylation site, a corresponding sub-matrix of size W x 20 was

extracted from each PSSM. In case of peptides containing ‘X’ (see

previous section), each ‘X’ in PSSM was represented by ‘0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 09.

Structural disorder feature. Disordered regions are known

to be rich in binding sites and provide an important locus for

diverse protein post-translational modifications such as methyla-

tion and acetylation [25]. A number of studies also reported that

the incorporation of structural disorder increases the prediction

accuracy [26,27]. Therefore, we also included structural disorder

probability of each residue as an input feature to code the peptides.

For this purpose, VSL2 predictor [28,29] was used which assigned

a score between 0 and 1 to each residue. Higher value of VSL2

score (close to 1) shows lack of fixed 3-dimensional structure while

lower value shows higher propensity of fixed structure. It means

larger the score is, the more likely a residue lacks fixed structure.

We assigned score 0 to each dummy residue ‘X’.

Secondary structure feature. In their work Hu et al. [15]

had reported that information of protein structure also plays an

important role in the prediction of palmitoylation site. It indicates

that if structural information of each amino acid can be provided

into more explicit form, it may help to achieve better prediction of

palmitoylation site. In the present study we provided probability of

an amino acid to form each of the three secondary structures

namely, helix, sheet and coil using standalone PSIPRED (Ver 3.3)

[30] at default parameters. Here also NR90 was used to generate

the PSSM. Similar to conservation feature, for secondary structure

prediction each ‘X’ was given a hypothetical value of 90 0 09 to

maintain uniformity with other amino acid scores.

Support Vector Machines
We employed Support Vector Machine classifiers (SVM) to

predict if, for a given input feature vector, the central cysteine

residue is palmitoylated or not. SVMs, designed by Vapnik [31],

are computational algorithms, which can efficiently classify

complex, non-linear and high-dimensional data. So, it has been

used for developing a large number of bioinformatics applications

[32–36]. SVM trains a classifier by mapping the input vectors in

higher dimension space through kernel functions and separating

them into two classes (represented as positive and negative labels)

with the maximal margin and least error in the transformed space.

The trained classifier can be used to predict in which of the two

classes an unknown sample falls, with a high confidence level. In

the current study, SVM model was built using SVM-light [37]

which is freely available from http://svmlight.joachims.org/. We

experimented with several values of cost-factor, kernel (polynomial

and radial basis function kernels) and penalty parameter C on

Prediction of Palmitoylation Site
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peptides of different window sizes taken from Dtrain. The model

with the best performance parameters was selected as the optimal

model.

Cross-Validation
Cross-validation is a method to evaluate classifier performance.

The independent dataset test, sub-sampling (k-fold cross-valida-

tion) and Jack-Knife analysis (leave-one-out) are the three popular

methods for cross-validation. In k-fold cross-validation, the dataset

is randomly divided into k non-overlapping sets, k-1 sets are used

for training and the remaining set for testing. This process is

repeated k times such that each set is used as test set once and

overall performance is calculated by averaging over all test sets.

In the present study we used ‘leave-one-out’ cross-validation

(LOOCV) which has been considered as the most objective

method in comparison to other two methods [38–43]. LOOCV

uses one example from dataset as testing data and the remaining as

training data. In a complete cycle of LOOCV, each example is

used as test. The LOOCV thus shows dynamic behavior of testing

and training data where every sample is the training set to train

models as well as the testing set to test model [44]. It can also

exclude the memory effects that exist in the re-substitution test,

and provides the unique results for a given benchmark dataset

[45].

Figure 1. Performance of SVM on different window size.
doi:10.1371/journal.pone.0089246.g001
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Classifier Evaluation Measures
We adopted threshold-dependent performance matrices namely

Specificity (Sp), Sensitivity (Sn), Accuracy (Acc), and Matthews

Correlation Coefficient (MCC) to measure the prediction capa-

bility of our method. Sensitivity and specificity respectively are the

percentage of correct predictions from positive (palmitoylated

cysteines) and negative cases (non-palmitoylated cysteines). Accu-

racy (arithmetic mean of sensitivity and specificity) signifies the

overall percentage of correctly predicted palmitoylated and non-

palmitoylated peptides. The MCC [46] is a measure of predictive

capability of classifiers, which reflects both the sensitivity, and

specificity of the prediction algorithm. It is considered as a more

reliable measure of the quality of binary classifications and can be

used for unbalanced dataset also [47,48]. The MCC value always

ranges from -1 to 1. An efficient predictor will have positive

correlation coefficient value. The value -1 and 0 represents

opposite and random predictions respectively.

All of the above mentioned parameters can be defined as

follows:

Sn~
tz

tzzf {
|100

Sp~
t{

t{zf z
|100

Acc~
tzzt{

tzzt{zf zzf {
|100

Table 1. Performance of PSSM based SVM model.

Threshold Sensitivity Specificity Accuracy MCC
False Positive Rate (%)
(100-specificity)

21 94.20 36.93 45.73 0.24 63.07

20.9 92.75 60.18 65.18 0.38 39.82

20.8 89.37 73.77 76.17 0.47 26.23

20.7 88.89 81.05 82.26 0.55 18.95

20.6 85.51 86.49 86.34 0.60 13.51

20.5 81.64 90.88 89.46 0.65 9.12

20.4 79.23 94.30 91.98 0.71 5.70

20.3 72.95 95.96 92.43 0.70 4.04

20.2 67.63 96.75 92.28 0.69 3.25

20.1 58.94 97.63 91.69 0.65 2.37

0 53.62 98.25 91.39 0.63 1.75

0.1 49.28 98.60 91.02 0.61 1.40

0.2 45.89 98.86 90.72 0.59 1.14

0.3 39.61 98.95 89.83 0.55 1.05

0.4 38.16 99.12 89.76 0.54 0.88

0.5 33.82 99.21 89.16 0.51 0.79

0.6 27.54 99.47 88.42 0.46 0.53

0.7 21.26 99.47 87.45 0.40 0.53

0.8 17.87 99.65 87.08 0.37 0.35

0.9 13.04 99.82 86.49 0.32 0.18

1 8.70 99.91 85.89 0.26 0.09

The selected performance for SVM model has been shown in bold.
doi:10.1371/journal.pone.0089246.t001

Table 2. Performance of IFS-Palm and PalmPred on training
dataset (Dtrain) using LOOCV approach of training.

Predictor Sensitivity Specificity Accuracy MCC

IFS-Palm 68.60 94.65 90.65 0.64

PalmPred 79.23 94.30 91.98 0.71

doi:10.1371/journal.pone.0089246.t002

Table 3. Performance of CKSAAP-Palm, IFS-Palm and
PalmPred on the independent dataset (D1ind) of 19 proteins.

Predictors Sensitivity Specificity Accuracy MCC

CKSAAP-Palm* 62.96 86.50 83.16 0.43

IFS-Palm* 92.59 98.77 97.89 0.91

PalmPred 96.30 98.77 98.42 0.94

*The values for all measurement categories had been taken from Hu et al. 2011.
doi:10.1371/journal.pone.0089246.t003
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Table 4. Comparative study of cysteine palmitoylation sites in Yeast proteins. This data is referred as D2ind in the text.

Protein Uniprot ID Uniprot annotation
Experimentally
identified sites IFS-Palm WAP-Palm PalmPred

TVP18 A6ZMD0 – – – – 78

HIP1 P06775 – 603 339, 463 339 –

RHO2 P06781 188* 188 188 – 188

NUC1 P08466 – – – – –

TUB1 P09733 – – – – 14

GPA2 P10823 4 – 4 – 4

GAP1 P19145 – – 286 – –

YCK1 P23291 537#, 538# – 537, 538 – 537, 538

YCP4 P25349 243* – 243 – 243

AGP1 P25376 633# – 469 172, 266 –

SYN8 P31377 238* 238 – – 238

MLF3 P32047 – – – – 2

SSO1 P32867 – 266 – – 266

SNC2 P33328 94* 94 94 94 94

YKT6 P36015 196# – 196 – 196

YKL047W P36090 – – 516 – 516

BAP2 P38084 – 609 – – –

VAP1 P38085 – 619 318, 412 – –

YBR016W P38216 – – 110, 119, 122 – 119

TAT2 P38967 – – 489 – –

AKR1 P39010 – – 663 533, 667 533, 663, 667

MNN1 P39106 – 17 – – –

SSO2 P39926 – 270, 274 – – 270

YCK3 P39962 517*, 518*, 519*,
520*, 522*, 523*,
524*

– 84, 517, 518,
519, 522, 524

– 517, 518, 519,
520, 522, 523

VAC8 P39968 4*, 5*, 7* – 4, 5, 7, 106, 144 106 4, 5, 7

HEM14 P40012 – – 104, 435 – –

LBS6 P42951 – – 217, 223, 531 – 217, 223

MNN11 P46985 – 35 – – –

MSE1 P48525 – – 413 502 12

GNP1 P48813 – 663 193, 312 201 –

MNN10 P50108 – 44 263, 362 – –

YGL108C P53139 4* – 4 – 4

RHO3 Q00245 – 5 – 130 5

MEH1 Q02205 7 *, 8* – 7, 8 – 7, 8

TLG1 Q03322 205*, 206* 205, 206 – – 205

YLR326W Q06170 – – 79, 80, 81 80 79, 80, 81

SNA4 Q07549 2*, 3*, 5*, 7*, 8* – – – 2, 3, 5, 7, 34

PSR1 Q07800 9
$
, 10

$ – 10 10 9, 10

YLR001C Q07895 – 780 780 504 780

PSR2 Q07949 9
$
, 10

$ – 9, 10 10 9, 10

TLG2 Q08144 – 317, 325 – – 316

YPL199C Q08954 – – 235 – 233, 235

SAM3 Q08986 – – 268, 321 321 –

YPL236C Q12003 13*, 14*, 15* – 14, 15 13, 14, 159 13, 14, 15

PIN2 Q12057 – 35, 41, 53 66, 79, 81,
82, 84

66, 81, 82 53, 66, 79,
81, 82, 84

VAM3 Q12241 – 262, 274 – – 262

$
, * and # denotes the palmitoylated cysteine respectively annotated as ‘probable’, ‘By similarity’ and ‘potential’ in Uniprot.

doi:10.1371/journal.pone.0089246.t004
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MCC~
tz|t{{f z|f {

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tzzf {)|(t{zf z)|(tzzf z)|(t{zf {)

p

The abbreviations t+, t2, f+ and f2 represent true positive, true

negative, false positive and false negative respectively. True and

false positives are the predicted palmitoylated peptides, which are

in reality a palmitoylated, and non-palmitoylated peptide respec-

tively. True and false negatives are the peptides predicted as non-

palmitoylated and are actually a non-palmitoylated and palmitoy-

lated peptides respectively.

Results and Discussion

Performance of PSSM and Selection of Optimized
Window

To get optimum pattern size, we used only the evolutionary

information obtained from PSSM generated by PSI-BLAST

search against NR90. The performance was analyzed for window

sizes 5, 7, 9, 11, 13, 15 and 17. As shown in Figure 1, the overall

performance increased steadily with increase in the window-size,

attained the peak at 11 and started declining afterwards. The

maximum performance, which was achieved by us for pattern size

11, was 79.23% sensitivity, 94.30% specificity and 91.98%

accuracy with MCC 0.71 (detailed performance in Table 1). In

rest of the work, window-size 11 and PSSM based model was

considered as baseline model unless mentioned otherwise.

Additional features were added to the baseline model to further

improve the performance.

Integration of Structure Disorder Information in
Sequence Profile

When we integrated the disorder scores of central cysteine and

its flanking 5 amino acids (on each side) derived from VSL2, no

change in performance was noticed. We obtained sensitivity of

79.23%, specificity of 94.30%, accuracy of 91.98% and MCC of

0.71, which is exactly same as the performance achieved using

PSSM alone (Table 1). It is opposite to what observed by Hu et al.

[15] that disordered region plays an important role in the cysteine-

palmitoylation. In their work, Gao and Xu [49] had observed a

very little difference in the mean disorder scores (as predicted by

VSL2) for both S-palmitoylated and non-palmitoylated cysteine.

This little difference between the disorder propensities may be the

reason for not getting any improvement in the prediction

accuracy.

Prediction using Information in Sequence Conservation
and Secondary Structure

Computing the probability score to form each of the three

secondary structures by an amino acid is also a way of providing

order/disorder information. Hence we also used PSIPRED

predicted secondary structure information along with PSSM as

input and trained the SVM. With PSSM and secondary structure

information combined together, we achieved the accuracy of

91.98% and MCC of 0.71. The corresponding values of sensitivity

and specificity were 79.23% and 94.30% respectively.

Again the result did not show any improvement over baseline

model. This shows that addition of secondary structure informa-

tion was also not able to provide any extra information to the

predictor.

Prediction using Information in Sequence Profile,
Secondary Structure and Disorder

We also used a combination of both disorder and secondary

structure likelihood of each residue of the peptide pattern to see

the influence of both together. Contrary to our expectation we

obtained no increase in accuracy of prediction. All the

performance measures i.e., sensitivity, specificity, accuracy and

MCC remained same as obtained with PSSM alone (Table 1).

Hence SVM model obtained with PSSM was considered the

final prediction model in rest of the work and it is referred as

PalmPred henceforth.

Comparison with Existing Methods
Comparison of LOOCV performance. The existing meth-

ods of palmitoylation site prediction are CSS-Palm 1.0, NBA-

Palm, CSS-Palm 2.0, CKSAAP-Palm, IFS-Palm and WAP-Palm.

As the training data of the available predictors, except IFS-Palm, is

different from the PalmPred, direct comparison among these

predictors with PalmPred might not be reasonable. As described in

materials and methods PalmPred and IFS-Palm has similar

training dataset, so we compared the performance during

LOOCV between them only. The PalmPred reached sensitivity

of 79.23%, specificity of 94.30%, accuracy of 91.98% and MCC of

0.71 whereas the IFS-Palm attained sensitivity of 68.60%,

specificity of 94.65%, accuracy of 90.65% and MCC of 0.64

(Table 2). The result shows that at comparable specificity,

PalmPred achieved almost 10% higher sensitivity.

Comparison of independent dataset performance. In

order to do an unbiased evaluation, it is essential to benchmark the

performance on an independent dataset. We used two indepen-

dent datasets namely D1ind and D2ind for benchmarking purpose

(see materials and methods for detail).

The first dataset (D1ind) had a subset of 19 proteins out of total

151 proteins compiled by Hu et al. [15] for development and

Table 5. Performance of different machine learning classifiers.

Leave-one-out Cross-validation Independent Testing Dataset (D1ind)

Classifiers Sn Sp Acc MCC Sn Sp Acc MCC

Naı̈ve Bayes 79.60 74.50 79.58 0.44 82.80 81.70 82.63 0.51

RBF Network 85.00 49.00 85.00 0.37 82.10 60.00 82.11 0.37

Random Forest 85.20 21.40 85.23 0.19 89.50 36.50 89.47 0.48

Support Vector Machine 79.23 94.30 91.98 0.71 96.30 98.77 98.42 0.94

Sn, Sp, Acc and MCC represent Sensitivity, Specificity, Accuracy and Matthews Correlation Coefficient respectively.
doi:10.1371/journal.pone.0089246.t005

Prediction of Palmitoylation Site
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evaluation of IFS-Palm. The performance of CKSAAP-Palm, IFS-

Palm and PalmPred was evaluated on D1ind. As shown in Table 3,

in comparison of CKSAAP-Palm, a significant difference was

observed in the performance of PalmPred. When comparison was

made between IFS-Palm and PalmPred, PalmPred achieved better

sensitivity though the specificity was same (Table 3). The result

was consistent to the performance shown during LOOCV, where

also PalmPred had achieved higher sensitivity and comparable

specificity. While we were working on development of PalmPred, a

new palmitoylation site prediction method, namely, WAP-Palm

was published by Shi et al. [16]. As 12 out of 15 proteins

constituting the independent dataset of WAP-Palm were part of

PalmPred training data, we did not benchmark the performance of

WAP-Palm vis-à-vis PalmPred.

The dataset D2ind was used for performance assessment of IFS-

Palm, WAP-Palm and PalmPred. We took palmitoylation sites of

D2ind proteins predicted by IFS-Palm from [15]. As Shi et al. [16]

had shown that WAP-Palm performed best at threshold 0.8 we

used the same threshold for prediction. We observed that

PalmPred identified 61 palmitoylation sites in 33 proteins. WAP-

Palm predicted 21 palmitoylation sites in 15 proteins while IFS-

Palm predicted 60 sites in 31 proteins (Table 4). When we made a

comparison between PalmPred and IFS-Palm, it was observed that

PalmPred predicted at least one palmitoylated site in 10 different

proteins where IFS-Palm failed to predict even one site. When we

compared the 24 experimentally verified palmitoylation sites by

Roth et al. [18], the total number of sites predicted by WAP-Palm,

IFS-Palm and PalmPred were 1, 3 and 11 respectively. For protein

TLG2, Roth et al. [18] had estimated the palmitoylation at

position 317 [15] but PalmPred predicted it at 316 (Table 4). We

cross-checked the position in sequence of TLG2 (available at

Uniprot) and found that cysteine was present at position 316.

Table 6. Prediction performance of PalmPred on dataset D3ind taken from Nishimura and Linder 2013 (referred as D3ind).

Protein Uniprot ID
Total no. of cysteines
in protein Experimentally identified sites PalmPred

bcdC42 P60953 7 188 –

Wrch-1 Q7L0Q8 12 256 256

RalA P11233 3 203 –

RalB P11234 2 203 –

PRL-1 Q93096 6 – 104, 171

PRL-2 Q12974 7 – 101

PRL-3 O75365 6 170 171

PDE6a P16499 15 – –

PDE6b P23440 21 – –

PLA2c Q9UP65 7 – 539

doi:10.1371/journal.pone.0089246.t006

Table 7. Prediction of PalmPred on dataset D4ind taken from Oku et al. 2013.

Protein Uniprot ID
Total no. of
cysteines in protein

Putative
Palmitoylation sites

Experimental
confirmation PalmPred

TARPc-2 O88602 6 121 + 68, 121

TARPc-8 Q8VHW2 7 144 + 90, 91, 144

Cornichon-2 O35089 8 9 + 84

CaMKIIa P11798 10 6 + –

Kalirin7 A2CG49 55 1404 – 417, 989, 1334, 2508

Homer1C Q9Z2Y3 2 365 – –

Neurochondrin Q9Z0E0 25 3,4 + 3, 4, 292, 647, 348

Rab3A P63011 4 220 – 218, 220

Syd-1 Q9DBZ9 13 736 + 346, 360

Liprin-a2 Q8BSS9 9 3 – –

KIF5C P28738 10 7 – 303, 304

TRPM8 Q8R4D5 26 1032 + 780, 1028, 1031, 1032, 1033

TRPC1 Q61056 19 736 + 198, 367, 692, 703

Orexin2receptor P58308 14 381 + 381, 382

Paxillin Q8VI36 25 591 – –

Zyxin Q62523 23 404 + –

Par3 Q99NH2 12 6 – –

doi:10.1371/journal.pone.0089246.t007
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When we analyzed the prediction of PalmPred vis-à-vis Uniprot

annotation, we observed that PalmPred predicted 29 novel sites,

failed to predict 4 sites and correctly predicted 32 sites.

CSS-Palm 1.0, NBA-Palm and CSS-Palm 2.0 web-servers were

not functional, so we could not compare these methods.

Database for PSSM Construction
One of the prerequisites to carry out the prediction in PalmPred

is to first do the PSI-BLAST to generate input features i.e. PSSM.

One major challenge in employing PSI-BLAST is that with

increase in database size, PSI-BLAST search time also increases.

Therefore, to speed up the PSSM generation, we used databases

having less redundancy than NR90 and then evaluated the

performance. For D1ind proteins, we generated PSSM against

NR80 and NR70 and checked their performance on the PalmPred

model. NR80 and NR70 contained 80% and 70% redundancy

reduced protein sequences respectively and were compiled from

NCBI-NR protein sequences by using CD-HIT [22–24]. As

shown in Table S1, with decrease in redundancy of NR database,

the performance also decreased which was as reported by Ahmad

and Sarai [50].

Comparison with Other Machine Learning Classifiers
Other than SVM, several machine learning approaches have

been used to develop classifiers for predicting post-translational

modification sites including palmitoylation [12,16,51]. So besides

SVM, we also tested following three machine learning methods

implemented in WEKA program [52]: Naı̈ve Bayes, RBF

Network and Random forest. Similar to the SVM each of these

three classifiers was constructed by incorporating PSSM score on

pattern size 11. Each classifier was trained and evaluated on the

training dataset (Dtrain) using LOOCV. By comparing the

prediction results of the Naı̈ve Bayes, RBF Network and Random

forest classifiers with SVM classifier (Table 5), it was found that

SVM classifier achieved the highest specificity, accuracy and

MCC. The performance on independent dataset D1ind was also

very poor for Naı̈ve Bayes, RBF Network and Random forest

classifiers (Table 5). The comparison clearly shows that the SVM is

an ideal choice among different machine learning methods

available.

Web-Server
To make the optimized SVM model accessible to experimental

biologists, we have developed PalmPred web-server and standa-

lone package. The prediction output provides information about

all cysteine containing peptides, the position and palmitoylation

state of cysteines. The PalmPred web-server can take a maximum

of 5 sequences at a time. For a query dataset of more than 5

sequences standalone version of PalmPred can be used. The

PalmPred is freely available at http://14.139.227.92/mkumar/

palmpred/.

Performance Assessment of PalmPred
Recently two reports were published which experimentally

established palmitoylation sites in a group of proteins. The first

work was done by Nishimura and Linder [19] which experimen-

tally identified palmitoylation sites in Rho GTPase proteins. The

second work was reported by Oku et al. [20] on 17 candidate

proteins predominantly expressed in brain. In order to further

assess the reliability of PalmPred, we used the proteins of above-

mentioned work (referred as D3ind and D4ind respectively in

materials and methods).

Nishimura and Linder [19] reported a novel motif, CCaX,

which tandomly undergoes prenylation and palmitoylation at

Figure 2. The basic architecture of PalmPred.
doi:10.1371/journal.pone.0089246.g002
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C-terminal. In order to prove their hypothesis they worked on a

set of ten proteins. They experimentally determined palmitoyla-

tion sites for five proteins and also reported a protein, PLA2c,

which is known to be palmitoylated but the site of palmitoylation

present in this protein is unknown. When PalmPred was used to

predict the palmitoylation site in these ten proteins, of five proteins

whose palmitoylation sites were experimentally determined

PalmPred could correctly determined palmitoylation sites of two

of those proteins (Table 6). For PLA2c, PalmPred predicted the

candidate palmitoylation site as amino acid 539 which is consistent

with the observations of [19] i.e. the predicted position lies at

second C of CCaX motif. Of the remaining four proteins (PRL-1,

PRL-2, PDE6a and PDE6b), whose palmitoylation sites was not

determined by Nishimura and Linder, in PRL-1, PalmPred

correctly predicted palmitoylation site at 171, which follows the

hypothesis proposed by [19] besides one additional site at position

104 (Table 6). But in PRL-2, PalmPred predicted site did not

follow the CCaX motif rule. In PDE6a and PDE6b, PalmPred did

not predict any palmitoylation site which might be actually the

case, as canonical CaaX processing (i.e. proteolysis and carbox-

ymethylation after prenylation of CaaX cysteine) of PDE6a and

PDE6b is well documented [53].

Out of the 17 proteins tested as candidate for palmitoylation,

Oku et al. [20] were able to experimentally establish the

palmitoylation only for 10 sites (Table 7). PalmPred was able to

correctly predict 5 sites out of them. One additional site (at

position Cys-3) was also confirmed by the mutational analysis in

neurochondrin which was also correctly predicted by PalmPred.

Among the seven proteins whose palmitoylation couldn’t be

established by [20], in four proteins namely Homer 1C, Liprin-a2,

Paxillin and Par3, PalmPred did not predict any palmitoylation

site (Table 7). In remaining three proteins viz Kalirin7, KIF5C

candidate site and palmitoylation sites were different while in one

protein (Rab3A) both candidate and PalmPred predicted sites

were same but no palmitoylation can be experimentally estab-

lished.

One important thing we noticed with both datasets (D3ind and

D4ind) that despite very large number of cysteines in few proteins,

PalmPred predicted palmitoylation site did not increased propor-

tionally. Rather it shows robustness and high specificity of

prediction of our method. One of the possible reasons behind

slightly inferior performance of PalmPred can be due to novelty of

datasets on which work of [19] and [20] is based as both tried to

establish palmitoylation in a new group of proteins. Even Uniprot

does not have any information of palmitoylation of these proteins.

We feel that with addition of new information to the database, the

performance can also be improved further.

Conclusions

In the present study we have described a novel machine

learning tool called PalmPred to identify protein palmitoylation

sites by using sequence conservation features. LOOCV and

benchmarking results showed that PalmPred performed better

than the other existing methods. Thus we hope PalmPred may

serve as a useful tool to find potential palmitoylation sites in a

protein. One downside of our approach is that it takes

comparatively more time to generate evolutionary profile however

we tried to resolve this issue up to a certain extent by evaluating

the performance of PalmPred on less redundant data. The web-

interface and standalone of PalmPred is available at http://14.

139.227.92/mkumar/palmpred/. The overall working schema for

PalmPred is shown in Figure 2.
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